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Abstract
Higher-order tensors arise frequently in applica-
tions such as neuroimaging, recommendation sys-
tem, and social network analysis. We consider the
problem of low-rank tensor estimation from possi-
bly incomplete, ordinal-valued observations. Two
related problems are studied, one on tensor denois-
ing and another on tensor completion. We propose
a multi-linear cumulative link model, develop a
rank-constrained M-estimator, and obtain theo-
retical accuracy guarantees. Our mean squared
error bound enjoys a faster convergence rate than
previous results, and we show that the proposed
estimator is minimax optimal under the class of
low-rank models. Furthermore, the procedure de-
veloped serves as an efficient completion method
which guarantees consistent recovery of an order-
K (d, . . . , d)-dimensional low-rank tensor using
only Õ(Kd) noisy, quantized observations. We
demonstrate the outperformance of our approach
over previous methods on the tasks of clustering
and collaborative filtering.

1. Introduction
Multidimensional arrays, a.k.a. tensors, arise in a variety
of applications including recommendation systems (Bal-
trunas et al., 2011), social networks (Nickel et al., 2011),
genomics (Wang et al., 2019), and neuroimaging (Zhou
et al., 2013). There is a growing need to develop general
methods that can address two main problems for analyzing
these noisy, high-dimensional datasets. The first problem
is tensor denoising which aims to recover a signal tensor
from its noisy entries (Hong et al., 2020; Wang & Zeng,
2019). The second problem is tensor completion which
examines the minimum number of entries needed for a con-
sistent recovery (Ghadermarzy et al., 2018; Montanari &
Sun, 2018). Low-rankness is often imposed to the signal
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tensor, thereby efficiently reducing the intrinsic dimension
in both problems.

A number of low-rank tensor estimation methods have been
proposed (Hong et al., 2020; Wang & Song, 2017), revital-
izing classical methods such as CANDECOMP/PARAFAC
(CP) decomposition (Hitchcock, 1927) and Tucker decom-
position (Tucker, 1966). These tensor methods treat the
entries as continuous-valued. In many cases, however, we
encounter datasets of which the entries are qualitative. For
example, the Netflix problem records the ratings of users on
movies over time. Each data entry is a rating on a nominal
scale {very like, like, neutral, dislike, very dislike}. Another
example is in the signal processing, where the digits are
frequently rounded or truncated so that only integer values
are available. The qualitative observations take values in
a limited set of categories, making the learning problem
harder compared to continuous observations.

Ordinal entries are categorical variables with an ordering
among the categories; for example, very like ≺ like ≺ neu-
tral ≺ · · · . The analyses of tensors with the ordinal entries
are mainly complicated by two key properties needed for a
reasonable model. First, the model should be invariant under
a reversal of categories, say, from the Netflix example, very
like � like � neutral � · · · , but not under arbitrary label
permutations. Second, the parameter interpretations should
be consistent under merging or splitting of contiguous cat-
egories. The classical continuous tensor model (Kolda &
Bader, 2009; Ghadermarzy et al., 2019) fails in the first as-
pect, whereas the binary tensor model (Ghadermarzy et al.,
2018) lacks the second property. An appropriate model for
ordinal tensors has yet to be studied.

Our contributions. We are among the first to establish the
recovery theory for signal tensors and quantization operators
simultaneously from a limited number of highly discrete en-
tries. Our main contributions are summarized in Table 1. We
propose a cumulative link model for higher-order tensors,
develop a rank-constrained M-estimator, and obtain theoret-
ical accuracy guarantees. The mean squared error bound is
established, and we show that the obtained bound has min-
imax optimal rate in high dimensions under the low-rank
model. Furthermore, our proposal guarantees consistent
recovery of an order-K (d, . . . , d)-dimensional low-rank
tensor using only Õ(Kd) noisy, quantized observations.
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Bhaskar [2016] Ghadermarzy et al. [2018] This paper

Higher-order tensors (K ≥ 3) 7 3 3

Multi-level categories (L ≥ 3) 3 7 3

Error rate for tensor denoising d−1 for K = 2 d−(K−1)/2 d−(K−1)

Optimality guarantee under low-rank models unknown 7 3

Sample complexity for tensor completion dK Kd Kd

1
Table 1. Comparison with previous work. For ease of presentation, we summarize the error rate and sample complexity assuming equal
tensor dimension in all modes. K: tensor order; L: number of ordinal levels; d: dimension at each mode.

Related work. Our work is connected to non-Gaussian
tensor decomposition. Existing work focuses exclusively
on univariate observations such as binary- or continuous-
valued entries (Wang & Li; Ghadermarzy et al., 2018). The
problem of ordinal/quantized tensor is fundamentally more
challenging than previously well-studied tensors for two
reasons: (a) the entries do not belong to exponential family
distribution, and (b) the observation contains much less
information, because neither the underlying signal nor the
quantization operator is known. The limited information
makes the statistical recovery notably hard.

We address the challenge by proposing a cumulative link
model that enjoys palindromic invariance (McCullagh,
1980). A distinctive non-monotonic, phase-transition pat-
tern is demonstrated, as we show in Section 6. We prove
that the recovery from quantized tensors achieves equally
good information-theoretical convergence as the continu-
ous tensors. These results fills the gap between classical
and non-classical (ordinal) observations, thereby greatly
enriching the tensor model literature.

