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Abstract
Due to the wider availability of modern electronic
health records, patient care data is often being
stored in the form of time-series. Clustering such
time-series data is crucial for patient phenotyping,
anticipating patients’ prognoses by identifying
“similar” patients, and designing treatment guide-
lines that are tailored to homogeneous patient sub-
groups. In this paper, we develop a deep learning
approach for clustering time-series data, where
each cluster comprises patients who share similar
future outcomes of interest (e.g., adverse events,
the onset of comorbidities). To encourage each
cluster to have homogeneous future outcomes, the
clustering is carried out by learning discrete rep-
resentations that best describe the future outcome
distribution based on novel loss functions. Exper-
iments on two real-world datasets show that our
model achieves superior clustering performance
over state-of-the-art benchmarks and identifies
meaningful clusters that can be translated into ac-
tionable information for clinical decision-making.

1. Introduction
Chronic diseases – such as cystic fibrosis and dementia –
are heterogeneous in nature, with widely differing outcomes
even in narrow patient subgroups. Disease progression man-
ifests through a broad spectrum of clinical factors, collected
as a sequence of measurements in electronic health records,
which gives a rise to complex progression patterns among
patients (Samal et al., 2011; Yoon et al., 2017). For example,
cystic fibrosis evolves slowly, allowing for development of
comorbidities and bacterial infections, and creating distinct
responses to therapeutic interventions, which in turn makes
the survival and quality of life substantially different (Ramos
et al., 2017; Lee et al., 2019). Identifying patient subgroups
with similar progression patterns can be advantageous for
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understanding such heterogeneous diseases. This allows
clinicians to anticipate patients’ prognoses by comparing to
“similar” patients and to design treatment guidelines tailored
to homogeneous subgroups (Zhang et al., 2019).

Temporal clustering has been recently used as a data-driven
framework to partition patients with time-series observa-
tions into subgroups of patients. Recent research has
typically focused on either finding fixed-length and low-
dimensional representations (Zhang et al., 2019; Rusanov
et al., 2016) or on modifying the similarity measure (Gi-
annoula et al., 2018; Luong & Chandola, 2017) both in an
attempt to apply the existing clustering algorithms to time-
series observations. However, clusters identified from these
approaches are purely unsupervised – they do not account
for patients’ observed outcomes (e.g., adverse events, the
onset of comorbidities, etc.) – which leads to heterogeneous
clusters if the clinical presentation of the disease differs
even for patients with the same outcomes. Thus, a common
prognosis in each cluster remains unknown which can mys-
tify the understanding of the underlying disease progression
(Boudier et al., 2019; Wami et al., 2013). To overcome this
limitation, we focus on predictive clustering (Blockeel et al.,
2017) to combine predictions on the future outcomes with
clustering. More specifically, we aim at finding cluster as-
signments and centroids by learning discrete representations
of time-series that best describe the future outcome distribu-
tion. By doing so, patients in the same cluster share similar
future outcomes to provide a prognostic value. Figure 1
illustrates a pictorial depiction of the clustering procedure.

In this paper, we propose an actor-critic approach for tem-
poral predictive clustering, which we call AC-TPC.1 Our
model consists of three networks – an encoder, a selector,
and a predictor – and a set of centroid candidates. The key
insight, here, is that we model temporal predictive clustering
as learning discrete representations of the input time-series
that best describe the future outcome distribution. More
specifically, the encoder maps an input time-series into a
continuous latent encoding; the selector assigns a cluster
(i.e., maps to a discrete representation) to which the input
belongs by taking the latent encoding as an input; and the
predictor estimates the future outcome distributions condi-

1Source code available at https://github.com/
chl8856/AC_TPC.
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Figure 1. A conceptual illustration of our (real-time) clustering procedure. Here, a new patient is assigned over time to one of the four
phenotypes based on the expected future event – either Event A or Event B – as new observations are collected.

tioned on either the encoding or the centroid of the selected
cluster (i.e., the selected discrete representation). The fol-
lowing three contributions render our model to achieve our
goal. First, to encourage homogeneous future outcomes in
each cluster, we define a clustering objective based on the
Kullback-Leibler (KL) divergence between the predictor’s
output given the time-series, and that given the assigned
centroids. Second, we transform solving a combinatorial
problem of identifying clusters into iteratively solving two
sub-problems: optimization of the cluster assignments and
optimization of the centroids. Finally, we allow “back-
propagation” through the sampling process of the selector
by adopting actor-critic training (Konda & Tsitsiklis, 2000).

Throughout the experiments, we show significant perfor-
mance improvements over the state-of-the-art clustering
methods on two real-world medical datasets. To demon-
strate the practical significance of our model, we consider a
more realistic scenario where the future outcomes of inter-
est are high-dimensional – that is, development of multiple
comorbidities in the next year – and interpreting all possible
combinations is intractable. Our experiments show that our
model can identify meaningful clusters that can be translated
into actionable information for clinical decision-making.

