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Abstract

Model-based reinforcement learning (RL) enjoys
several benefits, such as data-efficiency and plan-
ning, by learning a model of the environments
dynamics. However, learning a global model that
can generalize across different dynamics is a chal-
lenging task. To tackle this problem, we decom-
pose the task of learning a global dynamics model
into two stages: (a) learning a context latent vec-
tor that captures the local dynamics, then (b) pre-
dicting the next state conditioned on it. In order
to encode dynamics-specific information into the
context latent vector, we introduce a novel loss
function that encourages the context latent vector
to be useful for predicting both forward and back-
ward dynamics. The proposed method achieves
superior generalization ability across various sim-
ulated robotics and control tasks, compared to
existing RL schemes.

1. Introduction

Model-based reinforcement learning (RL) with high-
capacity function approximators, such as deep neural net-
works (DNNs), has been used to solve a variety of sequen-
tial decision-making problems, including board games (e.g.,
Go and Chess (Schrittwieser et al., 2019)), video games
(e.g., Atari games (Kaiser et al., 2020; Schrittwieser et al.,
2019)), and complex robotic control tasks (Zhang et al.,
2019; Nagabandi et al., 2019a; Hafner et al., 2020). By
learning a model of the environment’s dynamics and uti-
lizing the dynamics model for planning, model-based RL
achieves superior data-efficiency to model-free RL meth-
ods in general (Deisenroth & Rasmussen, 2011; Levine &
Abbeel, 2014), and sometimes even beats model-free RL
methods trained on sufficient amount of data (Schrittwieser
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et al., 2019; Hafner et al., 2019; 2020; Kaiser et al., 2020).

However, it has been evidenced that model-based RL meth-
ods often struggle to generalize to an unseen environ-
ment with different transition dynamics (Nagabandi et al.,
2019a;b). For example, when using a vanilla model-based
RL method for the simple CartPole task (see Figure 1), even
a minimal change in the pole mass leads to an inaccurate
next-step prediction. This, in turn, leads to poor planning,
and eventually performance degradation, as demonstrated in
our experiments (see Table 1). Such failure to take account
of transition dynamics shift makes them unreliable for real-
life deployment, which requires robustness to a myriad of
changing environmental factors.

To improve the generalization capabilities of model-based
RL methods, several strategies have been proposed, includ-
ing meta-learning (Nagabandi et al., 2019a;b) and graph
networks (Sanchez-Gonzalez et al., 2018) (see Section 2 for
further details). A notable such example is the model-based
meta-RL method suggested by Nagabandi et al. (2019a),
where a meta-learned prior model adapts to a recent trajec-
tory segment, either by updating hidden state of a recurrent
model (Duan et al., 2016), or by updating model parameters
via a small number of gradient steps (Finn et al., 2017).
However, it is questionable whether a simple gradient or
hidden state updates would capture the rich contextual infor-
mation that the environment offers. Instead, we argue that
separating context encoding (i.e., capturing the contextual
information) and transition inference (i.e., predicting the
next state conditioned on the captured information) can be
more effective for learning the environment dynamics.

Contribution. In this paper, we develop a context-aware
dynamics model (CaDM) capable of generalizing across
a distribution of environments with varying transition dy-
namics. First, to capture the contextual information, we
introduce a context encoder that produces a latent vector
from a recent experience. Then, by conditioning our for-
ward dynamics model on this latent vector, we effectively
perform an online adaptation to the unseen environment.
We emphasize that the proposed CaDM can incorporate any
dynamics model, e.g., fully-connected network or recurrent
neural network, simply by conditioning the dynamics model
on the encoder output. The novel ingredient of CaDM is its
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loss function that forces the latent vector to be useful for
predicting not only the next states (forward dynamics), but
also the previous states (backward dynamics). Moreover, we
consider an additional regularization that encourages tem-
poral consistency of the context latent vector: we force the
context latent vector obtained in the current timestep to be
useful for predictions made in the nearby future timesteps.
We discover that the proposed context latent vector aptly
captures the rich contextual information of the environment,
which enables fast adaptation to the changing dynamics (see
Figure 6(c)). Finally, we explore the possibility of improv-
ing the generalization abilities of a model-free RL method
(Schulman et al., 2017) by giving the learned context latent
vector as an additional input to the policy.

