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A. AC-TPC for Regression and Binary Classification Tasks
As the task changes, estimating the label distribution and calculating the KL divergence in (1) of the manuscript must
be redefined accordingly: For regression task, i.e., Y = R, we modify the predictor as gφ : Z → R and replace `1
by `1(yt, ȳt) = ‖yt − ȳt‖22. Minimizing `1(yt, ȳt) is equivalent to minimizing the KL divergence between p(yt|x1:t)
and p(yt|st) when we assume these probability densities follow Gaussian distribution with the same variance. For the
M -dimensional binary classification task, i.e., Y = {0, 1}M , we modify the predictor as gφ : Z → [0, 1]M and replace `1
by `1(yt, ȳt) = −

∑M
m=1 y

m
t log ȳmt + (1− ymt ) log(1− ȳmt ) which is required to minimize the KL divergence. Here, ymt

and ȳmt indicate the m-th element of yt and ȳt, respectively. The basic assumption here is that the distribution of each binary
label is independent given the input sequence.

B. Detailed Derivation of (5)
To derive the gradient of the predictive clustering loss in (5) of the manuscript with respect ωA = [θ, ψ], we utilized the
ideas from actor-critic models (Konda & Tsitsiklis, 2000) on LA(θ, ψ, φ) = L1(θ, ψ, φ):

∇ωA
LA(θ, ψ, φ) = Ex,y∼pXY

[
∇ωA

(
T∑
t=1

Est∼Cat(πt)

[
`1(yt, ȳt)

])]
+ α∇ωA

L2(θ, ψ)

= Ex,y∼pXY

[
T∑
t=1

Est∼Cat(πt)

[
`1(yt, ȳt)∇ωA

log πt(st)
]]

+ α∇ωA
L2(θ, ψ),

(S.1)

where the second equality comes from the following derivation of the former term:
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.

C. Pseudo-Code of AC-TPC
As illustrated in Section 3.2, AC-TPC is trained in an iterative fashion. We provide the pseudo-code for optimizing our
model in Algorithm 1 and that for initializing the parameters in Algorithm 2.
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Algorithm 1 Pseudo-code for Optimizing AC-TPC

Input: Dataset D = {(xnt , ynt )T
n

t=1}Nn=1, number of clusters K, coefficients (α, β),
learning rate (ηA, ηC , ηE), mini-batch size nmb, and update step M

Output: AC-TPC parameters (θ, ψ, φ) and the embedding dictionary E
Initialize parameters (θ, ψ, φ) and the embedding dictionary E via Algorithm 2

repeat
Optimize the Encoder, Selector, and Predictor
for m = 1, · · · ,M do

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}nmb
n=1 ∼ D

for n = 1, · · · , nmb do
Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(x

n
1:t))

Draw the cluster assignment: snt ∼ Cat(πnt )
Calculate the label distributions: ȳnt ← gφ(e(snt )) and ŷnt ← gφ(fθ(x

n
1:t))

end for
Update the encoder fθ and selector hψ:

θ ← θ − ηA

(
1

nmb

nmb∑
n=1

Tn∑
t=1

`1(ynt , ȳ
n
t )∇θ log πnt (snt )− α∇θ

K∑
k=1

πnt (k) log πnt (k)

)

ψ ← ψ − ηA

(
1

nmb

nmb∑
n=1

Tn∑
t=1

`1(ynt , ȳ
n
t )∇ψ log πnt (snt )− α∇ψ

K∑
k=1

πnt (k) log πnt (k)

)

Update the predictor gφ:

φ← φ− ηC
1

nmb

nmb∑
n=1

Tn∑
t=1

∇φ`1(ynt , ȳ
n
t )

end for

Optimize the Cluster Centroids
for m = 1, · · · ,M do

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}nmb
n=1 ∼ D

for n = 1, · · · , nmb do
Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(x

n
1:t))

Draw the cluster assignment: snt ∼ Cat(πnt )
Calculate the label distributions: ȳnt ← gφ(e(snt ))

end for
for k = 1, · · · ,K do

Update the embeddings e(k):

e(k)← e(k)− ηE

(
1

nmb

nmb∑
n=1

Tn∑
t=1

∇e(k)`1(ynt , ȳ
n
t )− γ

K∑
k′=1
k′ 6=k

∇e(k)`1
(
gφ(e(k)), gφ(e(k′))

))

end for
Update the embedding dictionary: E ← {e(1), . . . e(K)}

end for
until convergence
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Algorithm 2 Pseudo-code for pre-training AC-TPC