2. Problem Formulation
Let X ∈ X and Y ∈ Y be random variables for an input fea-
ture and an output label (i.e., one or a combination of future
outcome(s) of interest) with a joint distribution pXY (and
marginal distributions are pX and pY ) whereX is the feature
space and Y is the label space. Here, we focus our descrip-
tion on C-class classification tasks, i.e., Y = {1, · · · , C}.2

2In the Supplementary Material, we discuss simple modifica-
tions for regression Y = R and M -dimensional binary classifica-
tion tasks Y = {0, 1}M .

We are given a time-series dataset D = {(xnt , ynt )T
n

t=1}Nn=1

comprising sequences of realizations (i.e., observations) of
the pair (X, Y ) for N patients. Here, (xnt , y

n
t )T

n

t=1 is a se-
quence of Tn observation pairs that correspond to patient
n and t ∈ T n , {1, · · · , Tn} denotes the time stamp at
which the observations are made. From this point forward,
we omit the dependency on n when it is clear in the context
and denote x1:t = (x1, · · · ,xt).

Our aim is to identify a set of K predictive clusters,
C = {C(1), · · · , C(K)}, for time-series data. Each cluster
consists of homogeneous data samples, that can be repre-
sented by its centroid, based on a certain similarity mea-
sure. There are two main distinctions from the conven-
tional notion of clustering. First, we treat subsequences of
each times-series as data samples and focus on partition-
ing {{xn1:t}T

n

t=1}Nn=1 into C. Hence, we define a cluster as
C(k) = {xn1:t|t ∈ T n, snt = k} for k ∈ K , {1, · · · ,K}
where snt ∈ K is the cluster assignment for a given xn1:t.
This is to flexibly update the cluster assignment (in real-
time) to which a patient belongs as new observations are
being accrued over time. Second, we define the similarity
measure with respect to the label distribution and associate
it with clusters to provide a prognostic value. More specif-
ically, we want the distribution of output label for subse-
quences in each cluster to be homogeneous and, thus, can
be well-represented by the centroid of that cluster.

Let S be a random variable for the cluster assignment – that
depends on a given subsequence x1:t – and Y |S = k be a
random variable for the output given cluster k. Then, such
property of predictive clustering can be achieved by min-
imizing the following Kullback-Leibler (KL) divergence:
KL(Yt|X1:t = x1:t‖Yt|St = k) for x1:t ∈ C(k) which
is defined as

∫
y
p(y|x1:t)

(
log p(y|x1:t) − log p(y|st)

)
dy

where p(y|x1:t) and p(y|st) are the label distributions con-
ditioned on a subsequence x1:t and a cluster assignment
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Figure 2. The block diagram of AC-TPC. The red line implies the
procedure of estimating p(y|St = st) via a sampling process and
the blue line implies that of estimating p(y|X1:t = x1:t).

st, respectively. Note that the KL divergence achieves its
minimum when the two distributions are equivalent.

Finally, we establish our goal as identifying a set of predic-
tive clusters C that optimizes the following objective:

minimize
C

∑
k∈K

∑
x1:t∈C(k)

KL
(
Yt|X1:t = x1:t

∥∥Yt|St = k
)
. (1)

Unfortunately, the optimization problem in (1) is highly
non-trivial. We need to estimate the objective function in (1)
while solving a non-convex combinatorial problem of find-
ing the optimal cluster assignments and cluster centroids.

3. Method: AC-TPC
To effectively estimate the objective function in (1), we
introduce three networks – an encoder, a selector, and a
predictor – and an embedding dictionary as illustrated in
Figure 2. These components together provide the cluster
assignment and the corresponding centroid based on a given
sequence of observations and enable us to estimate the prob-
ability density p(y|st). More specifically, we define each
component as follows:

• The encoder, fθ :
∏t
i=1 X → Z , is a RNN (parameter-

ized by θ) that maps a (sub)sequence of a time-series x1:t

to a latent representation (i.e., encoding) zt ∈ Z where
Z is the latent space.
• The selector, hψ : Z → ∆K−1, is a fully-connected

network (parameterized by ψ) that provides a probabilis-
tic mapping to a categorical distribution from which the
cluster assignment st ∈ K is being sampled.
• The predictor, gφ : Z → ∆C−1, is a fully-connected

network (parameterized by φ) that estimates the label
distribution given the encoding of a time-series or the
centroid of a cluster.
• The embedding dictionary, E = {e(1), · · · , e(K)}

where e(k) ∈ Z for k ∈ K, is a set of cluster centroids
lying in the latent space which represents the correspond-
ing cluster.

Here, ∆D−1 = {q ∈ [0, 1]D : q1 + · · · + qD = 1} is a
(D− 1)-simplex that denotes the probability distribution for
a D-dimensional categorical (class) variable.

