Supplements for ‘“Tensor denoising and completion based on
ordinal observations”

A. Proofs

Here, we provide proofs of the theoretical results presented in Sections 4.

A.1. Estimation error for tensor denoising

Proof of Theorem 4.1. We suppress the subscript {2 in the proof, because the tensor denoising assumes complete observation
Q =[dy] x -+ x [dk]. It follows from the expression of Ly,(0) that

Wy Y 1py =20,

a0., e[ g@(aw)
oLy §e0.)000.) — 0) | Ly
o _éez[g]]l{yw =0 200.) and 20,67 =0ifw #u, (1)

forallw € [di] % - - x [dk]. Define digs = [ [, di- Let Vo Ly € Ré1%*dx denote the tensor of gradient with respect to
O € R4>xxdx and V2 Ly the corresponding Hession matrix of size dia1-by-diora. Here, Vec(+) denotes the operation
that turns a tensor into a vector. By (1), V%[,y is a diagonal matrix. Recall that

190(0)] 97(0) — §0(0)ge(0)

= max >0 and L,= min > 0.
telLljoj<a go(0) te[L],0]<a 9;(0)

Therefore, the entries in Vg Ly are upper bounded in magnitude by U, > 0, and all diagonal entries in V3 £y are upper
bounded by —L,, < 0.

By the second-order Taylor’s expansion of £y (©) around ©™"¢, we obtain
1 -
Ly(0) = Ly(0™) + (Vec(Ve Ly(07)), Vec(© — O™)) + 5 Vec(© — 07 T'VZ £1)(60) Vec(© — 0, (2)

where © = yOUe 4 (1 — ~)© for some v € [0, 1], and Véﬁy(é) denotes the dyop-by-diora Hession matrix evaluated at
o.
We first bound the linear term in (2). Note that, by Lemma 4,

[(Vec(Vo Ly (07°), Vec(6 — ©7))| < [[Ve Ly(0")|,[|© — 0|, 3)
where |||, denotes the tensor spectral norm and ||-||.. denotes the tensor nuclear norm. Define

ALy
aew O=0Otrue

Sy = forall w € [dy] X -+ X [dk].

Based on (1) and the definition of U, Vo Ly (0™"¢) = [s,,] is a random tensor whose entries are independently distributed
satisfying
E(sy) =0, |sw| <U,, forallw e [di] x -+ x [dg]. 4

By lemma 6, with probability at least 1 — exp(—C4 >, di), we have

Vo Ly(071)||, < ColU, /Zd,w (5)
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where C7, Cy are two positive constants that depend only on K. Furthermore, note that rank(0) < r, rank(@t”‘e) <7r,so
rank(© — ©11¢) < 2. By lemma 3, ||© — ||, < (2rax) 7 ||© — ©|| 5. Combining (3), (4) and (5), we have
that, with probability at least 1 — exp(—C1 Y, di),

[(Vec(Ve Ly (O71°)), Vec(© — O))| < CyU, [t Zd 10 — 0" p. (6)

We next bound the quadratic term in (2). Note that

rue e rue 82‘6
Vec(© — 0) 'V Ly (0) Vec(© — ©) = ( 5 923’ ‘@_é) (0 — Ouue.w)?

*L Z ®true w

_La”@ _ @trueHQF) (7)

IN

where the second line comes from the fact that ||©||o, < « and the definition of L.

Combining (2), (6) and (7), we have that, for all © € P, with probability at least 1 — exp(—C1 ) _, di),
1/2 I
Ly(©) < Ly(07) + C2Uq ( Tmax de> 16— O™ |lp — 7(1® — O™,
In particular, the above inequality also holds for © € P. Therefore,
1/2 I
L£y(0) < Ly(0™) + CoUa < Timax de> 16 — 6" p — 6 — 6|7
Since © = argmaxecp Ly(0), L1(0) — L3(O71¢) > 0, which gives

1/2
A LOé A rue
ozva<m2dk> 16— e — Lo et > 0,

Henceforth,
1. 205Uq /it 3, i 205Ul d
||® _ Gtruc”F < “ k 2VaT Zk k'
V Hk dp, L, Hk dg La Hk dp,
This completes the proof. O
Proof of Corollary 1. The result follows immediately from Theorem 4.1 and Lemma 8. O