Input: Dataset D = {(xnt , ynt )T
n

t=1}Nn=1, number of clusters K, learning rate η, mini-batch size nmb
Output: AC-TPC parameters (θ, ψ, φ) and the embedding dictionary E
Initialize parameters (θ, ψ, φ) via Xavier Initializer

Pre-train the Encoder and Predictor
repeat

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}nmb
n=1 ∼ D

for n = 1, · · · , nmb do
Calculate the label distributions: ŷnt ← gφ(fθ(x

n
1:t))

end for

θ ← θ − η 1

nmb

nmb∑
n=1

Tn∑
t=1

∇θ`1(ynt , ŷ
n
t ) φ← φ− η 1

nmb

nmb∑
n=1

Tn∑
t=1

∇φ`1(ynt , ŷ
n
t )

until convergence

Initialize the Cluster Centroids
Calculate the embedding dictionary E and initial cluster assignments cnt

E , {{cnt }T
n

t=1}Nn=1 ← K-means({{znt }T
n

t=1}Nn=1,K)

Pre-train the Selector
repeat

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}nmb
n=1 ∼ D

for n = 1, · · · , nmb do
Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(x

n
1:t))

end for
Update the selector hψ:

ψ ← ψ + η
1

nmb

nmb∑
n=1

Tn∑
t=1

K∑
k=1

cnt (k) log πnt (k)

until convergence

D. Details of the Datasets
D.1. UKCF Dataset

UK Cystic Fibrosis registry (UKCF)1 records annual follow-ups for 5,171 adult patients (aged 18 years or older) over the
period from 2008 and 2015, with a total of 25,012 hospital visits. Each patient is associated with 89 variables (i.e., 11 static
and 78 time-varying features), including information on demographics and genetic mutations, bacterial infections, lung
function scores, therapeutic managements, and diagnosis on comorbidities. The detailed statistics are given in Table S.1.

D.2. ADNI Dataset

Alzheimer’s Disease Neuroimaging Initiative (ADNI)2 study consists of 1,346 patients with a total of 11,651 hospital visits,
which tracks the disease progression via follow-up observations at 6 months interval. Each patient is associated with 21
variables (i.e., 5 static and 16 time-varying features), including information on demographics, biomarkers on brain functions,
and cognitive test results. The three diagnostic groups were normal brain functioning (0.55), mild cognitive impairment
(0.43), and Alzheimer’s disease (0.02). The detailed statistics are given in Table S.2.

E. Details of the Benchmarks
We compared AC-TPC in the experiments with clustering methods ranging from conventional approaches based onK-means
to the state-of-the-art approaches based on deep neural networks. The details of how we implemented the benchmarks are
described as the following:

1https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry
2https://adni.loni.usc.edu

https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry
https://adni.loni.usc.edu
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Table S.1. Summary and description of the UKCF dataset.
STATIC COVARIATES Type Mean Type Mean

Demographic Gender Bin. 0.55
Genetic Class I Mutation Bin. 0.05 Class VI Mutation Bin. 0.86

Class II Mutation Bin. 0.87 DF508 Mutation Bin. 0.87
Class III Mutation Bin. 0.89 G551D Mutation Bin. 0.06
Class IV Mutation Bin. 0.05 Homozygous Bin. 0.58
Class V Mutation Bin. 0.04 Heterozygous Bin 0.42

TIME-VARYING COVARIATES Type Mean Min / Max Type Mean Min / Max

Demographic Age Cont. 30.4 18.0 / 86.0 Height Cont. 168.0 129.0 / 198.6
Weight Cont. 64.1 24.0 / 173.3 BMI Cont. 22.6 10.9 / 30.0
Smoking Status Bin. 0.1

Lung Func. Scores FEV1 Cont. 2.3 0.2 / 6.3 Best FEV1 Cont. 2.5 0.3 / 8.0
FEV1% Pred. Cont. 65.1 9.0 / 197.6 Best FEV1% Pred. Cont. 71.2 7.5 / 164.3

Hospitalization IV ABX Days Hosp. Cont. 12.3 0 / 431 Non-IV Hosp. Adm. Cont. 1.2 0 / 203
IV ABX Days Home Cont. 11.9 0 / 441