From algorithm perspective, we address the challenge us-
ing the (non-convex) alternating algorithm. Earlier work
has proposed an approximate (convex) algorithm for bi-
nary tensor completion (Ghadermarzy et al., 2018). Unlike
matrix problems, convex-relaxation for low-rank tensors suf-
fers from both computational intractability (Hillar & Lim,
2013) and statistical suboptimality. We improve the error
bound from O(d−(K−1)/2) in Ghadermarzy et al. (2018) to
O(d−(K−1)) and numerically compare the two approaches.

We also highlight the challenge associated with higher-
order tensors. Matrix completion has been proposed for
binary observations (Cai & Zhou, 2013; Davenport et al.,
2014; Bhaskar & Javanmard, 2015) and for ordinal obser-
vations (Bhaskar, 2016). We show that, applying existing
matrix methods to higher-order tensors results in suboptimal
estimates. A full exploitation of the higher-order structure
is needed; this is another challenge we address in this paper.

2. Preliminaries
Let Y ∈ Rd1×···×dK denote an order-K (d1, . . . , dK)-
dimensional tensor. We use yω to denote the tensor entry

indexed by ω, where ω ∈ [d1]× · · · × [dK ]. The Frobenius
norm of Y is defined as ‖Y‖F =

∑
ω y

2
ω and the infinity

norm is defined as ‖Y‖∞ = maxω |yω|. We use Y(k) to de-
note the unfolded matrix of size dk-by-

∏
i 6=k di, obtained by

reshaping the tensor along the mode k ∈ [K]. The Tucker
rank of Y is defined as a length-K vector r = (r1, . . . , rK),
where rk is the rank of matrix Y(k) for k ∈ [K].

We use lower-case letters (a, b, . . .) for scalars/vectors,
upper-case boldface letters (A,B, . . .) for matrices, and
calligraphy letters (A,B, . . .) for tensors of order three or
greater. An event A is said to occur “with very high prob-
ability” if P(A) tends to 1 faster than any polynomial of
tensor dimension dmin = min{d1, . . . , dK} → ∞. The
indicator function of an event A is denoted as 1{A}. For
ease of notation, we allow basic arithmetic operators (e.g.,
≤,+,−) to be applied to pairs of tensors in an element-wise
manner. We use the shorthand [n] to denote {1, . . . , n} for
n ∈ N+.

3. Model formulation and motivation
3.1. Observation model

Let Y denote an order-K (d1, . . . , dK)-dimensional data
tensor. Suppose the entries of Y are ordinal-valued, and the
observation space consists of L ordered levels, denoted by
[L] = {1, . . . , L}. We propose a cumulative link model for
the ordinal tensor Y = JyωK ∈ [L]d1×···×dK . Specifically,
assume the entries yω are (conditionally) independently
distributed with cumulative probabilities,

P(yω ≤ `) = f(b` − θω), for all ` ∈ [L− 1], (1)

where b = (b1, . . . , bL−1) is a set of unknown scalars
satisfying b1 < · · · < bL−1, Θ = JθωK ∈ Rd1×···×dK
is a continuous-valued parameter tensor satisfying cer-
tain low-dimensional structure (to be specified later), and
f(·) : R 7→ [0, 1] is a known, strictly increasing function.
We refer to b as the cut-off points and f the link function.

The formulation (1) imposes an additive model to the trans-
formed probability of cumulative categories. This model-
ing choice is to respect the ordering structure among the
categories. For example, if we choose the inverse link
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f−1(x) = log x
1−x to be the log odds, then the model (1)

implies a linear spacing between the proportional odds,

log
P(yω ≤ `)
P(yω > `)

− log
P(yω ≤ `− 1)

P(yω > `− 1)
= b` − b`−1, (2)

for all tensor entries yω. When there are only two cate-
gories in the observation space (e.g., for binary tensors),
the cumulative model (1) is equivalent to the usual bino-
mial link model. In general, however, when the number of
categories L ≥ 3, the proportional odds assumption (2) is
more parsimonious, in that, the ordered categories can be
envisaged as contiguous intervals on the continuous scale,
where the points of division are exactly b1 < · · · < bL−1.
This interpretation will be made explicit in the next section.

3.2. Latent-variable interpretation

The ordinal tensor model (1) with certain types of link f
has the equivalent representation as an L-level quantization
model on Y = JyωK:

yω =


1, if y∗ω ∈ (−∞, b1],

2, if y∗ω ∈ (b1, b2],
...

...
L, if y∗ω ∈ (bL−1,∞),

(3)

for all ω ∈ [d1] × · · · × [dk]. Here, Y∗ = Jy∗ωK is a latent
continuous-valued tensor following an additive noise model,

Y∗︸︷︷︸
latent continuous-valued tensor

= Θ︸︷︷︸
signal tensor

+ E︸︷︷︸
i.i.d. noise

, (4)

where E = JεωK ∈ Rd1×···×dK is a noise tensor with inde-
pendent and identically distributed (i.i.d.) entries according
to distribution P(ε). From the viewpoint of (4), the param-
eter tensor Θ can be interpreted as the latent signal tensor
prior to contamination and quantization.