Proof of Theorem 4.2. Let diol = [ [, cr] 9k and y € [0, 1] be a constant to be specified later. Our strategy is to construct
a finite set of tensors X = {©;: i = 1,. } C P satisfying the properties of (i)-(iv) in Lemma 9. By Lemma 9, such a
subset of tensors exist. For any tensor G) € X, let Pg denote the distribution of J|©, where ) is the ordinal tensor. In
particular, Py is the distribution of ) induced by the zero parameter tensor 0, i.e., the distribution of ) conditional on the
parameter tensor © = 0. Based on the Remark for Lemma 8, we have

KL(Po|[Po) < C||O||%, (8)

where C' = m_jﬂ > 0 is a constant independent of the tensor dimension and rank. Combining the inequality (8) with
property (iii) of X', we have
KL(PGHPO) § ’yngadeax- (9)



Ordinal tensor denoising and completion

From (9) and the property (i), we deduce that the condition

1

Card(X) —1 Y KL(Po,Pg) < elog {Card(X) — 1} (10)

ecx

holds for any ¢ > 0 when « € [0, 1] is chosen to be sufficiently small depending on ¢, e.g., v < /% 10g2

Lemma 11 to (10), and in view of the property (iv), we obtain that

inf sup IF’(H@ 0| > = mln{ v diotar, C~ V2 /rmaxd max}) (125 74166> (11)

6 truec y dmax 10g 2

. By applying

Note that Loss(©, ©tT1¢) = [|© — ©%¢||2, /djo and X C P. By taking ¢ = 1/10 and v = 1/11, we conclude from (11)
F

that )
A C™ ' rmaxdmax 1/4 1.6 1
inf sup P (Loss(&@“ue) > cmin {aQ, r}) > - ( - ,/) >,
6 ©true cPp dtota] 2 5 Tmaxdmax IOg 2 8
where ¢ = é and the last inequality comes from the condition for dp,x. This completes the proof. [

A.2. Sample complexity for tensor completion

Proof of Theorem 4.3. For notational convenience, we use [|O|p.o = > ., ©2 to denote the sum of squared entries over
the observed set €, for a tensor © € R X Xdx

Following a similar argument as in the proof of Theorem 4.1, we have
1 -
ﬁy@(@) = ﬁyﬂ(@truc) + <VeC(V@[:y7Q), Vec(@ - @truc» + 5 Vec(@) - @truc)TVéﬁy,Q(@) Vec(@ - @truc), (12)
where

1. VeLygisad; X --- x dg tensor with || nonzero entries, and each entry is upper bounded by U, > 0.

2. v%ﬁy)g is a diagonal matrix of size diu-by-dio With |§2| nonzero entries, and each entry is upper bounded by
—L, <0.

Similar to (3) and (7), we have

[(Vee(Vo Ly a), Vec(® — 0"))| < CoU, \/ﬁ L0 — 07 g

Veo(® — ) V2 £,(6) Vec(© — 07) < —L,[|© — |12, (13)

and

Combining (12)-(13) with the fact that ;Cy’Q(é) > Ly o(0""°), we have

A 20 U max
16 — 0| pg < L /de, (14)

with probability at least 1 — exp(—C1 Y, di). Lastly, we invoke the result regarding the closeness of © to its sampled
version O, under the entrywise bound condition. Note that ||© — ©'1¢|| ,, < 2« and rank(© — ©""¢) < 27, By Lemma 2,

. 3/2 3/2
6 — @true||,, < 2BK-1)/24 (M) . Therefore, the condition in Lemma 12 holds with g = 235-1)/2¢ (Hr’“> :

T'max Tmax

Applying Lemma 12 to (14) gives

A rue LA rue Z dk
1© — e En < EH@—@t [0 + B |’;2|

/ d
< 02 rI‘ﬂ(ax1 Z|£3| k + O ar m;f( /2 ZIE” ku
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_ Ek dg
. . > 1 log di
the tensor dimension and rank. Therefore,

with probability at least 1 — exp( ) over the sampled set 2. Here C, Cy > 0 are two constants independent of

o Q|
©—0O%ue|2 50, as | — 00,
[ I >
provided that ry,,x = O(1). O
A.3. Convexity of the log-likelihood function
Theorem A.1. Define the function
Lya(©,b) = > > (1{y, = £} og [f(br — 0.,) — f(be—r — 0.,)]), (15)

we Le[L]

where f(-) satisfies Assumption 1. Then, Ly o(©, b) is concave in (O, b).