We demonstrate the effectiveness of our method on a variety
of simulated control tasks from OpenAl gym (Brockman
et al., 2016) and MuJoCo physics engine (Todorov et al.,
2012). For evaluation, we measure the performance of
model-based RL methods in a range of unseen (yet related)
environments with different transition dynamics (see Fig-
ure 1). In our experiments, CaDM significantly reduces
the performance gap between training and test environ-
ments when compared to baselines, including ensemble
methods (Chua et al., 2018) and model-based meta-RL meth-
ods (Nagabandi et al., 2019a). Furthermore, we show that
CaDM can also improve model-free RL methods: it im-
proves the generalization performance of proximal policy
optimization (PPO; Schulman et al. 2017), compared to
other context learning methods (Rakelly et al., 2019; Zhou
et al., 2019) for model-free RL. We believe that our ap-
proach could be influential to other relevant topics, such as
sim-to-real transfer (Peng et al., 2018).

2. Related Work

Model-based reinforcement learning. In model-based
RL, we learn a dynamics model that approximates the true
environment dynamics. Such a dynamics model can then be
used for control by planning (Atkeson & Santamaria, 1997;
Lenzetal., 2015; Finn & Levine, 2017), or for improving the
data-efficiency of model-free RL methods (Sutton, 1990; Gu
et al., 2016; Janner et al., 2019). Recently, by incorporating
high-capacity function approximators like DNNs, model-
based RL has shown remarkable progress even in complex
domains (Oh et al., 2015; Chua et al., 2018; Hafner et al.,
2019; 2020; Schrittwieser et al., 2019). For example, Chua
et al. (2018) showed that an ensemble of probabilistic DNNs
could reduce modeling errors and achieve the asymptotic
performance on-par with model-free RL algorithms. It also
has been observed that model-based RL methods can be
applied for solving high-dimensional visual domain tasks
(Hafner et al., 2019; 2020; Schrittwieser et al., 2019). How-
ever, developing a generalizable model-based RL method
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(a) CartPole with varying pole lengths
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(b) Pendulum with varying pendulum lengths
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(c) HalfCheetah with varying body masses
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(d) Ant with varying body masses

Figure 1. Examples from (a) CartPole, (b) Pendulum, (c) HalfChee-
tah, and (d) Ant. We change the transition dynamics of each
environment by modifying its environment parameters.

still remains a longstanding challenge.

Dynamics generalization in deep RL. Generalization of
model-based RL has recently gained considerable attention
in the research community. Sanchez-Gonzalez et al. (2018)
proposed to model a dynamics model using a graph net-
work, and Nagabandi et al. (2019a;b) studied model-based
meta-RL methods where the meta-learner learns to update
the model according to dynamics changes. Notably, Naga-
bandi et al. (2019a) proposed to adapt the dynamics model
to recent trajectory segments, either by updating hidden rep-
resentations of a recurrent model (Duan et al., 2016) or by
updating model parameters via a small number of gradient
steps (Finn et al., 2017). However, it is questionable whether
such methods capture the environment context properly, for
they are overburdened with two tasks: adaptation and next-
state inference. We instead propose to disentangle the two
tasks by introducing a context encoder that specializes in the
former, and a conditioned dynamics model that specializes
in the latter.

Several model-free RL methods, including adversarial pol-
icy training (Morimoto & Doya, 2001; Pinto et al., 2017;
Rajeswaran et al., 2017), structured policy with graph neural
network (Wang et al., 2018), online system identification
(Yu et al., 2018; Zhou et al., 2019), and meta-learning (Finn
et al., 2017; Rakelly et al., 2019), have been proposed to
improve the generalization ability of RL agents across dy-
namics changes. In particular, Rakelly et al. (2019) pro-
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Figure 2. Illustrations of our framework. We decompose the task of learning a global dynamics model into context encoding and transition
inference. (a) Our dynamics model predicts the next state conditioned on the latent vector. (b) We introduce a backward dynamics model
that predicts a previous state by utilizing a context latent vector. (c) We force the context latent vector to be temporally consistent by

utilizing it for predictions in the future timesteps.

posed a meta-RL method that adapts to a new environment
by inferring latent context variables from a small number
of trajectories. However, our method differs from this ap-
proach, in that we train our context encoder by utilizing
it for dynamics prediction, as opposed to maximizing the
expected returns.