Lung Infections B. Cepacia Bin. 0.05 P. Aeruginosa Bin. 0.59
H. Influenza Bin. 0.05 K. Pneumoniae Bin. 0.00
E. Coli Bin. 0.01 ALCA Bin. 0.03
Aspergillus Bin. 0.14 NTM Bin. 0.03
Gram-Negative Bin. 0.01 Xanthomonas Bin. 0.05
S. Aureus Bin. 0.30

Comorbidities Liver Disease Bin. 0.16 Depression Bin. 0.07
Asthma Bin. 0.15 Hemoptysis Bin. 0.01
ABPA Bin. 0.12 Pancreatitus Bin. 0.01
Hypertension Bin. 0.04 Hearing Loss Bin. 0.03
Diabetes Bin. 0.28 Gall bladder Bin. 0.01
Arthropathy Bin. 0.09 Colonic structure Bin. 0.00
Bone fracture Bin. 0.01 Intest. Obstruction Bin. 0.08
Osteoporosis Bin. 0.09 GI bleed – no var. Bin. 0.00
Osteopenia Bin. 0.21 GI bleed – var. Bin. 0.00
Cancer Bin. 0.00 Liver Enzymes Bin. 0.16
Cirrhosis Bin. 0.03 Kidney Stones Bin. 0.02

Treatments Dornase Alpha Bin. 0.56 Inhaled B. BAAC Bin. 0.03
Anti-fungals Bin. 0.07 Inhaled B. LAAC Bin. 0.08
HyperSaline Bin. 0.23 Inhaled B. SAAC Bin. 0.05
HypertonicSaline Bin. 0.01 Inhaled B. LABA Bin. 0.11
Tobi Solution Bin. 0.20 Inhaled B. Dilators Bin. 0.57
Cortico Combo Bin. 0.41 Cortico Inhaled Bin. 0.15
Non-IV Ventilation Bin. 0.05 Oral B. Theoph. Bin. 0.04
Acetylcysteine Bin. 0.02 Oral B. BA Bin. 0.03
Aminoglycoside Bin. 0.03 Oral Hypo. Agents Bin. 0.01
iBuprofen Bin. 0.00 Chronic Oral ABX Bin. 0.53
Drug Dornase Bin. 0.02 Cortico Oral Bin. 0.14
HDI Buprofen Bin. 0.00 Oxygen Therapy Bin. 0.11
Tobramycin Bin. 0.03 O2 Exacerbation Bin. 0.03
Leukotriene Bin. 0.07 O2 Nocturnal Bin. 0.03
Colistin Bin. 0.03 O2 Continuous Bin. 0.03
Diabetes Insulin Bin. 0.01 O2 Pro re nata Bin. 0.01
Macrolida ABX Bin. 0.02

ABX: antibiotics

Table S.2. Summary and description of the ADNI dataset.
STATIC COVARIATES Type Mean Min/Max (Mode) Type Mean Min/Max (Mode)

Demographic Race Cat. 0.93 White Ethnicity Cat. 0.97 No Hisp/Latino
Education Cat. 0.23 C16 Marital Status Cat. 0.75 Married

Genetic APOE4 Cont. 0.44 0/2

TIME-VARYING COVARIATES Type Mean Min / Max Type Mean Min / Max

Demographic Age Cont. 73.6 55/92
Biomarker Entorhinal Cont. 3.6E+3 1.0E+3 / 6.7E+3 Mid Temp Cont. 2.0E+4 8.9E+3 / 3.2E+4

Fusiform Cont. 1.8E+5 9.0E+4 / 2.9E+5 Ventricles Cont. 4.1E+4 5.7E+3 / 1.6E+5
Hippocampus Cont. 6.9E+3 2.8E+3 / 1.1E+4 Whole Brain Cont. 1.0E+6 6.5E+5 / 1.5E+6
Intracranial Cont. 1.5E+6 2.9E+2 / 2.1E+6

Cognitive ADAS-11 Cont. 8.58 0/70 ADAS-13 Cont. 13.61 0/85
CRD Sum of Boxes Cont. 1.21 0/17 Mini Mental State Cont. 27.84 2/30
RAVLT Forgetting Cont. 4.19 -12/15 RAVLT Immediate Cont. 38.25 0/75
RAVLT Learning Cont. 4.65 -5/14 RAVLT Percent Cont. 51.70 -500/100
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(a) DCN-S2S (b) DCN-E2P, KM-E2P (c) SOM-VAE (d) SOM-VAE-P

Figure S.1. The block diagrams of the tested benchmarks.

Table S.3. Comparison table of benchmarks.