Proof. Define dioi = [ [, d. By abuse of notation, we use (O, b) to denote the length-(doa + L — 1)-vector collecting all
parameters together. Let us denote a bivariate function

A:R* =R
(u,v) = A(u,v) =log [f(u) — f(v)].
It suffices to show that A\(u, v) is concave in (u,v) where u > v.

Suppose that the claim holds (which we will prove in the next paragraph). Based on (15), u, v are both linear functions of
(6,b):
u=al(0,b), v=al(O©,b), forsomea,a;c RIatl1

Then, A(u,v) = AMaf(0,b), al(O,b)) is concave in (O, b) by the definition of concavity. Therefore, we can conclude
that £y (O, b) is concave in (O, b) because Ly (0, b) is the sum of A(u, v).

Now, we prove the concavity of A(u,v). Note that

A, v) = log [f(u) — f(v)] = log | / Ly (2) £ (2)d],

where 1, , is an indicator function that equals 1 in the interval [u,v], and O elsewhere. Furthermore, 1, () is log-
concave in (u, v, ), and by Assumption 1, f’(z) is log-concave in x. It follows that 1, () f'(x) is a log-concave in
(u,v,x). By Lemma 1, we conclude that A(u, v) is concave in (u,v) where u > v. O

Lemma 1 (Corollary 3.5 in Brascamp & Lieb (2002)). Let F(z,y): R™™™ — R be an integrable function where
zeR™ yeR™ Let

Go) = [ Fa.v)dy.

If F(z,y) is log concave in (x,y), then G(z) is log concave in x.

A.4. Auxiliary lemmas

This section collects lemmas that are useful for the proofs of the main theorems.

Definition 1 (Atomic M-norm (Ghadermarzy et al., 2019)). Define Ty = {7 € {£1}4>*dx: rank(T) = 1}. The
atomic M-norm of a tensor © € R > Xdx ig defined as

1©||a = inf{t > 0: © € tconv(T4)}

= inf ZCX:@:ZCXX,C)(>O

XeTy XeTy
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Definition 2 (Spectral norm (Lim, 2005)). The spectral norm of a tensor @ € R4 > *4x is defined as
1Ol =sup {(6, 21 ® - ®xx): |zk|2 = 1, ) € R%*, forall k € [K]}.
Definition 3 (Nuclear norm (Friedland & Lim, 2018)). The nuclear norm of a tensor © € R% %" X4« ig defined as

8. =infd S |n|: @ = Zm 1zl =1, 2 e R%, forall k € [K], i € [r] p,

i€[r]

where the infimum is taken over all » € N and ||azk)||2 = 1foralli € [r]and k € [K].

Lemma 2 (M-norm and infinity norm (Ghadermarzy et al., 2019)). Let © € R4* X4k be an order-K, rank-(r1, ... ,rx)
tensor. Then

e\ B
101 < 1©]1ar < (H'f ) 10]]oc.

l’Il ax

Lemma 3 (Nuclear norm and F-norm). Let A € R4X X% pe an order-K tensor with Tucker rank(A) = (r1,...,rx).
Then
[T 7w
AL <4 [ === ]| Al ,
maxy, 7k

where ||-|| denotes the nuclear norm of the tensor.