At each time stamp t, the encoder maps a input
(sub)sequence x1:t into a latent encoding zt , fθ(x1:t).
Then, based on the encoding zt, the cluster assignment
st is drawn from a categorical distribution that is defined
by the selector output, i.e., st ∼ Cat(πt) where πt =
[πt(1), · · · , πt(K)] , hψ(zt). Once the assignment st is
chosen, we allocate the latent encoding zt to an embedding
e(st) in the embedding dictionary E . Since the allocated
embedding e(st) corresponds to the centroid of the cluster
to which x1:t belongs, we can, finally, estimate the den-
sity p(y|st) in (1) as the output of the predictor given the
embedding e(st), i.e., ȳt , gφ(e(st)).

3.1. Loss Functions

In this subsection, we define loss functions to achieve our
objective in (1); the details of how we train our model will
be discussed in the following subsection.

Predictive Clustering Loss: Since finding the cluster as-
signment of a given sequence is a probabilistic problem due
to the sampling process, the objective function in (1) must
be defined as an expectation over the cluster assignment.
Thus, we can estimate solving the objective problem in (1)
as minimizing the following loss function:

L1(θ, ψ, φ, E) = Ex,y∼pXY

[∑
t∈T

Est∼Cat(πt)

[
`1(yt, ȳt)

]]
(2)

where `1(yt, ȳt) = −
∑C
c=1 y

c
t log ȳct . Here, we slightly

abuse the notation and denote y = [y1 · · · yC ] as the one-hot
encoding of y, and yc and ȳc indicates the c-th component of
y and ȳ, respectively. It is worth to highlight that minimizing
`1 is equivalent to minimizing the KL divergence in (1) since
the former term of the KL divergence is independent of our
optimization procedure.

One critical question that may arise is how to avoid trivial
solutions in this unsupervised setting of identifying the clus-
ter assignments and the centroids (Yang et al., 2017). For
example, all the embeddings in E may collapse into a single
point or the selector simply assigns equal probability to all
the clusters regardless of the input sequence. In both cases,
our model will fail to correctly estimate p(y|st) and, thus,
end up finding a trivial solution. To address this issue, we
introduce two auxiliary loss functions that are tailored to
address this concern. It is worth to highlight that these loss
functions are not subject to the sampling process and their
gradients can be simply back-propagated.

Sample-Wise Entropy of Cluster Assignment: To mo-
tivate sparse cluster assignment such that the selector ulti-
mately selects one dominant cluster for each sequence, we
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introduce sample-wise entropy of cluster assignment which
is given as

L2(θ, ψ) = Ex∼pX

[
−
∑
t∈T

∑
k∈K

πt(k) log πt(k)
]

(3)

where πt = [πt(1) · · ·πt(K)] = hψ(fθ(x1:t)). The sample-
wise entropy achieves its minimum when πt becomes an
one-hot vector.

Embedding Separation Loss: To prevent the embeddings
in E from collapsing into a single point, we define a loss
function that encourages the embeddings to represent differ-
ent label distributions, i.e., gφ(e(k)) for k ∈ K, from each
other:

L3(E) = −
∑
k 6=k′

`1(gφ(e(k)), gφ(e(k′))) (4)

where `1 is reused to quantify the distance between label
distributions conditioned on each cluster. We minimize (4)
when updating the embedding vectors e(1), · · · , e(K).

3.2. Optimization

The optimization problem in (1) is a non-convex combinato-
rial problem because it comprises not only minimizing the
KL divergence but also finding the optimal cluster assign-
ments and centroids. Hence, we propose an optimization
procedure that iteratively solves two subproblems: i) op-
timizing the three networks – the encoder, selector, and
predictor – while fixing the embedding dictionary and ii)
optimizing the embedding dictionary while fixing the three
networks. Pseudo-code of AC-TPC can be found in the
Supplementary Material.

3.2.1. OPTIMIZING THE THREE NETWORK

Finding predictive clusters incorporates the sampling pro-
cess which is non-differentiable. Thus, to render “back-
propagation”, we utilize the training of actor-critic models
(Konda & Tsitsiklis, 2000). More specifically, we view the
combination of the encoder (fθ) and the selector (hψ) as the
“actor” parameterized by ωA = [θ, ψ], and the predictor (gφ)
as the “critic”. The critic takes as input the the output of the
actor (i.e., the cluster assignment) and estimates its value
based on the sample-wise predictive clustering loss (i.e.,
`1(yt, ȳt)) given the chosen cluster. This, in turn, renders
the actor to change the distribution of selecting a cluster to
minimize such loss. Thus, it is important for the critic to
perform well on the updated output of the actor while it is
important for the actor to perform well on the updated loss
estimation. As such, the parameters for the actor and the
critic need to be updated iteratively.