Methods Handling
Time-Series

Clustering
Method

Similarity
Measure

Label
Provided

Label
Associated

KM-DTW DTW K-means DTW N N
KM-E2P (Z) RNN K-means Euclidean in Z Y Y (indirect)
KM-E2P (Y) RNN K-means Euclidean in Y Y Y (direct)

DCN-S2S RNN K-means Euclidean in Z N N
DCN-E2P RNN K-means Euclidean in Z Y Y (indirect)
SOM-VAE Markov model embedding mapping reconstruction loss N N

SOM-VAE-P Markov model embedding mapping prediction loss Y Y (direct)
Proposed RNN embedding mapping KL divergence Y Y (direct)

• Dynamic time warping followed byK-means3: Dynamic time warping (DTW) is utilized to quantify pairwise distance
between two variable-length sequences and, then, K-means is applied (denoted as KM-DTW).

• K-means with deep neural networks: To handle variable-length time-series data, we utilized an encoder-predictor
network as depicted in Figure S.1b and trained the network based on (6) for dimensionality reduction; this is to provide
fixed-length and low-dimensional representations for time-series. Then, we applied K-means on the latent encodings
z (denoted as KM-E2P (Z)) and on the predicted label distributions ŷ (denoted as KM-E2P (Y)), respectively. We
implemented the encoder and predictor of KM-E2P with the same network architectures with those of our model: the
encoder is a single-layer LSTM with 50 nodes and the decoder is a two-layered fully-connected network with 50 nodes
in each layer.

• Extensions of DCN4 (Yang et al., 2017): Since the DCN is designed for static data, we utilized a sequence-to-sequence
model in Figure S.1a for the encoder-decoder network as an extension to incorporate time-series data (denoted as
DCN-S2S) and trained the network based on the reconstruction loss (using the reconstructed input sequence x̂1:t). For
implementing DCN-S2S, we used a single-layer LSTM with 50 nodes for both the encoder and the decoder. And, we
augmented a fully-connected layer with 50 nodes is used to reconstruct the original input sequence from the latent
representation of the decoder.

In addition, since predictive clustering is associated with the label distribution, we compared a DCN whose encoder-
decoder structure is replaced with our encoder-predictor network in Figure S.1b (denoted as DCN-E2P) to focus the
dimensionality reduction – and, thus, finding latent encodings where clustering is performed – on the information
for predicting the label distribution. We implemented the encoder and predictor of DCN-E2P with the same network
architectures with those of our model as described in Section 5.

3https://github.com/rtavenar/tslearn
4https://github.com/boyangumn/DCN

https://github.com/rtavenar/tslearn
https://github.com/boyangumn/DCN
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• SOM-VAE5 (Fortuin et al., 2019): We compare with SOM-VAE – though, this method is oriented towards visualization
of input data via SOM – since it naturally clusters time-series data assuming Markov property (denoted as SOM-VAE).
We replace the original CNN architecture of the encoder and the decoder with three-layered fully-connected network
with 50 nodes in each layer, respectively. The network architecture is depicted in Figure S.1c where x̂t and x̄t indicate
the reconstructed inputs based on the encoding zt and the embedding et at time t, respectively.

In addition, we compare with a variation of SOM-VAE by replacing the decoder with the predictor to encourage the latent
encoding to capture information for predicting the label distribution (denoted as SOM-VAE-P). For the implementation,
we replaced the decoder of SOM-VAE with our predictor which is a two-layered fully-connected layer with 50 nodes in
each layer to predict the label distribution as illustrated in Figure S.1d. Here, ŷt and ȳt indicate the predicted labels
based on the encoding zt and the embedding et at time t, respectively.

For both cases, we used the default values for balancing coefficients of SOM-VAE and the dimension of SOM to be
equal to K.

We compared and summarized major components of the benchmarks in Table S.3.

F. Additional Experiments
F.1. Contributions of the Auxiliary Loss Functions

As described in Section 3.1, we introduced two auxiliary loss functions – the sample-wise entropy of cluster assignment
(3) and the embedding separation loss (4) – to avoid trivial solution that may arise in identifying the predictive clusters.
To analyze the contribution of each auxiliary loss function, we report the average number of activated clusters, clustering
performance, and prediction performance on the UKCF dataset with 3 comorbidities as described in Section 5.4. Throughout
the experiment, we set K = 16 – which is larger than C – to find the contribution of these loss functions to the number of
activated clusters.