The equivalence between the latent-variable model (3) and
the cumulative link model (1) is established if the link f is
chosen to be the cumulative distribution function of noise ε,
i.e., f(θ) = P(ε ≤ θ). We describe two common choices
of link f , or equivalently, the distribution of ε.

Example 1 (Logistic model). The logistic model is char-
acterized by (1) with f(θ) = (1 + e−θ/σ)−1, where σ > 0
is the scale parameter. Equivalently, the noise εω in (3)
follows i.i.d. logistic distribution with scale parameter σ.

Example 2 (Probit model). The probit model is character-
ized by (1) with f(θ) = P(z ≤ θ/σ), where z ∼ N(0, 1).
Equivalently, the noise εω in (3) follows i.i.d. N(0, σ2).

Other link functions are also possible, such as Laplace,
Cauchy, etc (McCullagh, 1980). These latent variable mod-
els share the property that the ordered categories can be

thought of as contiguous intervals on some continuous scale.
We should point out that, although the latent-variable inter-
pretation is incisive, our estimation procedure does not refer
to the existence of Y∗. Therefore, our model (1) is general
and still valid in the absence of quantization process. More
generally, we make the following assumptions about the
link f .

Assumption 1. The link function is assumed to satisfy:

1. f(θ) is strictly increasing and twice-differentiable in
θ ∈ R.

2. f ′(θ) is strictly log-concave and symmetric with re-
spect to θ = 0.

3.3. Problem 1: Tensor denoising

The first question we aim to address is tensor denoising:

(P1) Given the quantization process induced by f and the
cut-off points b, how accurately can we estimate the latent
signal tensor Θ from the ordinal observation Y?

Clearly, the problem (P1) cannot be solved uniformly for
all possible Θ with no assumptions. We focus on a class
of “low-rank” and “flat” signal tensors, which is a plausi-
ble assumption in practical applications (Zhou et al., 2013;
Bhaskar & Javanmard, 2015). Specifically, we consider the
parameter space,

P =
{

Θ ∈ Rd1×···×dK : rank(Θ) ≤ r, ‖Θ‖∞ ≤ α
}
,
(5)

where r = (r1, . . . , rK) denotes the Tucker rank of Θ.

The parameter tensor of our interest satisfies two constraints.
The first is that Θ is a low-rank tensor, with rk = O(1) as
dmin → ∞ for all k ∈ [K]. Equivalently, Θ admits the
Tucker decomposition:

Θ = C ×1 M1 ×1 · · · ×K MK , (6)

where C ∈ Rr1×···×rK is a core tensor, Mk ∈ Rdk×rk
are factor matrices with orthogonal columns, and ×k de-
notes the tensor-by-matrix multiplication (Kolda & Bader,
2009). The Tucker low-rankness is popularly imposed in ten-
sor analysis, and the rank determines the tradeoff between
model complexity and model flexibility. Note that, unlike
matrices, there are various notions of tensor low-rankness,
such as CP rank (Hitchcock, 1927) and train rank (Oseledets,
2011). Some notions of low-rankness may lead to mathe-
matically ill-posed optimization; for example, the best low
CP-rank tensor approximation may not exist (De Silva &
Lim, 2008). We choose Tucker representation for well-
posedness of optimization and easy interpretation.

The second constraint is that the entries of Θ are uniformly
bounded in magnitude by a constant α ∈ R+. In view of (4),
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we refer to α as the signal level. The boundedness assump-
tion is a technical condition that avoids the degeneracy in
probability estimation with ordinal observations.

3.4. Problem 2: Tensor completion

Motivated by applications in collaborative filtering, we also
consider a more general setup when only a subset of tensor
entries yω are observed. Let Ω ⊂ [d1]× · · · × [dK ] denote
the set of observed indices. The second question we aim to
address is stated as follows:

(P2) Given an incomplete set of ordinal observations
{yω}ω∈Ω, how many sampled entries do we need to consis-
tently recover Θ based on the model (1)?

The answer to (P2) depends on the choice of Ω. We consider
a general model on Ω that allows both uniform and non-
uniform sampling. Specifically, let Π = {πi1,...,iK} denote
a predefine probability distribution over the index set such
that

∑
ω∈[d1]×···×[dK ] πω = 1. We assume that each index

in Ω is drawn with replacement using distribution Π. This
sampling model relaxes the uniform sampling in literature
and is arguably a better fit in applications.

We consider the same parameter space (5) for the com-
pletion problem. In addition to the reasons mentioned in
Section 3.3, the entrywise bound assumption also serves as
the incoherence requirement for completion. In classical
matrix completion, the incoherence is often imposed on the
singular vectors. This assumption is recently relaxed for
“flat” matrices with bounded magnitude (Negahban et al.,
2011; Cai & Zhou, 2013; Bhaskar & Javanmard, 2015). We
adopt the same assumption for higher-order tensors.