Proof. Without loss of generality, suppose 71 = miny, 7. Let Ay denote the mode-k matricization of A for all k € [K].
By Wang et al. (2017, Corollary 4.11), and the invariance relationship between a tensor and its Tucker core (Jiang et al.,
2017, Section 6), we have

M-
JA, < 4 -2z Al (16)

maxpg

where A1) is a d1-by-] ]~ , di matrix with matrix rank r;. Furthermore, the relationship between the matrix norms implies
that | A [« < /r1ll Ayl = /71 All . Combining this fact with the inequality (16) yields the final claim. O

Lemma 4. Let A, B be two order-K tensors of the same dimension. Then

(A, B)| < [ Allo[IB]+-
Proof. By Friedland & Lim (2018, Proposition 3.1), there exists a nuclear norm decomposition of 5, such that
B= Z/\ragql) ®---®a  a® e8I R), forallk e [K],
and || B = >, |\r|. Henceforth we have
(A, B)| = [(A, ZA aV @ @a) <Y N4 a) @ @al)
<> Al = 141118l
which completes the proof. O

The following lemma provides the bound on the spectral norm of random tensors. The result was firstly presented in Nguyen
et al. (2015), and we adopt the version from Tomioka & Suzuki (2014).
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Lemma 5 (Spectral norm of random tensors (Tomioka & Suzuki, 2014)). Suppose that S = [s,] € R4* ¥4k js an
order-K tensor whose entries are independent random variables that satisfy

E(s,) =0, and E(e') < e L2,

Then the spectral norm ||S||, satisfies that,

sgs¢mmwmmZﬁVNMW&
k

with probability at least 1 — 6.

Lemma 6. Suppose that S = [s,,] € R4>**4x js an order-K tensor whose entries are independent random variables
that satisfy
E(sw) =0, and |s,| <U.

P([Slle > CoU, [> di| <exp <—01 10gKde>
\ % %

where C'y > 0 is an absolute constant, and Cy > 0 is a constant that depends only on K.

Then we have

Proof. Note that the random variable U ~'s,, is zero-mean and supported on [—1, 1]. Therefore, U ~'s,, is sub-Gaussian
with parameter # =1, 1i.e.

E(U 's,) =0, and ]E(etU*lSW) <et'/2,
It follows from Lemma 5 that, with probability at least 1 — 9,

nu*aasv%m%wao§3@+MQW®
k

where cg,c; > 0 are two absolute constants. Taking 0 = exp(—C;log K )", d},) yields the final claim, where Cy =
colog K + ¢; + 1 > 0 is another constant. ]

Lemma 7. Let X, Y be two discrete random variables taking values on L possible categories, with point mass probabilities
{pe}eerr) and {qe}eir), respectively. Suppose py, qo > 0 for all £ € [L]. Then, the Kullback-Leibler (KL) divergence

satisfies that
)2
KLXYV)E — Y Py(d) log{]}»y(@} <Y (e —g0)
Le[L] Px (6) Le[L] qe

Proof. Using the fact logx < x — 1 for z > 0, we have that

p
KL(X[[Y) = 3 prlog

Le[L]

< Z &(Pe - qe)
elL) qe

=y <W—1> (pe—ae)+ Y (pe—av).
Le[L] e Le[L]

Note that 3¢ (7, (pe — ge) = 0. Therefore,

KL(X[[Y) < > (”—1) pe—a) =3 (pe—q0)*

ter) N e U
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Lemma 8 (KL divergence and F-norm). Ler) € [L]d1 X XdK he an ordinal tensor generated from the model (1) with the
link function f and parameter tensor ©. Let Pg denote the joint categorical distribution of Y|© induced by the parameter
tensor ©, where ||©||s < a. Define

Ao = min [f(b—0) — f(be_1 — 0)]. (17)

Le[L],|0]<ax
Then, for any two tensors ©, © in the parameter spaces, we have

2L — 3)

2 .
KL(o|Po-) < 22— p2g)j0 - 073

Proof. Suppose that the distribution over the ordinal tensor ) = [y,,] is induced by © = [0,]. Then, based on the
generative model (1),

Py, = Elew) = f(bf - ew) - f(bé—l —0.,),

forall £ € [L]and w € [d;] X --- X [dk]. For notational convenience, we suppress the subscribe in 6,, and simply write 0
(and respectively, 8*). Based on Lemma 7 and Taylor expansion,

[f(be = 6) = f(be—1 — 0) — f(be = %) + f(be—y — 6%)]?