Table S.4. Performance comparison with varying the balancing coefficients α, β for the UKCF dataset.
Coefficients Clustering Performance Prognostic Value
α β Activated No. Purity NMI ARI AUROC AUPRC

0.0 0.0 16 0.573±0.01 0.006±0.00 0.000±0.00 0.500±0.00 0.169±0.00
0.0 1.0 16 0.573±0.01 0.006±0.00 0.000±0.00 0.500±0.00 0.169±0.00
3.0 0.0 8.4 0.795±0.01 0.431±0.01 0.569±0.01 0.840±0.01 0.583±0.02
3.0 1.0 8 0.808±0.01 0.468±0.01 0.606±0.01 0.852±0.00 0.608±0.01

As we can see in Table S.4, both auxiliary loss functions make important contributions in improving the quality of predictive
clustering. More specifically, the sample-wise entropy encourages the selector to choose one dominant cluster. Thus, as we
can see results with α = 0, without the sample-wise entropy, our selector assigns an equal probability to all 16 clusters
which results in a trivial solution. We observed that, by augmenting the embedding separation loss (4), AC-TPC identifies a
smaller number of clusters owing to the well-separated embeddings.

F.2. Additional Results on Targeting Multiple Future Outcomes

Throughout the experiment in Section 5.5, we identified 12 subgroups of patients that are associated with the next-year
development of 22 different comorbidities in the UKCF dataset. In Table S.5, we reported 12 identified clusters and the
full list of comorbidities developed in the next year since the latest observation and the corresponding frequency which is
calculated in a cluster-specific fashion based on the true label.

As we can see in the table, the identified clusters displayed very different label distributions; that is, the combination
of comorbidities as well as their frequency were very different across the clusters. For example, patients in Cluster 1
experienced low-risk of developing any comorbidities in the next year while 85% of patients in Cluster 0 experienced
diabetes in the next year.

5https://github.com/ratschlab/SOM-VAE

https://github.com/ratschlab/SOM-VAE
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Table S.5. The comorbidities developed in the next year for the 12 identified clusters. The values in parentheses indicate the corresponding
frequency.

Clusters Comorbidities and Frequencies

Cluster
0

Diabetes (0.85) Liver Enzymes (0.21) Arthropathy (0.14) Depression (0.10)
Hypertens (0.08) Osteopenia (0.07) Intest. Obstruction (0.07) Cirrhosis (0.04)
ABPA (0.04) Liver Disease (0.04) Osteoporosis (0.03) Hearing Loss (0.03)
Asthma (0.02) Kidney Stones (0.01) Bone fracture (0.01) Hemoptysis (0.01)
Pancreatitis (0.01) Cancer (0.00) Gall bladder (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
1

Liver Enzymes (0.09) Arthropathy (0.08) Depression (0.07) Intest. Obstruction (0.06)
Diabetes (0.06) Osteopenia (0.05) ABPA (0.04) Asthma (0.03)
Liver Disease (0.03) Hearing Loss (0.03) Osteoporosis (0.02) Pancreatitis (0.02)
Kidney Stones (0.02) Hypertension (0.01) Cirrhosis (0.01) Gall bladder (0.01)
Cancer (0.01) Hemoptysis (0.00) Bone fracture (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
2

ABPA (0.77) Osteopenia (0.21) Intest. Obstruction (0.11) Hearing Loss (0.10)
Liver Enzymes (0.07) Diabetes (0.06) Depression (0.05) Pancreatitis (0.05)
Liver Disease (0.04) Arthropathy (0.04) Asthma (0.03) Bone fracture (0.02)
Osteoporosis (0.02) Hypertension (0.01) Cancer (0.01) Cirrhosis (0.01)
Kidney Stones (0.01) Gall bladder (0.01) Hemoptysis (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
3

Asthma (0.89) Liver Disease (0.87) Diabetes (0.29) Osteopenia (0.28)
Liver Enzymes (0.24) ABPA (0.15) Osteoporosis (0.11) Hearing Loss (0.06)
Arthropathy (0.05) Intest. Obstruction (0.05) Depression (0.04) Hypertension (0.03)
Cirrhosis (0.02) Kidney Stones (0.02) Pancreatitis (0.02) Gall bladder (0.02)
Cancer (0.01) Bone fracture (0.00) Hemoptysis (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
4