Given the embedding dictionary E fixed (thus, we will
omit the dependency on E), we train the actor, i.e., the

encoder and the selector, by minimizing a combination
of the predictive clustering loss L1 and the entropy of
cluster assignments L2, which is given by LA(θ, ψ, φ) =
L1(θ, ψ, φ) + αL2(θ, ψ) where α ≥ 0 is a coefficient cho-
sen to balance between the two losses. To derive the gradient
of this loss with respect ωA = [θ, ψ], we utilize the ideas
from actor-critic models (Konda & Tsitsiklis, 2000) in (5)
which is displayed at the top; please refer to the Supplemen-
tary Material for the detailed derivation. Note that since no
sampling process is considered in L2(θ, ψ), we can simply
derive ∇ωA

L2(θ, ψ).

Iteratively with training the actor, we train the critic, i.e., the
predictor, by minimizing the predictive clustering loss L1 as
the following: LC(φ) = L1(θ, ψ, φ) whose gradient with
respect to φ can be givens as ∇φLC(φ) = ∇φL1(θ, ψ, φ).
Note that since the critic is independent of the sampling
process, the gradient can be simply back-propagated.

3.2.2. OPTIMIZING THE CLUSTER CENTROIDS

Now, once the parameters for the three networks (θ, ψ, φ)
are fixed (thus, we omit the dependency on θ, ψ, and φ), we
updated the embeddings in E by minimizing a combination
of the predictive clustering loss L1 and the embedding sepa-
ration loss L3, which is given by LE(E) = L1(E)+βL3(E)
where β ≥ 0 is a coefficient chosen to balance between the
two losses.

3.2.3. INITIALIZING AC-TPC VIA PRE-TRAINING

Since we transform the combinatorial optimization problem
in (1) into iteratively solving two sub-problems, initializa-
tion is crucial to achieve better optimization as a similar
concern has been addressed in (Yang et al., 2017).

Therefore, we initialize our model based on the following
procedure. First, we pre-train the encoder and the predictor
by minimizing the following loss function based on the
predicted label distribution given the latent encodings of
input sequences, i.e., ŷt , gφ(zt) = gφ(fθ(x1:t)), as the
following:

LI(θ, φ) = Ex,y∼pXY

[
−
∑
t∈T

`1(yt, ŷt)
]
. (6)

Minimizing (6) encourages the latent encoding to be en-
riched with information for accurately predicting the label
distribution. Then, we perform K-means (other clustering
method can be also applied) based on the learned represen-
tations to initialize the embeddings E and the cluster as-
signments {{snt }T

n

t=1}Nn=1. Finally, we pre-train the selector
hψ by minimizing the cross entropy treating the initialized
cluster assignments as the true clusters.
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∇ωA
LA(θ, ψ, φ) = Ex,y∼pXY

[∑
t∈T

Est∼Cat(πt)

[
`1(yt, ȳt)∇ωA

log πt(st)
]]

+ α∇ωA
L2(θ, ψ). (5)

4. Related Work
Temporal clustering, also known as time-series clustering,
is a process of unsupervised partitioning of the time-series
data into clusters in such a way that homogeneous time-
series are grouped together based on a certain similarity
measure. Temporal clustering is challenging because i) the
data is often high-dimensional – it consists of sequences
not only with high-dimensional features but also with many
time points – and ii) defining a proper similarity measure
for time-series is not straightforward since it is often highly
sensitive to distortions (Ratanamahatana et al., 2005). To
address these challenges, there have been various attempts
to find a good representation with reduced dimensionality
or to define a proper similarity measure for times-series
(Aghabozorgi et al., 2015).

Recently, (Baytas et al., 2017) and (Madiraju et al., 2018)
proposed temporal clustering methods that utilize low-
dimensional representations learned by RNNs. These works
are motivated by the success of applying deep neural net-
works to find “clustering friendly” latent representations for
clustering static data (Xie et al., 2017; Yang et al., 2017). In
particular, Baytas et al. (2017) utilized a modified LSTM
auto-encoder to find the latent representations that are ef-
fective to summarize the input time-series and conducted
K-means on top of the learned representations as an ad-
hoc process. Similarly, (Madiraju et al., 2018) proposed
a bidirectional-LSTM auto-encoder that jointly optimizes
the reconstruction loss for dimensionality reduction and the
clustering objective. However, these methods do not asso-
ciate a target property with clusters and, thus, provide little
prognostic value about the underlying disease progression.