KL(6]|0*
o< 2 Fou— %)~ 11— )
: . 2
Ll [f(bz —ne) = f(be—1 — 7]@—1)} co 2 —m) .
<2 e e O e )
fPlorr—nmn1) ) oo
+ lff(bL_l—G*)(e 0%)%,
where 7, and 7,_1 fall between 6 and 6*. Therefore,
kL) < (M52 1) PO -7 = 220 poye - o (13)

where we have used Taylor expansion, the bound (17), and the fact that f (+) peaks at zero for an unimodal and symmetric
function. Now summing (18) over the index set w € [d;] x --- X [dk] gives

KL(Po|[Po-) = > KL(0.|6;) <
we[dy] X X[dK]

L—3).
22229 o)) - 7|3

Remark 1. In particular, let Py denote the distribution of }|0 induced by the zero parameter tensor. Then we have

2(2L — 3)

<
KL(Pg||Pp) < i

Fo)elz.

Lemma 9. Assume the same setup as in Theorem 4.2. Without loss of generality, suppose di = maxy, d. Define R =
maxy 7, and diye = er[K] dy. For any constant 0 < ~ < 1, there exist a finite set of tensors X ={0; :i=1,...} CP
satisfying the following four properties:

1. Card(X) > 2%41/8 1 1, where Card denotes the cardinality;

2. X contains the zero tensor 0 € R4 > xdk .

3. |1®]|co < ymin {a, 0_1/2,/%}]‘0;’4111)) element © € X;

4. [©; = ©,|lr > 7 min {a\/dmml, C‘l/Qs/Rdl}for any two distinct elements ©;, 0; € X,
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Here C = C(a, L, f,b) = w > 0 is a constant independent of the tensor dimension and rank.

Proof. Given a constant 0 < v < 1, we define a set of matrices:

C= {M = (my;) ERU*E g, € {O,'ymin{a,C_l/Q”fdl}}, V(i,7) € [di] % [R]}
total

‘We then consider the associated set of block tensors:
B=B(C)={0 cR"* K. 9 =A®14,® - 14, where A = (M]|---|M|0) € R"*% M € C},

where 14 denotes a length-d vector with all entries 1, O denotes the dy X (da — R|dz/R]) zero matrix, and |d2/R|
is the integer part of do/R. In other words, the subtensor O (I, 1I,is,...,ix) € R%*% are the same for all fixed
(ig,...,ix) € [d3] x -+ X [dk], and furthermore, each subtensor ©(I, I, s, ..., i) itself is filled by copying the matrix
M € R4 *E a5 many times as would fit.

By construction, any element of B, as well as the difference of any two elements of 3, has Tucker rank at most maxy, 1y < R,
and the entries of any tensor in B take values in [0, a]. Thus, B C P. By Lemma 10, there exists a subset X C B with
cardinality Card(X') > oRd1/8 4 q containing the zero dy X - -+ X dg tensor, such that, for any two distinct elements O;
and ©; in X,

d dy | d 2 min {a2digat, O~ R
000 2 Mt Loz, OB | 7, T {0t O TRE)
total k}>3

In addition, each entry of © € & is bounded by v min {a, c-12,/ %}. Therefore the Properties (i) to (iv) are
satisfied. O

Lemma 10 (Varshamov-Gilbert bound). Let Q = {(w1,...,wn): w; € {0,1}}. Suppose m > 8. Then there exists a
subset {w® ... w™} of Q such that w® = (0,...,0) and

[w® — w® ||y > %, for 0<j<k<M,

where ||-||o denotes the Hamming distance, and M > 2™/8,
Lemma 11 (Theorem 2.5 in Tsybakov (2008)). Assume that a set X contains element ©g, 01, ...,y (M > 2) such that

o d(©;, O4) >2s>0,Y0<j <k < M;

o Py is absolutely continuous with respect toP;, Vj = 1,..., M, and

M
1
Vi > KL(P;|[Py) < arlog M
j=1
where d: X x X + [0, 400] is a semi-distance function, 0 < a < 1/8 andP; =Pg,, j =0,1..., M.

Then

inf sup P 6,0 —

& oo old(6,6) 2 5) > 1+vVM log M
Lemma 12 (Lemma 28 in Ghadermarzy et al. (2019)). Define By(3) = {© € Ré>**dx: ||0|y < B}. Let Q C
[d1] X -+ X [dk] be a random set with m = |Q|, and assume that each entry in ) is drawn with replacement from
[d1] x - -+ x [dk] using probability I1. Define

VM ( — % 2O‘>>0.