3. Problem Statement

We consider the standard RL framework where an agent
interacts with its environment in discrete time. Formally,
we formulate our problem as a Markov Decision Pro-
cess (MDP; Sutton & Barto 2018) defined as a tuple
(S, A,p, 7,7, po), with S denoting the state space, A the ac-
tion space, p (s'|s, a) the transition dynamic, r (s, a) the re-
ward function, py the initial state distribution, and v € [0, 1)
the discount factor. The goal of RL is to find a policy
that produces an action to take from each given state so as
to maximize the expected return defined as the total accu-
mulated reward. We tackle this problem in the context of
model-based RL by learning a forward dynamics model f,
which approximates the transition dynamics p (s'|s, a).

In order to address the problem of generalization, we fur-
ther consider the distribution of MDPs, where the transition
dynamics p. (s'|s, a) varies according to a context c. For
instance, a robot agent’s transition dynamics may change
when some of its parts malfunction due to unexpected dam-
ages. Our goal is to learn a generalizable forward dynamics
model that is robust to such dynamics changes, i.e., approx-
imating a distribution of transition dynamics. Specifically,
given a set of training environments with contexts sampled
from pyrain(c), we aim to learn a forward dynamics model
that can produce accurate predictions for test environments
with unseen contexts sampled from pyest (c).

4. Context-aware Dynamics Model

In this section, we propose a context-aware dynamics model
(CaDM) that can generalize to unseen environments with
varying transition dynamics. Our scheme separates the task
of reasoning about the environment dynamics into (a) encod-
ing the dynamics-specific information into a latent vector
(context encoding), and (b) predicting the next state condi-
tioned on the latent vector (transition inference). To extract
contextual information effectively, we propose a novel loss
function that encourages the context latent vector to be use-
ful for various auxiliary prediction tasks. We also discuss
how the learned context latent vector can help improve the
generalization abilities of model-free RL methods.

4.1. Context Encoder and Dynamics Model

To capture the true unknown context ¢ of the environment,
we introduce a context encoder g parameterized by ¢, which
produces a latent vector z; = g (Tz K qb) given K past
transitions 7f o = {(s¢—r, - 1) -+ (5t-1,a1-1)}. The
intuition is that the true context of the underlying MDP can
be captured from recent experiences. Note that similar ideas
have been explored by Nagabandi et al. (2019a); Rakelly
et al. (2019); Zhou et al. (2019).

We introduce two dynamics models: (a) forward dynamics
model f (s¢41]|5t, at, 2¢; 0) that predicts the next state given
the current state, current action and current context latent
vector (see Figure 2(a)), and (b) backward dynamics model
b (8t|St+1, at, z¢; 1) that predicts the current state given the
next state, current action and current context latent vector
(see Figure 2(b)). Under the assumption that MDPs with
similar contexts will behave similarly (Modi et al., 2018),
our method can generalize to nearby unseen dynamics by
capturing context information from training environments.
Forward and backward dynamics models are parameterized
by 6 and 1, respectively, and are architecture-agnostic, i.e.,
any existing model architecture can be used. Indeed, we
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experimentally confirm that the performance of stochastic
models (Chua et al., 2018) significantly improves when
combined with our method (see Section 5.2).