Our work is most closely related to SOM-VAE (Fortuin
et al., 2019). This method jointly optimizes a static varia-
tional auto-encoder (VAE), that finds latent representations
of input features, and a self-organizing map (SOM), that
allows to map the latent representations into a more in-
terpretable discrete representations, i.e., the embeddings.
However, there are three key differences between our work
and SOM-VAE. First, SOM-VAE aims at minimizing the
reconstruction loss that is specified as the mean squared
error between the original input and the reconstructed input
based on the corresponding embedding. Thus, similar to
the aforementioned methods, SOM-VAE neither associates
future outcomes of interest with clusters. In contrast, we fo-
cus on minimizing the KL divergence between the outcome
distribution given the original input sequence and that given
the corresponding embedding to build association between
future outcomes of interest and clusters. Second, to over-
come non-differentiability caused by the sampling process

(that is, mapping the latent representation to the embed-
dings), (Fortuin et al., 2019) applies the gradient copying
technique proposed by (van den Oord et al., 2017), while
we utilize the training of actor-critic model (Konda & Tsit-
siklis, 2000). Finally, while we flexibly model time-series
using LSTM, SOM-VAE handles time-series by integrating
a Markov model in the latent representations. This can be
a strict assumption especially in clinical settings where a
patient’s medical history is informative for predicting the
future clinical outcomes (Ranganath et al., 2016).

5. Experiments
In this section, we provide a set of experiments using two
real-world time-series datasets. We iteratively update the
three networks – the encoder, selector, and predictor – and
the embedding dictionary as described in Section 3.2. For
the network architecture, we constructed the encoder utiliz-
ing a single-layer LSTM (Hochreiter & Schmidhuber, 1997)
with 50 nodes and constructed the selector and predictor uti-
lizing two-layer fully-connected network with 50 nodes in
each layer, respectively. The parameters (θ, ψ, φ) are initial-
ized by Xavier initialization (Glorot & Bengio, 2010) and
optimized via Adam optimizer (Kingma & Ba, 2014) with
learning rate of 0.001 and keep probability 0.7. We chose
the balancing coefficients α, β ∈ {0.001, 0.01, 0.1, 1.0} uti-
lizing grid search that achieves the minimum validation loss
in (2); the effect of different loss functions are further inves-
tigated in the experiments. Here, all the results are reported
using 5 random 64/16/20 train/validation/test splits.

5.1. Real-World Datasets

We conducted experiments to investigate the performance
of AC-TPC on two real-world medical datasets; detailed
statistics of each dataset can be found in the Supplementary
Material.

UK Cystic Fibrosis registry (UKCF)3: This dataset
records annual follow-ups for 5,171 adult patients (aged
18 years or older) enrolled in the UK CF registry over the
period from 2008 and 2015, with a total of 25,012 hospital
visits. Each patient is associated with 89 variables (i.e., 11
static and 78 time-varying features), including information
on demographics and genetic mutations, bacterial infections,
lung function scores, therapeutic managements, and diagno-
sis on comorbidities. We set the development of different
comorbidities in the next year as the label of interest at each
time stamp.

3https://www.cysticfibrosis.org.uk

https://www.cysticfibrosis.org.uk
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Alzheimer’s Disease Neuroimaging Initiative (ADNI)4:
This dataset consists of 1,346 patients in the Alzheimer’s
disease study with a total of 11,651 hospital visits, which
tracks the disease progression via follow-up observations at
6 months interval. Each patient is associated with 21 vari-
ables (i.e., 5 static and 16 time-varying features), including
information on demographics, biomarkers on brain func-
tions, and cognitive test results. We set predictions on the
three diagnostic groups – normal brain functioning, mild
cognitive impairment, and Alzheimer’s disease – as the label
of interest at each time stamp.

5.2. Benchmarks

We compare AC-TPC with clustering methods ranging from
conventional approaches based on K-means to the state-of-
the-art approaches based on deep neural networks. All the
benchmarks compared in the experiments are tailored to
incorporate time-series data as described below:

Dynamic time warping followed by K-means: Dynamic
time warping (DTW) is utilized to quantify pairwise dis-
tance between two variable-length sequences and, then, K-
means is applied (KM-DTW).

K-means with deep neural networks: To handle variable-
length time-series data, we utilize our encoder and predictor
that are trained based on (6) for fixed-length dimensionality
reduction. Then, we apply K-means on the latent encodings
z (KM-E2P (Z)) and on the predicted label distributions ŷ
(KM-E2P (Y)), respectively.

Extensions of DCN (Yang et al., 2017): Since the DCN is
designed for static data, we replace their static auto-encoder
with a sequence-to-sequence network to incorporate time-
series data (DCN-S2S).5 To associated with the label dis-
tribution, we compare a DCN whose static auto-encoder is
replaced with our encoder and predictor (DCN-E2P) to fo-
cus dimensionality reduction while preserving information
for label prediction.

SOM-VAE (Fortuin et al., 2019): We compare with SOM-
VAE – though, this method aims at visualizing input – since
it naturally clusters time-series data (SOM-VAE). In addi-
tion, we compare with a variation of SOM-VAE by replacing
the decoder with our predictor to find embeddings that cap-
ture information for predicting the label (SOM-VAE-P).
For both cases, we set the dimension of SOM to K.