4. Rank-constrained M-estimator
We present a general treatment to both problems mentioned
above. With a little abuse of notation, we use Ω to denote
either the full index set Ω = [d1]×· · ·× [dK ] (for the tensor
denoising) or a random subset induced from the sampling
distribution Π (for the tensor completion). Define b0 = −∞,
bL = ∞, f(−∞) = 0 and f(∞) = 1. The log-likelihood
associated with the observed entries is

LY,Ω(Θ, b) =
∑
ω∈Ω

∑
`∈[L]

{
1{yω = `} log

[
f(b` − θω)−

f(b`−1 − θω)
]}
. (7)

We propose a rank-constrained maximum likelihood estima-
tor (a.k.a. M-estimator) for Θ,

Θ̂ = arg max
Θ∈P

LY,Ω(Θ, b), where

P =
{

Θ ∈ Rd1×···×dK : rank(Θ) ≤ r, ‖Θ‖∞ ≤ α
}
.(8)

In practice, the cut-off points b are unknown and should be
jointly estimated with Θ. We will present the theory and

algorithm with known b in the main paper. The adaptation
for unknown b is addressed in Section 5 and the Supplement.

We define a few key quantities that will be used in our theory.
Let g` = f(θ + b`)− f(θ + b`−1) for all ` ∈ [L], and

Aα = min
`∈[L],|θ|≤α

g`(θ), Uα = max
`∈[L],|θ|≤α

|ġ`(θ)|
g`(θ)

,

Lα = min
`∈[L],|θ|≤α

[
ġ2
` (θ)

g2
` (θ)

− g̈`(θ)

g`(θ)

]
,

where ġ(θ) = dg(θ)/dθ, and α is the entrywise bound of
Θ. In view of equation (4), these quantities characterize
the geometry including flatness and convexity of the latent
noise distribution. Under Assumption 1, all these quantities
are strictly positive and independent of tensor dimension.

4.1. Estimation error for tensor denoising

For the tensor denoising problem, we assume that the full
set of tensor entries are observed. We assess the estimation
accuracy using the mean squared error (MSE):

MSE(Θ̂,Θtrue) =
1∏
k dk
‖Θ−Θtrue‖2F .

The next theorem establishes the upper bound for the MSE
of the proposed Θ̂ in (8).

Theorem 4.1 (Statistical convergence). Consider an ordi-
nal tensor Y ∈ [L]d1×···×dK generated from model (1), with
the link function f and the true coefficient tensor Θtrue ∈ P .
Define rmax = maxk rk. Then, with very high probability,
the estimator in (8) satisfies

MSE(Θ̂,Θtrue) ≤ min

(
4α2,

c1U
2
αr
K−1
max

L2
α

∑
k dk∏
k dk

)
,

(9)
where c1 > 0 is a constant that depends only on K.

Theorem 4.1 establishes the statistical convergence for the
estimator (8). In fact, the proof of this theorem (see the Sup-
plement) shows that the same statistical rate holds, not only
for the global optimizer (8), but also for any local optimizer
Θ̌ in the level set {Θ̌ ∈ P : LY,Ω(Θ̌) ≥ LY,Ω(Θtrue)}.
This suggests that the local optimality itself is not necessar-
ily a severe concern in our context, as long as the convergent
objective is large enough. In Section 5, we perform empiri-
cal studies to assess the algorithmic stability.

To gain insight into the bound (9), we consider a special
setting with equal dimension in all modes, i.e., d1 = · · · =
dK = d. In such a case, our bound (9) reduces to

MSE(Θ̂,Θtrue) � d−(K−1), as d→∞.

Hence, our estimator achieves consistency with polynomial
convergence rate. We compare the bound with existing
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literature. In the special case L = 2, Ghadermarzy et al.
(2018) proposed a max-norm constrained estimator Θ̃ with
MSE(Θ̃,Θtrue) � d−(K−1)/2. In contrast, our estimator
converges at a rate of d−(K−1), which is substantially faster
than theirs. This provides a positive answer to the open ques-
tion posed in Ghadermarzy et al. (2018) whether the square
root in the bound is removable. The improvement stems
from the fact that we have used the exact low-rankness of
Θ, whereas the surrogate rank measure employed in Gha-
dermarzy et al. (2018) is scale-sensitive.

Our bound also generalizes the previous results on ordinal
matrices. The convergence rate for rank-constrained matrix
estimation is O(1/

√
d) (Bhaskar, 2016), which fits into

our special case when K = 2. Furthermore, our result (9)
reveals that the convergence becomes favorable as the order
of data tensor increases. Intuitively, the sample size for
analyzing a data tensor is the number of entries,

∏
k dk,

and the number of free parameters is roughly on the order
of
∑
k dk, assuming rmax = O(1). A higher tensor order

implies higher effective sample size per parameter, thus
achieving a faster convergence rate in high dimensions.

A similar conclusion is obtained for the prediction error,
measured in Kullback-Leibler (KL) divergence, between the
categorical distributions in the observation space.
Corollary 1 (Prediction error). Assume the same set-up
as in Theorem 4.1. Let PY and P̂Y denote the distributions
generating the L-level ordinal tensor Y , given the true pa-
rameter Θ and its estimator Θ̂, respectively. Assume L ≥ 2.
Then, with very high probability,

KL(PY ||P̂Y) ≤ c1U
2
αr
K−1
max

L2
α

(4L− 6)ḟ2(0)

Aα

∑
k dk∏
k dk

,

where c1 > 0 is the same constant as in Theorem 4.1.