We optimize the context encoder and the dynamics models
by minimizing the following loss function:

re d d
L£rret = ]E(Tf,M’T:,K)NB [‘ngiward + Bﬁg;ikward} ) (1
| Mot
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where 77\, = {(s¢,at) -+, (81401, arar)} is the future

trajectory segment, B = {(7} y;, 7/ i)} the training dataset,
B > 0 the penalty parameter, and M > 0 the number of
future samples. Here, we remark that both of our dynamics
models share the same context latent vector g (T; I ¢) as
an additional input. Our intuition is that dynamics-specific
context (e.g., environment parameters) must be useful for
predicting both forward and backward transitions. Here,
our motivation is that predicting backward transitions can
also capture contextual information while mitigating the risk
of overly focusing on predicting only the ”seen” forward
dynamics. Additionally, in order to handle long-horizon
tasks, we encourage the context latent vector to be useful
for predictions multiple timesteps into the future (see Fig-
ure 2(c)). Overall, the various prediction tasks introduced
(i.e., future-step forward and backward predictions) help the
context latent vector to be temporally consistent.

Using a model-based RL method to identify the environment
dynamics was also studied by Zhou et al. (2019). However,
the dynamics model in their method is not for producing
accurate predictions, and their main focus is improving the
generalizability of model-free RL methods. On the other
hand, we focus on learning an accurate and generalizable
dynamics model.

4.2. Additional Training Details

History of transitions. In our experiments, we use the state
difference As; = s;y1 — s instead of the raw state s; as an
input to the context encoder:

TtP,K ={(Asi—r,at-x), - ,(Asi_1,a:-1)}.

We found that this simple technique provides further perfor-
mance improvement.

Planning Algorithm. We use a model predictive control
(MPC; Garcia et al. 1989) to select actions based on the for-
ward dynamics prediction. Specifically, we use the cross en-
tropy method (CEM; Botev et al. 2013), where N candidate
action sequences are iteratively sampled from a candidate

Algorithm 1 Training context-aware dynamics model

1: Inputs: the number of past observations K and future
observations M, learning rate o, and batch size B.

2: Initialize parameters of forward dynamics model 6,
backward dynamics model 1, context encoder ¢.
Initialize dataset B < ().
for each iteration do
// COLLECT TRAINING SAMPLES
Sample ¢ ~ Pgeen ().
for ¢ = 1 to TaskHorizon do
Get context latent vector z; = g (77 3 §).
Collect samples {(s¢, at, St41,7t, TEK)} from the
environment with transition dynamics p.. using the
planning algorithm described in Section 4.2.
10: UpdateB<—BU{(St,at,st_,_l,rt,TiK)}.
11:  end for
12:  // UPDATE DYNAMICS MODELS AND ENCODER
13:  fori=1to Bdo

D A A S

14: Sample 7} e, 7} 5y ~ B.
15: Get context latent vector z; = g (Ti e (b).
16: L8 LPred (7F) 2. 0,4b) in (1),
17:  end for
B
18:  Update 0 + 0 — aVgs > £F™
i=1
5 d
19:  Update ¢ + ¢ —aVy5 > L2
i=1
5 d
20:  Update ¢ + ¢ — aVyg > L2
i=1
21: end for

distribution, which is adjusted based on best performing ac-
tion samples. Then, we use the mean of adjusted candidate
distribution as action and re-plan at every timestep.

4.3. Combination with Model-free RL

As a natural extension, we show that the learned context
latent vector can be utilized for improving the generalization
abilities of model-free RL methods. Here, we briefly men-
tion that various model-free RL methods are also known
to suffer from poor generalization (Yu et al., 2018; Packer
et al., 2018; Zhou et al., 2019). One of the major research di-
rections for dynamics generalization in model-free RL is de-
veloping a context-conditional policy. Specifically, Yu et al.
(2018); Rakelly et al. (2019); Zhou et al. (2019) showed
that a policy can be more robust to dynamics changes when
it takes context information as an additional input. Mo-
tivated by this, we consider a context-conditioned policy
7 (at|st, g (7f i3 @)) conditioned on our learned context
latent vector. Compared to existing context-conditional poli-
cies (Rakelly et al., 2019; Zhou et al., 2019), our model-free
RL method demonstrates superior generalization abilities
(see Table 2).
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5. Experiments

In this section, we evaluate the performance of our CaDM
method to answer the following questions:

e Is CaDM more robust to dynamics changes compared
to other model-based RL methods (see Table 1)?

e Can CaDM be combined with model-free RL methods
to improve their generalization abilities (see Table 2)?

e Does the proposed prediction loss (1) improve the test
performance (see Figure 6(a))?

e Can CaDM make accurate predictions (see Figure 6(b)
and Figure 7)?

e Does our context encoder extract meaningful contex-
tual information (see Figure 6(c))?