It is worth highlighting that the label information is provided

4https://adni.loni.usc.edu
5This extension is a representative of recent deep learning

approaches for clustering of both static data (Xie et al., 2017; Yang
et al., 2017) and time-series data (Baytas et al., 2017; Madiraju
et al., 2018) since these methods are built upon the same concept
– that is, applying deep networks for dimensionality reduction to
conduct conventional clustering methods, e.g., K-means.

for training DCN-E2P, KM-E2P, and SOM-VAE-P while
the label information is not provided for training KM-DTW,
DCN-S2S, and SOM-VAE. Please refer to the Supplemen-
tary Material for the summary of major components of the
tested benchmarks and the implementation details.

5.3. Performance Metrics

Clustering Performance: We applied the following three
standard metrics for evaluating clustering performances
when the ground-truth cluster label is available: purity score,
normalized mutual information (NMI) (Vinh et al., 2010),
and adjusted Rand index (ARI) (Hubert & Arabie, 1985).
More specifically, the purity score assesses how homoge-
neous each cluster is (ranges from 0 to 1 where 1 being a
cluster consists of a single class), the NMI is an informa-
tion theoretic measure of how much information is shared
between the clusters and the labels that is adjusted for the
number of clusters (ranges from 0 to 1 where 1 being a per-
fect clustering), and ARI is a corrected-for-chance version
of the Rand index which is a measure of the percentage of
correct cluster assignments (ranges from -1 to 1 where 1
being a perfect clustering and 0 being a random clustering).

When the ground-truth label is not available, we utilize
the average Silhouette index (SI) (Rousseeuw, 1987) which
measures how similar a member is to its own cluster (ho-
mogeneity within a cluster) compared to other clusters (het-
erogeneity across clusters). Formally, the SI for a sub-
sequence xn1:t ∈ Ck can be given as follows: SI(n) =
b(n)−a(n)

max(a(n),b(n)) where a(n) = 1
|Ck|−1

∑
m 6=n ‖ynt − ymt ‖1

and b(n) = mink′ 6=k
1
|Ck′ |

∑
m∈Ck′ ‖ynt − ymt ‖1. Here, we

used the L1-distance between the ground-truth labels of the
future outcomes of interest since our goal is to group input
subsequences with similar future outcomes.

Prediction Performance: To assess the prediction perfor-
mance of the identified predictive clusters, we utilized both
area under receiver operator characteristic curve (AUROC)
and area under precision-recall curve (AUPRC) based on
the label predictions of each cluster and the ground-truth bi-
nary labels on the future outcomes of interest. Note that the
prediction performance is available only for the benchmarks
that incorporate the label information during training.

5.4. Clustering Performance

We start with a simple scenario where the true class (i.e.,
the ground-truth cluster label) is available and the number
of classes is tractable. In particular, we set C = 23 = 8
based on the binary labels for the development of three
common comorbidities of cystic fibrosis – diabetes, ABPA,
and intestinal obstruction – in the next year for the UKCF
dataet and C = 3 based on the mutually exclusive three
diagnostic groups for the ADNI dataset. We compare AC-

https://adni.loni.usc.edu
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Table 1. Performance comparison on the UKCF and ADNI datasets.
Dataset Method Purity NMI ARI AUROC AUPRC

UKCF

KM-DTW 0.573±0.01∗ 0.010±0.01∗ 0.014±0.01∗ N/A N/A
KM-E2P (Z) 0.719±0.01∗ 0.211±0.01∗ 0.107±0.01∗ 0.726±0.01∗ 0.425±0.02∗
KM-E2P (Y) 0.751±0.01∗ 0.325±0.01∗ 0.440±0.02∗ 0.807±0.00∗ 0.514±0.01∗

DCN-S2S 0.607±0.06∗ 0.059±0.08∗ 0.063±0.09∗ N/A N/A
DCN-E2P 0.751±0.02∗ 0.275±0.02∗ 0.184±0.01∗ 0.772±0.03∗ 0.487±0.03∗
SOM-VAE 0.573±0.01∗ 0.006±0.00∗ 0.006±0.01∗ N/A N/A

SOM-VAE-P 0.638±0.04∗ 0.201±0.05∗ 0.283±0.17† 0.754±0.05∗ 0.331±0.07∗
Proposed 0.807±0.01 0.463±0.01 0.602±0.01 0.843±0.01 0.605±0.01

ADNI

KM-DTW 0.566±0.02∗ 0.019±0.02∗ 0.006±0.02∗ N/A N/A
KM-E2P (Z) 0.736±0.03† 0.249±0.02 0.230±0.03† 0.707±0.01∗ 0.509±0.01
KM-E2P (Y) 0.776±0.05 0.264±0.07 0.317±0.11 0.756±0.04 0.503±0.04