1
191%n = —Eaenl|®]7.q-

Then, there exists a universal constant ¢ > 0, such that, with probability at least 1 — exp ( Ezfogkdk) over the sampled set

Q)
1 2 2 dek
_ > —_ —=r P
—[©ll5:0 = O]l — ey =X

holds uniformly for all © € By ().
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B. Extension of Theorem 4.1 to unknown cut-off points

We now extend Theorem 4.1 to the case of unknown cut-off points b. Assume that the true parameters (@€, btru¢) € P x B,
where the feasible sets are defined as

P ={0 € R"*"*Ix: rank(P) < r, (0,7) =0, |0 < a},
B={beR"":[|bo < B, min(by —be1) > A},

with positive constants «, 3, A > 0 and a given rank r € Nf . Here, 7 = [1] € R%*>dx denotes a tensor of all ones.
The constraint (0, ) = 0 is imposed to ensure the identifiability of © and b. We propose the constrained M-estimator

(6,b) = argmax Ly(0,b). (19)
(©,b)ePxB

The estimation accuracy is assessed using the mean squared error (MSE):

A 1 A - 1 -
true | __ _ @true|2 true ) _ _ ptrue2
MSE (@,@ ) =~ 1410 - ©"l MsE (b,b ) b — b

To facilitate the examination of MSE, we define an order-(K + 1) tensor, Z = [z, ¢] € Rd1*"xdxx(EL=1) by stacking the
parameters © = [[,,] and b = [b] together. Specifically, let z,, ; = —0,, + b; forall w € [d1] X - - X [dx] and £ € [L —1];
that is,

where 1 denotes a length-(L — 1) vector of all ones. Under the identifiability constraint (0, 7) = 0, there is an one-to-one
mapping between Z and (0, b), with rank(Z) < (rank(©) + 1, 2)T. Furthermore,

12 = 2% = |0 — 0" % (L — 1) + b — b |3, (H dk) 7 (20
k

where Z0° = — Q" @1+ J @b and Z = -0 1+ J @ b.
We make the following assumptions about the link function.

Assumption 1. The link function f: R — [0, 1] satisfies the following properties:

1. f(2) is twice-differentiable and strictly increasing in z.

2. f (2) is strictly log-concave and symmetric with respect to z = 0.

We define the following constants that will be used in the theory:

— max max max f(Z) f(Z)
Camd = 100, 227, ™2 {f(Z)—f(Z’)’ f(z“)—ﬂz)}’ -
2" >z4+A
e e o ( i)
P = B, 200, 0 {—az (f()—f()) 0 <f<>—f<>> } |

A, = min min z) — f(2).
pa= min | min (f(:) - F()
Remark 2. The condition A = ming (b — by—1) > 0 on the feasible set B guarantees the strict positiveness of f(z) — f(2’)
and f(z") — f(z). Therefore, the denominators in the above quantities Co, 3. A, Dq A are well-defined. Furthermore,
by Theorem A.1, f(z) — f(2') is strictly log-concave in (z,2’) for z < 2/ — A, z,2’ € [-a — 3, a + (]. Based on
Assumption 1 and closeness of the feasible set, we have Cp, g A > 0, Dy g A > 0, Ag g.a > 0.
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Remark 3. In particular, for logistic link f(x) = 1-&-%’ we have
o 1 14+e 1 14+e 2" =0
= max max max , ,
@B, |z|<a+B8 2/ <z—A eA—1\1+e> l—e B\ 1+e>
2>z A
e—Z
D = in —= > 0.
a,8,A ‘zgﬁ_ﬂ (1+e )2
Theorem B.1 (Statistical convergence with unknown b). Consider an ordinal tensor Y € [L]4**x generated from

model (1) with the link function | and parameters (O b**1¢) € P x B. Suppose the link function f satisfies Assumption 1.
Define rmax = maxy 1, + 1, and assume rmax = O(1).