5.1. Setups

Environments. We demonstrate the effectiveness of our
proposed method on simulated robots (i.e., HalfCheetah,
Ant, CrippledHalfCheetah, and SlimHumanoid) using the
MulJoCo physics engine (Todorov et al., 2012) and classic
control tasks (i.e., CartPole and Pendulum) from OpenAl
Gym (Brockman et al., 2016). The goal of CartPole is to
prevent the pole from falling over by pushing the cart left
and right, while that of Pendulum is to swing up the pendu-
lum and keep it in the upright position. As for HalfCheetah,
Ant, and SlimHumanoid, the goal is to move forward as
fast as possible, while keeping the control cost minimal.
As in Packer et al. (2018); Zhou et al. (2019), we modify
the environment parameters (e.g., mass, length, damping)
that characterize the transition dynamics (see Figure 1). In
the case of CrippledHalfCheetah, one of the actuators is
randomly crippled to change the transition dynamics.

For both training and testing, we sample environment pa-
rameters at the beginning of each episode. During train-
ing, we randomly sample environment parameters from a
predefined training range. At test time, we measure each
model’s performance in unseen environments characterized
by parameters outside the training range. In order to utilize
model-predictive control (MPC), we assume that the reward
function is known, as in (Chua et al., 2018; Nagabandi et al.,
2019a).

Note that generalization performance is measured in two
different regimes: moderate and extreme, where the former
draw environment parameters from a closer range to the
training range, compared to the latter (see Figure 3). For all
our experiments, we select the model with the highest aver-
age return during training and report the test performance.
We report mean and standard deviation across five runs. Due
to space limitations, we provide more experimental details
in the supplementary material.

PR N N N R N A

Moderate

Extreme Training Moderate Extreme

Figure 3. Tllustration of training and test parameter ranges.

Baselines and our method. We consider the following
model-based RL methods as baselines:

e Vanilla dynamics model (Vanilla DM): Dynamics
model trained to minimize the standard one-step for-
ward prediction loss. The model is fixed during test
time (i.e., no adaptation).

e Stacked dynamics model (Stacked DM): Vanilla dy-
namics model which takes the past K € {5,10,15}
transitions as an additional input. A comparison with
this model evaluates the benefit of introducing a con-
text latent vector.

e Gradient-Based Adaptive Learner (GrBAL; Nagabandi
et al. 2019a): Model-based meta-RL method which
trains a dynamics model by optimizing an adaptation
meta-objective. At test time, the meta-learned prior
dynamics model adapts to a recent trajectory segment
by taking gradient steps.'

e Recurrence-Based Adaptive Learner (ReBAL; Naga-
bandi et al. 2019a): Model-based meta-RL method
similar to GrBAL. However, instead of taking gradient
steps, ReBAL uses a recurrent model that learns its
own update rule, i.e. updating its hidden state.!

e Probabilistic ensemble dynamics model (PE-TS; Chua
et al. 2018): An ensemble of probabilistic dynam-
ics models designed to incorporate both environment
stochasticity and subjective uncertainty into the model.

We combine CaDM with two baseline model-based RL
methods, Vanilla DM and PE-TS.: the results of ReBAL
+ CaDM can also be found in the supplementary mate-
rial, where it underperforms Vanilla + CaDM or PE-TS
+ CaDM overall. We remark that the proposed method can
be applied to any model-based RL methods because we
separate a context encoder from forward dynamics models,
as shown in Figure 2. Due to space limitation, we pro-
vide details about model architecture and hyperparameters
in the supplementary material. Our code is available at
https://github.com/younggyoseo/CaDM.

'We used a reference implementation publicly avail-
able at https://github.com/iclavera/learning_
to_adapt.
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Figure 4. The average returns of trained dynamics models on unseen (moderate) environments. The results show the mean and standard
deviation of returns averaged over five runs. The full figures of all environments are in the supplementary material.