We next show the statistical optimality of our estimator Θ̂.
The result is based on the information theory and applies to
all estimators in P , including but not limited to Θ̂ in (8).
Theorem 4.2 (Minimax lower bound). Assume the same
set-up as in Theorem 4.1, and dmax = maxk dk ≥ 8. Let
infΘ̂ denote the infimum over all estimators Θ̂ ∈ P based
on the ordinal tensor observation Y ∈ [L]d1×···×dK . Then,
under the model (1),

inf
Θ̂

sup
Θtrue∈P

P
{

MSE(Θ̂,Θtrue)

≥ cmin

(
α2,

Crmaxdmax∏
k dk

)}
≥ 1

8
,

where C = C(α,L, f, b) > 0 and c > 0 are constants
independent of tensor dimension and the rank.

We see that the lower bound matches the upper bound in (9)
on the polynomial order of tensor dimension. Therefore,
our estimator (8) is rate-optimal.

4.2. Sample complexity for tensor completion

We now consider the tensor completion problem, when only
a subset of entries Ω are observed. We consider a general
sampling procedure induced by Π. The recovery accuracy
is assessed by the weighted squared error,

‖Θ− Θ̂‖2F,Π
def
=

1

|Ω|EΩ∼Π‖Θ− Θ̂‖2F

=
∑

ω∈[d1]×···×[dK ]

πω(Θω − Θ̂ω)2. (10)

Note that the recovery error depends on the distribution Π.
In particular, tensor entries with higher sampling probabili-
ties have more influence on the recovery accuracy, compared
to the ones with lower sampling probabilities.
Remark 1. If we assume each entry is sampled with some
strictly positive probability; i.e., there exits a constant µ > 0
such that

πω ≥
1

µ
∏
k dk

, for all ω ∈ [d1]× · · · × [dK ],

then the error in (10) provides an upper bound for MSE:

‖Θ− Θ̂‖2F,Π ≥
‖Θ− Θ̂‖2F
µ
∏
k dk

=
1

µ
MSE(Θ̂,Θtrue).

The equality is attained under uniform sampling with µ = 1.
Theorem 4.3. Assume the same set-up as in Theorem 4.1.
Suppose that we observe a subset of tensor entries {yω}ω∈Ω,
where Ω is chosen at random with replacement according
to a probability distribution Π. Let Θ̂ be the solution to (8),
and assume rmax = O(1). Then, with very high probability,

‖Θ− Θ̂‖2F,Π → 0, as
|Ω|∑
k dk

→∞.

Theorem 4.3 shows that our estimator achieves consistent re-
covery using as few as Õ(Kd) noisy, quantized observations
from an order-K (d, . . . , d)-dimensional tensor. Note that
Õ(Kd) roughly matches the degree of freedom for an order-
K tensor of fixed rank r, suggesting the optimality of our
sample requirement. This sample complexity substantially
improves over earlier result O(ddK/2e) based on square ma-
tricization (Mu et al., 2014), or O(dK/2) based on tensor
nuclear-norm regularization (Yuan & Zhang, 2016). Exist-
ing methods that achieve Õ(Kd) sample complexity require
either a deterministic cross sampling design (Zhang, 2019)
or univariate measurements (Ghadermarzy et al., 2018).
Our method extends the conclusions to multi-level mea-
surements under a broader class of sampling schemes.

5. Numerical Implementation
We describe the algorithm to seek the optimizer of (7). In
practice, the cut-off points b are often unknown, so we
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Algorithm 1 Ordinal tensor decomposition

Input: Ordinal data tensor Y ∈ [L]d1×···×dK , rank
r ∈ NK+ , entrywise bound α ∈ R+.
Output: (Θ̂, b̂) = arg max(Θ,b)∈P×B LY,Ω(Θ, b).

Random initialization of core tensor C(0), factor matri-
ces {M (0)

k }, and cut-off points b(0).
for t = 1, 2, · · · , do

for k = 1, 2, · · · ,K do
Update M

(t+1)
k while fixing other blocks:

M
(t+1)
k ← arg maxMk∈Rdk×rK LY,Ω(Mk),

s.t. ‖Θ(t+1)‖∞ ≤ α, where Θ(t+1) is the parame-
ter tensor based on the current block estimates.

end for
Update C(t+1) while fixing other blocks:
C(t+1) ← arg maxC∈Rr1×···×rK LY,Ω(C), s.t.
‖Θ(t+1)‖∞ ≤ α.
Update Θ(t+1) based on the current block estimates:
Θ(t+1) ← C(t+1) ×1 M

(t+1)
1 · · · ×K M

(t+1)
K .

Update b(t+1) while fixing Θ(t+1):
b(t+1) ← arg maxb∈B LY,Ω

(
Θ(t+1), b

)
.

end for
return (Θ̂, b̂)

choose to maximize LY,Ω jointly over (Θ, b) ∈ P × B (see
the Supplement for details). The objective LY,Ω is concave
in (Θ, b) whenever f ′ is log-concave. However, the feasible
set P is non-convex, which makes the optimization (7) a
non-convex problem. We employ the alternating optimiza-
tion approach by utilizing the Tucker representation of Θ.
Specifically, based on (6) and (7), the objective function
consists of K + 2 blocks of variables, one for the cut-off
points b, one for the core tensor C, and K for the factor ma-
trices Mk’s. The optimization is a simple convex problem if
any K+ 1 out of the K+ 2 blocks are fixed. We update one
block at a time while holding others fixed, and we alternate
the optimization throughout the iteration. The convergence
is guaranteed whenever LY,Ω is bounded from above, since
the alternating procedure monotonically increases the objec-
tive. The Algorithm 1 gives the full description.