Then with very high probability, the estimator in (19) satisfies

2 true |2 Clrrlgaxcgc B,A
12 -2 < Tt (L-1e D) @2)
a,p, A a,f,A
In particular,
- 17 Co L-1 d
MSE (@, @twe) < min { 4a?, Smeop.A ( +3, k) |
DA% s ADZ 5 A 1 dx
and

KaxCo L-1 .
MSE (b btrue) < min 4ﬂ ’ ;max a,B,A < + Zk dk> ,
A a8 [1. dx

where c1,Co A, Da,g,A are positive constants mdependent of the tensor dimension, rank, and number of ordinal levels.

Proof. The log-likelihood associated with the observed entries in terms of Z is

=2 Z 1y = £} 10g [ (200) — f(Zui—1)]

we Le[L

LetVzLy = [[5975%]] € RAx-xdxx[L=1] denote the score function, and H = V% Ly, the Hession matrix. Based on the

definition of Z, we have the following inequality:

Ly(Z) > Ly(Zt). (23)

Following the similar argument in Theorem 4.1 and the inequality (23), we obtain that

i V2Ly (2|5

2 Ztrue? K _ ’
lem = = e ()

(24)

where V z Ly (Z%"¢) is the score evaluated at Z™"¢, H(Z) is the Hession evaluated at Z, for some Z between Z and
Ztue and A (-) is the largest matrix eigenvalue.

We bound the score and the Hessian to obtain (22).

1. (Score.) The (w, ¢)-th entry in Vz Ly is

oLy

_ _ f(2)
8Zw,é = ]l{yw = é}

f(2") = f(2)

which is upper bounded in magnitude by Cy, 3. A > 0 with zero mean. By Lemma 6, with probability at least
1 —exp(—c5 (>, dr+ L —1)), we have

IV2Ly (25 |g < e2Capa, [L =14 d, (25)
k

where ¢, ¢}, are two positive constants that depend only on K.

— Uy, =4+1}

)

(2, 2")=(2w,05 Zw,e—1) (2", 2)=(2w,e41, Zw,t)
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2. (Hession.) The entries in the Hession matrix are

. Ly f&) () = f() = f*(2)
D I: =1{y, =4 -
e o T T TGO IO
FE UE) — f(2) + f2(2)
Hy, =0+1 5
o= 24 o e
. . 82£y o (Zw K)f(zw,f+1) 82‘637 _ :
Off-diagonal: Do H{y, =0+1} FCorin) — o) and Do 0 otherwise.

Based on Assumption 1, the Hession matrix H has the following three properties:

(a) The Hession matrix is a block matrix, H = diag{H,: w € [di] X --- X [dk]}, and each block H,, €
RE-D*(L=1) ig a tridiagonal matrix.

(b) The off-diagonal entries are either zero or strictly positive.
(c) The diagonal entries are either zero or strictly negative. Furthermore,

H,(0,0) + H,((,0 — 1)+ H,(¢,0+1)
_82‘Cy 82‘637 + azﬁy
_azi,e 020 02w 41 O0%w0—12uw ¢

oo e
=t =3, (f(Z) - f(Z’)>

< - Da,,@,A]l{yw =/lorl+ 1}

-y, =14+ 1}% (f(z)f(z}(zl)>

(2, 2")=(2w,05 2w,0—1) (2", 2)=(2w, 0415 Zw,e)

We will show that, with very high probability over )V, H is negative definite in that

zTH=z

M(H) = max ———
=20 ||z[|%

< —cAapaDag.n, (26)

where A, 5 A, Da,g,a > 0 are constants defined in (21), and ¢ > 0 is a constant.

Let 2y = (2w1s--+s20,0-1)7 € REFland z = (2,
property (a) that

A Zdydgen—1)T € RETDILde Tt follows from
zTHz = Zngwzw.

Furthermore, from properties (b) and (c) we have

2'H,z, = Z H, (¢, E)zij + Z 2H (4,0 — 1)z 020,0—1

te[L-1] Le[L-1]/{1}
< D> HWGOZ+ Y HEL-1) [+ 2]
te[L—1] te[L—1]/{1}

=(H(1,1)+ H(1,2))z},+ (HL-1,L-1)+ H(L-1,L—-2))z%, ,
+ Y (HEO+HWCL-1)+H(,(+1))22,

te[L—-2]/{1}

< =D, g.A Zzi_’ﬂl{yw =/lorl+1}.
¢

Therefore,

Z"Hz=> zlH,z, < —Dapay > 2 {y.="Lorl+1}. 27)
w w l
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Define the subspace:
S={Vec(Z2): Z2=-001+T®b, (6,b) € (P,B)}.