DCN-S2S 0.567±0.02∗ 0.005±0.00∗ 0.000±0.01∗ N/A N/A
DCN-E2P 0.749±0.06 0.261±0.05 0.215±0.06† 0.721±0.03† 0.509±0.03
SOM-VAE 0.566±0.02∗ 0.040±0.06∗ 0.011±0.02∗ N/A N/A

SOM-VAE-P 0.586±0.06∗ 0.085±0.08∗ 0.038±0.06∗ 0.597±0.10† 0.376±0.05∗
Proposed 0.786±0.03 0.285±0.04 0.330±0.06 0.768±0.02 0.515±0.02

∗ indicates p-value < 0.01, † indicates p-value < 0.05

TPC against the aforementioned benchmarks with respect
to the clustering and prediction performance in Table 1.

As shown in Table 1, AC-TPC achieved performance gain
over all the tested benchmarks in terms of both clustering
and prediction performance – where most of the improve-
ments were statistically significant with p-value < 0.01 or
p-value < 0.05 – for both datasets. Importantly, cluster-
ing methods – i.e., KM-DTW, DCN-S2S, and SOM-VAE
– that do not associate with the future outcomes of interest
identified clusters that provide little prognostic value on the
future outcomes (note that the true class is derived from the
future outcome of interest). This is clearly shown by the
ARI value near 0 which indicates that the identified clusters
have no difference with random assignments. Therefore,
similar sequences with respect to the latent representations
tailored for reconstruction or with respect to the shape-based
measurement using DTW can have very different outcomes.

In Figure 3, we further investigate the purity score, NMI,
and ARI by varying the number of clusters K from 4 to 16
on the UKCF dataset in the same setting with that stated
above (i.e., C = 8). Here, the three methods – i.e., KM-
DTW, DCN-S2S, and SOM-VAE – are excluded for better
visualization. As we can see in Figure 3, our model rarely
incur performance loss in both NMI and ARI while the
benchmarks (except for SOM-VAE-P) showed significant
decrease in the performance as K increased (higher than
C). This is because the number of clusters identified by AC-
TPC (i.e., the number of activated clusters where we define
cluster k is activated if |C(k)| > 0) was the same with C
most of the times, while the DCN-based methods identified
exactly K clusters (due to the K-means). Since the NMI
and ARI are adjusted for the number of clusters, a smaller
number of identified clusters yields, if everything being
equal, a higher performance. In contrast, while our model
achieved the same purity score for K ≥ 8, the benchmark
showed improved performance as K increased since the

purity score does not penalize having many clusters. This
is an important property of AC-TPC that we do not need
to know a priori what the number of cluster is which is a
common practical challenge of applying the conventional
clustering methods (e.g., K-means).

The performance gain of our model over SOM-VAE-P (and,
our analysis is the same for SOM-VAE) comes from two
possible sources: i) SOM-VAE-P mainly focuses on visual-
izing the input with SOM which makes both the encoder and
embeddings less flexible – this is why it performed better
with higherK – and ii) the Markov property can be too strict
for time-series data especially in clinical settings where a
patient’s medical history is informative for predicting the
future clinical outcomes (Ranganath et al., 2016).

5.5. Multiple Future Outcomes – a Practical Scenario

In this experiment, we focus on a more practical scenario
where the future outcome of interest is high-dimensional
and, thus, the number of classes based on all the possi-
ble combinations of future outcomes becomes intractable.
Suppose that we are interested in the development of M
comorbidities in the next year whose possible combinations
grow exponentially C = 2M . Interpreting such a large
number of patient subgroups will be a daunting task which
hinders the understanding of underlying disease progression.
Since different comorbidities may share common driving
factors (Ronan et al., 2017), we hope our model to identify
much smaller underlying (latent) clusters that govern the
development of comorbidities. Here, to incorporate with M
comorbidities (i.e., M binary labels), we redefine the output
space as Y = {0, 1}M and modify the predictor and loss
functions, accordingly.

We identified 12 clusters of patients based on the next-year
development of 22 different comorbidities in the UKCF
dataset and reported 5 clusters in Figure 5 – Cluster 0, 5, 7,
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(a) The averaged purity score. (b) The averaged NMI. (c) The averaged ARI.

Figure 3. The purity score, NMI, and ARI (mean and 95% confidence interval) for the UKCF dataset (C = 8) with various K.

(a) AUROC (b) AUPRC (c) Average SI

Figure 4. AUROC, AUPRC, and average SI (mean and 95% confidence interval) and the number of activated clusters with various K.

Figure 5. Clusters with high-risk of developing diabetes.