We comment on two implementation details before conclud-
ing this section. First, the problem (8) is non-convex, so
Algorithm 1 usually has no theoretical guarantee on global
optimality. Nevertheless, as shown in Section 4.1, the de-
sired rate holds not only for the global optimizer, but also
for the local optimizer with LY,Ω(Θ̂) ≥ LY,Ω(Θtrue). In
practice, we find the convergence point Θ̂ upon random
initialization is often satisfactory, in that the correspond-
ing objective LY,Ω(Θ̂) is close to and actually slightly
larger than the objective evaluated at the true parameter
LY,Ω(Θtrue). Figure 1 shows the trajectory of the objective
function that is output in the default setting of Algorithm 1,

with the input tensor generated from probit model (1) with
d1 = d2 = d3 = d and r1 = r2 = r3 = r. The dashed
line is the objective value at the true parameter LY,Ω(Θtrue).
We find that the algorithm generally converges quickly to a
desirable value in reasonable number of steps. The actual
running time per iteration is shown in the plot legend.
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Figure 1. Trajectory of objective function with various d and r.

Second, the algorithm takes the rank r as an input. In prac-
tice, the rank r is hardly known and needs to be estimated
from the data. We use Bayesian information criterion (BIC)
and choose the rank that minimizes BIC; i.e.,

r̂ = arg min
r∈NK

+

BIC(r)

= arg min
r∈NK

+

{−2LY(Θ̂(r), b̂(r)) + pe(r) log(
∏
k

dk)},

where Θ̂(r), b̂(r) are the estimates given the rank r, and
pe(r)

def
=
∑
k(dk − rk)rk +

∏
k rk is the effective number

of parameters in the model. We select r̂ that minimizes
BIC through a grid search. The choice of BIC is intended
to balance between the goodness-of-fit for the data and the
degrees of freedom in the population model.

6. Experiments
In this section, we evaluate the empirical performance of
our methods1. We investigate both the complete and the
incomplete settings, and we compare the recovery accuracy
with other tensor-based methods. Unless otherwise stated,
the ordinal data tensors are generated from model (1) using
standard probit link f . We consider the setting with K = 3,
d1 = d2 = d3 = d, and r1 = r2 = r3 = r. The parameter
tensors are simulated based on (6), where the core tensor
entries are i.i.d. drawn from N(0, 1), and the factors Mk

are uniformly sampled (with respect to Haar measure) from
matrices with orthonormal columns. We set the cut-off
points b` = f−1(`/L) for ` ∈ [L], such that f(b`) are
evenly spaced from 0 to 1. In each simulation study, we
report the summary statistics across nsim = 30 replications.

1Software package: https://CRAN.R-project.org/
package=tensorordinal

https://CRAN.R-project.org/package=tensorordinal
https://CRAN.R-project.org/package=tensorordinal


Ordinal tensor denoising and completion

6.1. Finite-sample performance

The first experiment examines the performance under com-
plete observations. We assess the empirical relationship
between the MSE and various aspects of model complexity,
such as dimension d, rank r, and signal level α = ‖Θ‖∞.
Figure 2a plots the estimation error versus the tensor dimen-
sion d for three different ranks r ∈ {3, 5, 8}. The decay in
the error appears to behave on the order of d−2, which is
consistent with our theoretical results (9). We find that a
higher rank leads to a larger error, as reflected by the up-
ward shift of the curve as r increases. Indeed, a higher rank
implies the higher number of parameters to estimate, thus
increasing the difficulty of the estimation. Figure 2b shows
the estimation error versus the signal level under d = 20.
Interestingly, a larger estimation error is observed when the
signal is either too small or too large. The non-monotonic
behavior may seem surprising, but this is an intrinsic feature
in the estimation with ordinal data. In view of the latent-
variable interpretation (see Section 3.2), estimation from
ordinal observation can be interpreted as an inverse problem
of quantization. Therefore, the estimation error diverges in
the absence of noise E , because it is impossible to distin-
guish two different signal tensors, e.g., Θ1 = a1 ⊗a2 ⊗a3

and Θ2 = sign(a1)⊗ sign(a2)⊗ sign(a3), from the quan-
tized observations. This phenomenon (Davenport et al.,
2014; Sur & Candès, 2019) is clearly contrary to the classi-
cal continuous-valued tensor problem.

The second experiment investigates the incomplete obser-
vations. We consider L-level tensors with d = 20, α = 10
and choose a subset of tensor entries via uniform sampling.
Figure 2c shows the estimation error of Θ̂ versus the fraction
of observation ρ = |Ω|/dK . As expected, the error reduces
with increased ρ or decreased r. Figure 2d evaluates the
impact of ordinal levels L to estimation accuracy, under the
setting ρ = 0.5. An improved performance is observed as
L grows, especially from binary observations (L = 2) to
multi-level ordinal observations (L ≥ 3). The result show-
cases the benefit of multi-level observations compared to
binary observations.

6.2. Comparison with alternative methods

Next, we compare our ordinal tensor method (Ordinal-T)
with three popular low-rank methods.

• Continuous tensor decomposition (Continuous-T) (Acar
et al., 2010) is a low-rank approximation method based
on classical Tucker model.