It suffices to prove the negative definiteness of Hession when restricted in the subspace S. Specifically, for any vector
z = [zws] €S,

Z Zo%l]l{yw =lorl+1} = Z(—Qw +be)*1{y, = Lor L +1}

w,l
= (62 = 26,b + b7)1{y,, = Lor £+ 1}
= 021{y, =Cort+1} =2 0ubl{y, =LorC+1} + > bii{y, =Lor+1}
w,l w,l w,l
> 022 Oube+ > b7 (e +mega)
w w,l 4
> 2 . 2
> ;F)w +min (ne+ nes1) ;be
On the other hand,

”z”F - Z'Zw ‘= Z =0, + bZ)Q = Lol Zei + diotal Zb§7
w, L w £

where Liota := (L — 1) and dyota := [ [}, di-

Therefore, we have

2 _ . .
s Zw,e zwj]l{{yw =/lorl+1}} N >, 0% 4+ ming (ng + nesr) Y, b7 - ming(ng + ngy1)

z€8,2#0 |z]|% - Liotar 22, 02 + diowar Dy b7 o1+ cogiz)dtoxal
24, L .
> i ’Z)A in high probability as d,,;, — co. (28)
A2

The second inequality in (28) is from the conditions that

202 0 (0% dtotal] and Zb[ CLtotalsz Ltotalﬂ2]7

for some universal constant ¢ > 0. The last inequality in (28) follows by applying the law of large numbers and the
uniform bound min._ , P(y, = £or £+ 1|z,,¢) > 2A4 3, to the empirical ratio:

w B minP(y, = for £+ 1|z,) > 240,55, in high probability as duin — 0.
total

By (27) and (28), we have
2"Hz < —Aqp,aDap 2%,

for some constant ¢’ > 0, therefore (26) is proved.

Plugging (25) and (26) into (24) yields

. crrk, C?
12— zmef < =t (L 1+de

a.5.0D0% 5.4

The MSEs for © and b readily follow from (20).
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C. Additional explanations of HCP analysis

We perform clustering analyses based on the Tucker representation of the estimated signal tensor ©. The procedure is
motivated from the higher-order extension of Principal Component Analysis (PCA) or Singular Value Decomposition (SVD).
Recall that, in the matrix case, we perform clustering on an m X n (normalized) matrix X based on the following procedure.
First, we factorize X into

X=UxVT,

where X is a diagonal matrix and U, V' are factor matrices with orthogonal columns. Second, we take each column of V'
as a principal axis and each row in UX as principal component. A subsequent multivariate clustering method (such as
K -means) is then applied to the m rows of UX.

We apply a similar clustering procedure to the estimated signal tensor ©. We factorize © based on Tucker decomposition.
é:éX1M1X2~'~XKMK, (29)

where C € R™ %" X"k ig the estimated core tensor, M, . € R4 X7k are estimated factor matrices with orthogonal columns,
and X, denotes the tensor-by-matrix multiplication (Kolda & Bader, 2009). The mode-k matricization of (29) gives

é(k) = Mké(k) (MK Q- ®M1) )

where @( k) é( k) denote the mode-k unfolding of ©andC, respectively. We conduct clustering on this the mode-% unfolded
signal tensor. We take columns in (M K® @M 1) as principal axes and rows in M ké(k) as principal components.
Then, we apply K-means clustering method to the dj, rows of the matrix M ké(k).

We perform a clustering analysis on the 68 brain nodes using the procedure described above. Our ordinal tensor method
outputs the estimated parameter tensor 6 € RO8*x68x136 with rank (23,23, 8). We apply K-means to the mode-1 principal
component matrix of size 68 x 184 (184 = 23 x 8). The elbow method suggests 11 clusters among the 68 nodes (see
Figure 1). The clustering result is presented in Section 7.

2.5e+08 -
2.0e+08 -

1.5e+08 -

—clusters sum of squares

1.0e+08 -
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Total with

5.0e+07 -

12

4 8
Number of clusters K

Figure 1. Elbow plot for determining the number of clusters in K -means.
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