8, and 10 – with the frequency of developing important co-
morbidities in the next year. Here, we selected the 5 clusters
that have the highest risk of developing diabetes in the next
year, and the frequency is calculated in a cluster-specific
fashion using the true label. A full list of clusters and co-
morbidity frequencies can be found in the Supplementary
Material. Although all these clusters displayed high risk of
diabetes, the frequency of other co-occurred comorbidities
was significantly different across the clusters. In particu-
lar, around 89% of the patients in Cluster 5 experienced
asthma in the next year while it was less than 3% of the
patients in the other cluster. Interestingly, “leukotriene” – a
medicine commonly used to manage asthma – and “FEV1%
predicted” – a measure of lung function – were the two most
different input features between patients in Cluster 5 and
those in the other clusters. We observed similar findings
in Cluster 7 with ABPA, Cluster 8 with liver disease, and
Cluster 10 with osteopenia. Therefore, by grouping patients
who are likely to develop a similar set of comorbidities,
our method identified clusters that can be translated into

actionable information for clinical decision-making.

5.6. How Does the Temporal Phenotypes Change over
Time?

In this subsection, we demonstrate run-time examples of
how AC-TPC flexibly updates the cluster assignments over
time with respect to the future development of comorbidities
in the next year. Figure 6 illustrates three representative
patients:

• Patient A had diabetes from the beginning of the study
and developed asthma as an additional comorbidity at
t = 2. Accordingly, AC-TPC changed the temporal
phenotype assigned to this patient from Cluster 0, which
consists of patients who are very likely to develop di-
abetes but very unlikely to develop asthma in the next
year, to Cluster 5, which consists of patients who are
likely to develop both diabetes and asthma in the next
year, at t = 1.

• Patient B had ABPA from the beginning of the study
and developed diabetes at t = 5. Similarly, AC-
TPC changed the temporal phenotype assigned to this
patient from Cluster 2, which consists of patients who
are likely to develop ABPA but not diabetes in the next
year, to Cluster 7, which consists of patients who are
likely to develop both ABPA and diabetes in the next
year, at t = 4.
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Figure 6. An illustration of run-time examples of AC-TPC on three representative patients.

• Patient C had no comorbidity at the beginning of the
study, and developed asthma and liver disease as addi-
tional comorbidities, respectively at t = 3 and t = 6.
AC-TPC changed the temporal phenotypes assigned to
this patient from Cluster 1 to Cluster 9 at t = 2 and then
to Cluster 3 at t = 5. The changes in the temporal phe-
notypes were consistent with the actual development of
asthma and liver disease considering the distribution of
comorbidity development in the next year – that is, Clus-
ter 1 consists of patients who are not likely to develop
any comorbidities in the next year, Cluster 9 consists of
patients who are likely to develop asthma but not liver
disease, and Cluster 3 consists of patients who are likely
to develop asthma and liver disease in the next year.

5.7. Trade-Off between Clustering and Prediction

In predictive clustering, the trade-off between the clustering
performance (for better interpretability) – which quantifies
how the data samples are homogeneous within each cluster
and heterogeneous across clusters with respect to the future
outcomes of interest – and the prediction performance is a
common issue. The most important parameter that governs
this trade-off is the number of clusters. More specifically,
increasing the number of clusters will make the predictive
clusters have higher diversity to represent the output distri-
bution and, thus, will increase the prediction performance
while decreasing the clustering performance. One extreme
example is that there are as many clusters as data samples
which will make the identified clusters fully individualized;
as a consequence, each cluster will lose interpretability as it
no longer groups similar data samples.

To highlight this trade-off, we conduct experiments under
the same experimental setup with that of Section 5.5. For
the performance measures, we utilized the AUROC and
AUPRC to assess the prediction performance, and utilized
the average SI to assess the clustering performance. To
control the number of activated clusters, we set β = 0 and
β = 1 (since the embedding separation loss in (4) controls

the activation of clusters) and reported the performance
by increasing the number of possible clusters K, i.e., the
dimension of the embedding dictionary.

As can be seen in Figure 4, the prediction performance in-
creased with a increasing number of identified clusters due
to the higher diversity to represent the label distribution
while making the identified clusters less interpretable. That
is, the cohesion and separation among clusters become am-
biguous as shown in the low average SI. On the other hand,
when we set β = 1.0 (which is selected based on the valida-
tion loss in 2), our method consistently identified a similar
number of clusters for K > 20, i.e., 13.8 on average, in a
data-driven fashion and provided slightly reduced prediction
performance with significantly better interpretability, i.e.,
the average SI 0.120 on average.

6. Conclusion
In this paper, we introduced AC-TPC, a deep learning ap-
proach for predictive clustering of time-series data. We
defined novel loss functions to encourage each cluster to
have homogeneous future outcomes (e.g., adverse events,
the onset of comorbidities, etc.) and designed optimization
procedures to avoid trivial solutions in identifying cluster as-
signments and the centroids. Throughout the experiments on
two real-world datasets, we showed that our model achieves
superior clustering performance over state-of-the-art meth-
ods and identifies meaningful clusters that can be translated
into actionable information for clinical decision-making.
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