Osteoporosis (0.76) Diabetes (0.43) Arthropathy (0.20) Liver Enzymes (0.18)
Osteopenia (0.15) Depression (0.13) Intest. Obstruction (0.11) ABPA (0.11)
Hearing Loss (0.09) Liver Disease (0.08) Hypertension (0.07) Cirrhosis (0.07)
Kidney Stones (0.03) Asthma (0.02) Hemoptysis (0.02) Bone fracture (0.02)
Gall bladder (0.01) Pancreatitis (0.01) Cancer (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
5

Asthma (0.88) Diabetes (0.81) Osteopenia (0.28) ABPA (0.24)
Liver Enzymes (0.22) Depression (0.15) Osteoporosis (0.14) Intest. Obstruction (0.12)
Hypertension (0.10) Cirrhosis (0.10) Liver Disease (0.09) Arthropathy (0.08)
Bone fracture (0.01) Hemoptysis (0.01) Pancreatitis (0.01) Hearing Loss (0.01)
Cancer (0.01) Kidney Stones (0.01) GI bleed – var. (0.01) Gall bladder (0.00)
Colonic stricture (0.00) GI bleed – no var. (0.00)

Cluster
6

Liver Disease (0.85) Liver Enzymes (0.37) Osteopenia (0.27) ABPA (0.09)
Arthropathy (0.07) Diabetes (0.06) Intest. Obstruction (0.06) Osteoporosis (0.05)
Depression (0.03) Asthma (0.03) Hearing Loss (0.03) Cirrhosis (0.02)
Hemoptysis (0.02) Hypertension (0.01) Kidney Stones (0.01) Pancreatitis (0.00)
Gall bladder (0.00) Bone fracture (0.00) Cancer (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
7

ABPA (0.83) Diabetes (0.78) Osteopenia (0.25) Osteoporosis (0.24)
Liver Enzymes (0.15) Intest. Obstruction (0.12) Liver Disease (0.09) Hypertension (0.07)
Hearing Loss (0.07) Arthropathy (0.06) Depression (0.04) Cirrhosis (0.02)
Asthma (0.01) Bone fracture (0.01) Kidney Stones (0.01) Hemoptysis (0.01)
Cancer (0.00) Pancreatitis (0.00) Gall bladder (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
8

Diabetes (0.94) Liver Disease (0.83) Liver Enzymes (0.43) Osteopenia (0.30)
Hearing Loss (0.11) Osteoporosis (0.10) Intest. Obstruction (0.09) Cirrhosis (0.08)
Depression (0.08) ABPA (0.07) Arthropathy (0.06) Hypertension (0.05)
Kidney Stones (0.05) Asthma (0.02) Hemoptysis (0.01) Bone fracture (0.01)
Cancer (0.00) Pancreatitis (0.00) Gall bladder (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
9

Asthma (0.89) Osteopenia (0.26) ABPA (0.19) Arthropathy (0.14)
Intest. Obstruction (0.11) Depression (0.08) Osteoporosis (0.08) Diabetes (0.06)
Liver Enzymes (0.06) Hemoptysis (0.03) Hypertension (0.02) Liver Disease (0.02)
Pancreatitis (0.02) Bone fracture (0.01) Cancer (0.01) Cirrhosis (0.01)
Gall bladder (0.01) Hearing Loss (0.01) Kidney Stones (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
10

Osteopenia (0.82) Diabetes (0.81) Arthropathy (0.23) Depression (0.19)
Liver Enzymes (0.18) Hypertension (0.16) Hearing Loss (0.10) Liver Disease (0.10)
Osteoporosis (0.10) Intest. Obstruction (0.09) ABPA (0.09) Kidney Stones (0.07)
Cirrhosis (0.05) Asthma (0.01) Cancer (0.00) GI bleed – var. (0.00)
Bone fracture (0.00) Hemoptysis (0.00) Pancreatitis (0.00) Gall bladder (0.00)
Colonic stricture (0.00) GI bleed – no var. (0.00)

Cluster
11

Osteopenia (0.77) Liver Enzymes (0.18) Arthropathy (0.12) Depression (0.09)
Hypertension (0.06) Diabetes (0.06) Hearing Loss (0.06) ABPA (0.05)
Liver Disease (0.05) Osteoporosis (0.04) Intest. Obstruction (0.04) Cirrhosis (0.02)
Asthma (0.02) Pancreatitis (0.02) Bone fracture (0.01) Cancer (0.01)
Kidney Stones (0.00) Gall bladder (0.00) Colonic stricture (0.00) Hemoptysis (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)
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