CartPole Pendulum
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla DM 176.6+ 102 124.74 8.1 105.94 37 -419.24+ 95.1 -928.44 568 -1170.6+ 513
Stacked DM 176.9+ 6.3 131.9+ 6.0 106.6% 11.0 -1158.7+% 1247 -1308.0+ 496 -1288.3+ 653
GrBAL 118.1% 402 87.5+ 35.1 81.6% 213 -726.84 322.6 -1027.7+£ 68.1 -1048.1+£ 1118
ReBAL 105.7+ 45.8 48.4+ 345 54.3+ 370 -460.44+ 745 -860.84+ 1403 -1026.4+ 515
PE-TS 194.34 4.1 171.3+ 185 142.94 236 -577.24 198.1 -085.74+ 642 -1221.1£ 310
Vanilla + CaDM 185.7+ 77 154.34 132 118.6% 6.6 -415.24 60.4 -593.7+ 48.6 -967.9+ 835
PE-TS + CaDM 196.1+ 43 187.3+ 112 149.4+ 262 -537.04 1146 -705.54 417 -1098.4+ 471
Half-cheetah Ant
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla DM 1560.74 453.1 1026.7+ 1647 686.74 189.4 646.4+ 89.0 520.0+ 976 385.84 852
Stacked DM 1301.4= 3105 761.14 236.6 661.54 22055 492.3+ 687 417.1+ 468 338.94 515
GrBAL 117.0+ 887 -43.7+ 106.9 -94.5+ 1413 55.0+ 100 46.5+ 65 429+ 338
ReBAL 1086.74 90.0 657.5+ 1849 396.6+ 1885 100.1+ 123 73.1+ 155 53.0+ 172
PE-TS 4347.14 3009 2019.64 2748 1422.34+ 1628 1183.3£ 511 1075.14% 1036 856.64 66.5
Vanilla + CaDM 3536.5+ 6417 1556.14 260.6 1264.54 2287 1851.04+ 1137 1315.74 4555 821.4+ 1135
PE-TS + CaDM 8264.0+ 13740  7087.2+ 14956 4661.8+ 783.9 2848.4+ 61.9 2121.04 604 1200.7+ 218
CrippledHalfCheetah SlimHumanoid
Training Test (moderate)  Test (extreme) Training Test (moderate) Test (extreme)
Vanilla DM 1005.14 429.0 870.0+ 308.0 577.34 765 1119.84 3176 1004.44 798.2 1155.54 556.9
Stacked DM 630.6+ 2113 545.14 289.8 417.9+ 1458 1057.4+ 5475 876.24 1005.2 651.84 4499
GrBAL 151.94+ 1227 -9.24 171 16.6+ 23.0 -62.64 233.1 -562.84+ 2535 -398.6+ 1772
ReBAL 701.74 1197 904.5+ 90.7 833.0£ 1180 1205.84+ 546.8 85.8+ 3889 108.74 3576
PE-TS 1846.8+ 3807 1916.5+£ 3282 1227.64 352 1339.64 524.0 758.6+ 528.8 810.4+ 3634
Vanilla + CaDM 2435.14 8804 1375.3+ 2906 966.94 89.4 1758.2+ 459.1 1228.9-+ 3740 1487.9+ 3390
PE-TS + CaDM 3294.94 7339 2618.7+ 647.1 1294.2+ 2149 1371.94+ 400.0 903.74 3439 814.5+ 27438

Table 1. The performance (average returns) of trained dynamics models on various control tasks. The transition dynamics of environments
are changing in both training and test environments. The results show the mean and standard deviation of returns averaged over five runs.

5.2. Comparison with the Model-based RL Methods

Table 1 shows the performance of various model-based RL
methods on both training and test environments (see the sup-
plementary material for training curve plots). Our method
significantly improves both training and test performances
of various model-based methods in all the environments.
Especially, the performance gain due to CaDM becomes
much more significant in more complex environments (e.g.,
long-horizon and high-dimensional domains like halfChee-

tah, Ant, and Humanoid. For example, when combined with
PE-TS, CaDM improves the average return from 2019.6 to
7087.2 for the HalfCheetah environment in the moderate
regime. This demonstrates the applicability of our method
to any model-based RL methods. One important result is
that stacking input transitions sometimes degrades the per-
formances in both training and test environments, which
implies that our approach to separate context encoding and
transition inference is indeed more effective for approximat-
ing true context ¢ than a naive stacking method. We also
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Figure 5. The average returns of trained agents on unseen (moderate) environments. The results show the mean and standard deviation of
returns averaged over five runs. The full figures of all environments are in the supplementary material.