• One-bit tensor completion (1bit-T) (Ghadermarzy et al.,
2018) is a max-norm penalized tensor learning method
based on partial binary observations.

• Ordinal matrix completion (Ordinal-M) (Bhaskar, 2016)
is a rank-constrained matrix estimation method based on
noisy, quantized observations.
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Figure 2. Empirical relationship between (relative) MSE versus (a)
dimension d, (b) signal level α, (c) observation fraction ρ, and (d)
number of ordinal levels L. In panels (b)-(d), we plot the relative
MSE = ‖Θ̂−Θtrue‖2F /‖Θtrue‖2F for better visualization.

We apply each of the above methods to L-level ordinal ten-
sors Y generated from model (1). The Continuous-T is
applied directly to Y by treating the L levels as continuous
observations. The Ordinal-M is applied to the 1-mode un-
folding matrix Y(1). The 1bit-T is applied to Y in two ways.
The first approach, denoted 1bit-sign-T, follows from Gha-
dermarzy et al. (2018) that transforms Y to a binary tensor,
by taking the entrywise sign of the mean-adjusted tensor,
Y − |Ω|−1

∑
ω yω. The second approach, denoted 1bit-

category-T, transforms the order-3 ordinal tensor Y to an
order-4 binary tensor, Y] = Jy]ijklK, via dummy variable
encoding; i.e., y]ijk` = 1{yijk = `} for ` ∈ [L − 1]. We
evaluate the methods by their capabilities in predicting the
most likely labels, ymode

ω = arg max` P(yω = `). Two per-
formance metrics are considered: mean absolute deviation
(MAD) = d−K

∑
ω |ymode

ω − ŷmode
ω |, and misclassification

rate (MCR) = d−K
∑
ω 1{ymode

ω 6= round(ŷmode
ω )}, where

round(·) denotes the nearest integer. Note that MAD penal-
izes the large deviation more heavily than MCR.

Figure 3 compares the prediction accuracy under the setting
α = 10, d = 20, and r = 5. We find that our method
outperforms the others in both MAD and MCR. In particu-
lar, methods built on multi-level observations (Ordinal-T,
Ordinal-M, 1bit-category-T) exhibit stable MCR over ρ
and L, whereas the others two methods (Continuous-T,
1bit-sign-T) generally fail except for L = 2 (Figures 3a-
b). This observation highlights the benefits of multi-level
modeling in the classification task. Although 1bit-category-
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T and our method Ordinal-T behave similarly for binary
tensors (L = 2), the improvement of our method is sub-
stantial as L increases (Figures 3a and 3c). One possible
reason is that our method incorporates the intrinsic ordering
among the L levels via proportional odds assumption (2),
whereas 1bit-category-T ignores the ordinal structure and
dependence among the induced binary entries.

Figures 3c-d assess the prediction accuracy with sample
size. We see a clear advantage of our method (Ordinal-T)
over the matricization (Ordinal-M) in both complete and
non-complete observations. When the observation fraction
is small, e.g., |Ω|/dK = 0.4, the tensor-based completion
shows ∼ 30% reduction in error compared to the matriciza-
tion.

Figure 3. Performance comparison for predicting most likely la-
bels. (a, c) Prediction errors versus sample complexity ρ =
|Ω|/dK when L = 5. (b, d) Prediction errors versus the num-
ber of ordinal levels L when ρ = 0.8.

We also compare the methods by their performance in pre-
dicting the median labels, ymedian

ω = min{` : P(yω = `) ≥
0.5}. Under the latent variable model (4) and Assumption 1,
the median label is the quantized θω without noise; i.e.,
ymedian
ω =

∑
` 1{θω ∈ (b`−1, b`]}. We utilize the same

simulation setting as in the earlier experiment. Figure 4
shows that our method outperforms the others in both MCR
and MAD. The improved accuracy comes from the incor-
poration of multilinear low-rank structure, multi-level ob-
servations, and the ordinal structure. Interestingly, the me-
dian estimator tends to yield smaller MAD than the mode
estimator, MAD(Ymedian, Ŷmedian) ≤ MAD(Ymode, Ŷmode)
(Figures 3a-b vs. Figures 4a-b), for the three multilevel
methods (1bit-sign-T, Ordinal-M, and Ordinal-T). The

Figure 4. Performance comparison for predicting median labels.
(a, c) Prediction error versus sample complexity ρ = |Ω|/dK
when L = 5. (b, d) Prediction error versus the number of ordinal
levels L, when ρ = 0.8.

mode estimator, on the other hand, tends to yield smaller
MCR than the median estimator, MCR(Ymode, Ŷmode) ≤
MCR(Ymedian, Ŷmedian) (Figures 3c-d vs. Figures 4c-d).
This tendency is from the property that the median estima-
tor ŷ(median)

ω minimizes R1(z) = Eyω |yω − z|, whereas the
mode estimator ŷ(mode)

ω minimizesR2(z) = Eyω1{yω = z}.
Here the expectation is taken over the testing data yω, con-
ditional on the training data and thus parameters Θ̂ and b̂.