CartPole Pendulum
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla PPO 200.0+ 0.0 199.1+ 09 187.84 47 -945.1+ 1260 -1113.24 69.1 -1356.84 4s.0
Stacked PPO 198.6+ 1.7 197.8+ 13 189.2+ 6.1 -316.9+ 1973 -475.7+ 2281 -488.24 1782
PPO + PC 200.0=+ 0.0 198.0+ 14 187.5+ 109 -451.1% 2486 -645.3+ 3207 -1136.64% 251.0
PPO + EP 200.0+ 0.0 196.3+ 40 184.5+ 97 -255.7+ 95 -374.3+ 246 -256.7+ 264
PPO + CaDM 200.0+ 0.0 197.9+£ 30 193.0+ 35 -199.3+ 222 -279.8+ 42.1 -426.44 2270
HalfCheetah Ant
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla PPO 2043.44 8029 807.74 5536 574.0+ 645.6 211.94 445 149.44 270 117.34 23.1
Stacked PPO 1125.44 855 361.1+ 1417 5.74 208.1 90.6+ 163 53.2+ 106 46.04 109
PPO + PC 1584.94 4043 642.1+ 4883 462.14 53455 249.9+ 850 207.0+ 338 163.5+ 304
PPO + EP 1620.9+ 4915 895.3+ 445.1 674.24 6868 138.8+ 349 107.8£ 199 93.5+ 324
PPO + CaDM 2652.0+ 11336 1224.2+ 630.0 1021.1+ 676.6 268.6+ 77.0 228.8+ 484 199.2+ 52.1
CrippledHalfCheetah SlimHumanoid
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla PPO 2059.6+ 6583 1223.6+ 559.9 781.74 2703 7685.5+ 2599.4 3761.3+ 15824 2751.6+ 869.4
Stacked PPO 1238.1+ 1025 967.1+ 146.6 904.4+ 1465 4831.0+ 688.1 2443.0+ 5356 1577.8+ 5735
PPO + PC 2920.7+ 7717 1162.2+ 4565 546.3+ 2159 7130.14 33780 3928.54 1848.7 2362.64 7819
PPO + EP 149424 3117 1017.0=% 201.1 719.0+ 4385 4824.7+ 1508.7 2224.7+ 8829 1293.4+ 729.0
PPO + CaDM 2356.6+ 6243 1454.0+ 462.6 1025.0+ 296.2 10455.0£ 10049  4975.7+ 13057  3015.1+ 1508.3

Table 2. The performance (average return) of trained agents on various control tasks. The transition dynamics of environments are
changing in both training and test environments. The results show the mean and standard deviation of returns averaged over five runs.

found that the proposed method is more stable compared to
model-based meta-RL methods (i.e., GrBAL and ReBAL),
which update model parameters or hidden states.

5.3. Comparison with the Model-free RL Methods

We also verify whether the learned context latent vector
is useful for improving the generalization performance of
model-free RL methods. Specifically, similar to Hender-
son et al. (2018), we use MLPs with two hidden layers of
64 units and tanh activations for the policy network, and
the Proximal Policy Optimization (PPO; Schulman et al.
2017) method to train the agents. Our proposed method,
which takes the learned context latent vector (denoted PPO
+ CaDM), is compared with several context-conditional
policies (Rakelly et al., 2019; Zhou et al., 2019). Specif-

ically, we consider the stacked PPO, which takes the past
K € {5,10,15} transitions as an additional input, and PPO
with probabilistic context (PPO + PC), which learns context
variable by maximizing the expected returns (Rakelly et al.,
2019). We also consider PPO with environment probing
policy (PPO + EP) that takes embeddings extracted from
initial interaction with an environment as an additional input
(Zhou et al., 2019). Due to space limitations, we provide
more detailed explanations in the supplementary material.