7. Data Applications
We apply our ordinal tensor method to two real-world
datasets. In the first application, we use our model to ana-
lyze an ordinal tensor consisting of structural connectivities
among 68 brain regions for 136 individuals from Human
Connectome Project (HCP) (Geddes, 2016). In the second
application, we perform tensor completion to an ordinal
dataset with missing values. The data tensor records the
ratings of 139 songs on a scale of 1 to 5 from 42 users on
26 contexts (Baltrunas et al., 2011).

7.1. Human Connectome Project (HCP)

Each entry in the HCP dataset takes value on a nominal
scale, {high, moderate, low}, indicating the strength level
of fiber connection. We convert the dataset to a 3-level or-
dinal tensor Y ∈ [3]68×68×136 and apply the ordinal tensor
method with a logistic link function. The BIC suggests
r = (23, 23, 8) with LY,Ω(Θ̂, b̂) = −216, 646. Based on
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Cluster I

Brain nodes
l.frontalpole, l.temporalpole, l.medialorbitofrontal, l.cuneus, l.parahippocampal, l.lingual,
r.frontalpole, r.temporalpole, r.medialorbitofrontal, r.cuneus, r.parahippocampal

Cluster II

Brain nodes
l.caudalmiddlefrontal, l.inferiorparietal, l.insula, l.isthmuscingulate, l.lateraloccipital(2),
l.parsopercularis, l.parstriangularis, l.postcentral, l.precuneus, l.superiorfrontal, l.superiortemporal(3)

Cluster III

Brain nodes
r.caudalmiddlefrontal, r.inferiorparietal, r.insula, r.isthmuscingulate, r.lateraloccipital(2), r.lingual,
r.parsopercularis, r.parstriangularis, r.postcentral, r.precentral, r.precuneus, r.superiorfrontal(3),
r.superiorparietal, r.superiortemporal(3)

Cluster IV V VI

Brain nodes l.supramarginal(4) l.inferiortemporal(3) l.middletemporal(3)

Cluster VII VIII VIIII

Brain nodes r.supramarginal(4) r.inferiortemporal(3) r.middletemporal(3)

Cluster X XI

Brain nodes l.superiorfrontal(2) l.precentral, l.superiorparietal

1
Table 2. Node clusters in the HCP analysis. The first alphabet in the node name indicates the left (L) or right (R) hemisphere. The number
in the parentheses indicates the node count in each cluster.

the estimated Tucker factors {M̂k}, we perform a cluster-
ing analysis via K-mean on the brain nodes (see detailed
procedure in the Supplement). We find that the clustering
successfully captures the spatial separation between brain
regions (Table 2). In particular, cluster I represents the con-
nection between the left and right hemispheres, whereas
clusters II-III represent the connection within each of the
half brains (Figure 5). Other smaller clusters represent local
regions driving by similar nodes (Table 2). For example, the
cluster IV/VII consists of nodes in the supramarginal gyrus
region in the left/right hemisphere. This region is known to
be involved in visual word recognition and reading (Stoeckel
et al., 2009). The identified similarities among nodes with-
out external annotations illustrate the applicability of our
method to clustering analysis.

a b c

Figure 5. Top three clusters in the HCP analysis. (a) Cluster I
reflects the connections between two brain hemispheres. (b)-(c)
Cluster II/III consists of nodes within left/right hemisphere only.
Node names are shown in abbreviation. Edges are colored based
on estimated connection averaged across individuals.

We compare the goodness-of-fit of various tensor methods
on the HPC data. Table 3 summarizes the prediction error
via 5-fold stratified cross-validation averaged over 10 runs.
Our method outperforms the others, especially in MAD.

7.2. InCarMusic recommendation system

We apply ordinal tensor completion to a recommendation
system InCarMusic. InCarMusic is a mobile application

that offers music recommendation to passengers of cars
based on contexts (Baltrunas et al., 2011). We conduct
tensor completion on the 42-by-139-by-26 tensor with 2,844
observed entries only. Table 3 shows the averaged prediction
error via 5-fold cross validation. The high missing rate
makes the accurate classification challenging. Nevertheless,
our method achieves the best performance among the three.

Human Connectome Project (HCP) dataset
Method MAD MCR

Ordinal-T (ours) 0.1607 (0.0005) 0.1606 (0.0005)
Continuous-T 0.2530 (0.0002) 0.1599 (0.0002)

1bit-sign-T 0.3566 (0.0010) 0.1563 (0.0010)
InCarMusic dataset

Method MAD MCR
Ordinal-T (ours) 1.37 (0.039) 0.59 (0.009)

Continuous-T 2.39 (0.152) 0.94 (0.027)
1bit-sign-T 1.39 (0.003) 0.81 (0.005)

Table 3. Comparison of prediction error in the HPC and InCarMu-
sic analyses. Standard errors are reported in parentheses.

8. Conclusions
We have developed a low-rank tensor estimation method
based on possibly incomplete, ordinal-valued observations.
A sharp error bound is established, and we demonstrate the
outperformance of our approach compared to other methods.
The work unlocks several directions of future research. One
interesting question would be the inference problem, i.e.,
to assess the uncertainty of the obtained estimates and the
imputation. Other directions include the trade-off between
non-convex optimization and statistical efficiency. While
we have provided numerical evidence for the success of
non-convex approach, the full landscape of the optimization
remains open. The interplay between computational effi-
ciency and statistical accuracy in general tensor problems
warrants future research.
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