Table 2 shows the performance of various model-free RL
methods on both training and test environments (see the
supplementary for training curve plots). In complex envi-
ronments, such as HalfCheetah, Ant, CrippledHalfCheetah,
and SlimHumanoid, our PPO + CaDM shows better gen-
eralization performances than previous conditional policy
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Figure 6. (a) Test performance of dynamics models optimized by variants of the proposed prediction objective in (1) on HalfCheetah
environments. (b) Prediction errors on the HalfCheetah task with varying mass values. The pink shaded area represents the training range.
(c) PCA visualization of context latent vectors extracted from trajectories collected in the CartPole environments. Embedded points from
environments with the same mass parameter have the same color. The full figures of all environments are in the supplementary material.
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Figure 7. Visualization of future state predictions from Vanilla + CaDM (ours), Stacked DM, and Vanilla DM on CartPole and Pendulum
environments with unseen environment parameters. Given 10 past states and actions, we predict future states for the next 20 timesteps
only using ground truth actions. The colored and faded objects represent the ground truth states and the predicted states, respectively.

methods (i.e., PPO + EP and PPO + PC), implying that the
proposed CaDM method can extract contextual information
more effectively. On the other hand, the performance gain
from our method is marginal in simple environments, such
as CartPole and Pendulum.

5.4. Ablation Study

Effects of prediction loss. In order to verify the individual
effects of the suggested prediction losses (1), we train three
different dynamics models that optimize (a) one-step for-
ward prediction loss, (b) future-step forward prediction loss,
and (c) future-step forward and backward prediction loss,
respectively. Figure 6(a) shows the test performances for the
HalfCheetah environment in the extreme regime. One can
observe that optimizing the future-step forward and back-
ward prediction loss achieves the best performances. This
shows that every component in the proposed loss function

helps the context encoder extract the environment context.

Prediction errors. To show that our method indeed helps
with a forward prediction, we compare baseline methods
with CaDM in terms of prediction error across multiple
HalfCheetah environments with varying mass values. As
shown in Figure 6(b), our model demonstrates superior pre-
diction performance in both training and test environments.
In particular, PE-TS quickly becomes unreliable outside
the training range (pink shaded area), whereas our model
maintains a tolerable level of prediction errors throughout.

Embedding analysis. We analyze whether the learned la-
tent vector encodes meaningful information about the en-
vironment. To this end, we collect trajectories from Cart-
Pole environments with different push force magnitudes,
then visualize the latent encoding of the collected trajec-
tory segments using principal component analysis (PCA)
(Jolliffe, 1986). As shown in Figure 6(c), latent vectors
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extracted from environments with different mass parame-
ters are clearly separated in the embedding space. In con-
trast, raw state vectors are scattered and disjointed (see Fig-
ure 21(a) in the supplementary material), which implies that
our context encoder captures useful contextual information.

Prediction visualization. We also visualize the future state
predictions in test environments from CartPole and Pendu-
lum in Figure 7 with unseen environment parameters (i.e.,
force and mass). Given 10 past states and actions, we gen-
erate 20 future state predictions from Vanilla DM, Stacked
DM, and Vanilla + CaDM only using ground truth actions.
One can observe that Vanilla + CaDM gives much more
accurate predictions compared to other models. Notably,
Vanilla DM and Stacked DM fail to provide accurate pre-
dictions for more distant future timesteps, while CaDM
consistently gives accurate predictions across all timesteps,
which confirms our belief that the proposed method can cap-
ture contextual information about the transition dynamics.

6. Conclusion

In this paper, we propose a context-aware dynamics model
that adapts to dynamics changes. To learn a generalizable
dynamics model, we separate context encoding (i.e., cap-
turing the contextual information) and transition inference
(i.e., predicting the next state conditioned on the captured
information). By forcing the context latent vector to be use-
ful for both forward dynamics and backward dynamics, our
method aptly captures the contextual information. We also
showed that the learned context vector can be utilized to
improve the generalization performance of model-free meth-
ods. We believe our work can serve as a strong guideline in
related topics.
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