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Abstract 
Most real-world tasks are compound tasks that 
consist of multiple simpler sub-tasks. The main 
challenge of learning compound tasks is that we 
have no explicit supervision to learn the hierar-
chical structure of compound tasks. To address 
this challenge, previous imitation learning meth-
ods exploit task-specific knowledge, e.g., labeling 
demonstrations manually or specifying termina-
tion conditions for each sub-task. However, the 
need for task-specific knowledge makes it diffi-
cult to scale imitation learning to real-world tasks. 
In this paper, we propose an imitation learning 
method that can learn compound tasks without 
task-specific knowledge. The key idea behind our 
method is to leverage a self-supervised learning 
framework to learn the hierarchical structure of 
compound tasks. Our work also proposes a task-
agnostic regularization technique to prevent unsta-
ble switching between sub-tasks, which has been 
a common degenerate case in previous works. 
We evaluate our method against several baselines 
on compound tasks. The results show that our 
method achieves state-of-the-art performance on 
compound tasks, outperforming prior imitation 
learning methods. 

1. Introduction 
Learning from demonstration (LfD) has been widely re-
searched for decades, which has led to remarkable achieve-
ments (Ziebart et al., 2008; Wulfmeier et al., 2016; Finn 
et al., 2016; Ho & Ermon, 2016). However, we still can-
not apply existing LfD algorithms to learn real-world tasks. 
One of the main reasons is that most real-world tasks are 
compound tasks that consist of a set of simpler sub-tasks. 
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Figure 1. Overview of proposed method. Our work introduces the 
task transition model, which describes the hierarchical structure of 
compound tasks. The policies for each sub-task take the current 
sub-task as additional input where sub-tasks are encoded as con-
tinuous latent variables. Sij represents a set of states relevant to 

jthe transition from sub-task c i to sub-task c . 

Compound tasks require an agent to learn their hierarchi-
cal structure and policies for each sub-task, but standard 
LfD algorithms cannot infer their hierarchical structure. To 
understand the hierarchical structure of compound tasks, 
we should identify sub-tasks and learn the relationships 
between them. 

The main challenge of learning compound tasks is that we 
have no explicit supervisory signals to learn their hierarchi-
cal structure. Previous works have tried to overcome the 
challenge by leveraging task-specific knowledge in a variety 
of ways. One traditional approach is to manually label or 
segment demonstrations into sub-tasks (Manschitz et al., 
2015; Li et al., 2017). However, this approach requires labo-
rious and time-consuming processes, as raw demonstrations 
are unlabeled and unsegmented. Although several recent 
works have introduced approaches that allow compound 
tasks to be learned with weak supervision, e.g., desired sub-
task orders or the total number of sub-tasks (Fox et al., 2017; 
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Shiarlis et al., 2018; Sharma et al., 2018), they still need to 
exploit task-specific knowledge to learn compound tasks. 
Unfortunately, the need for task-specific knowledge limits 
the applicability of LfD approaches to real-world tasks. 

In this paper, we propose an LfD method that allows com-
pound tasks to be learned without task-specific knowledge. 
Our method introduces a model that represents the hierar-
chical structure of compound tasks. This model takes as 
input the previous sub-task and the current state and returns 
the current sub-task, where sub-tasks are encoded as contin-
uous latent variables. We call this model the task transition 
model because it is similar to the state transition model in 
the Markov decision process (MDP). An agent in our frame-
work interacts with the environments via the task transition 
model, where sub-policies are designed to take the current 
sub-task that is the output of the task transition model as 
an additional input. Figure 1 shows an overview of the 
proposed method. 

To train the task transition model, our method leverages 
self-supervised learning in which embedded metadata are 
autonomously extracted from training inputs and used as 
supervision. In our case, we extract sub-task labels from 
unsegmented demonstrations and then use them as super-
visory signals to train the task transition model. This ap-
proach allows us to learn the hierarchical structure of com-
pound tasks without supervisory signals, which have been 
generated based on task-specific knowledge in previous 
works. Our method also introduces a task-agnostic regular-
ization technique to prevent unstable sub-task transitions, 
whereas previous works address the degenerate case with 
task-specific knowledge, such as predefined transition con-
ditions between sub-tasks (Le et al., 2018). The concept 
behind the regularization technique is the information bot-
tleneck, which was first proposed in Tishby et al. (2000) to 
extract informative representation from an original input. 

Our work presented here belongs to the class of imitation 
learning (IL), one of the main approaches for LfD. Specifi-
cally, the propsoed method is based on generative adversar-
ial imitation learning (GAIL) (Ho & Ermon, 2016), which 
models LfD as an adversarial learning framework. While 
GAIL focuses on primitive tasks, we extend GAIL with 
the task transition model to learn compound tasks. The 
main contribution of our work is that we propose a novel 
IL method that can learn sub-policies and the hierarchical 
structure of compound tasks. To the best of our knowledge, 
this is the first IL method that can learn compound tasks 
without task-specific knowledge. 

We conduct experiments on compound tasks from the Ope-
nAI Gym benchmark suites (Brockman et al., 2016). In 
addition to these provided tasks, we also introduce new 
compound tasks — MountainToyCar and MountainToyCar-
Continuous — that are variants of classic control tasks from 

the OpenAI Gym. Although the tasks seem straightforward 
and simple, they require an agent to learn the hierarchi-
cal structure of both tasks and policies for each sub-task, 
which remains a major challenge for traditional LfD algo-
rithms. Our results demonstrate that the proposed method 
leads to state-of-the-art performance on compound tasks, 
outperforming prior methods. 

2. Related Work 
In addition to IL, there are two other approaches for LfD: 
behavior cloning (BC) and inverse reinforcement learning 
(IRL). BC seeks to learn a policy from demonstrations using 
supervised learning. Although BC is the simplest approach 
of LfD, it requires a relatively large amount of demonstra-
tions compared to other approaches. IRL finds the reward 
function that can explain demonstrations and learns the op-
timal policy from that reward function with reinforcement 
learning (RL). This contrasts with IL that directly learns the 
optimal policy from demonstrations without recovering a 
reward function. Although these all have achieved a wide 
range of success in challenging problems (Abbeel & Ng, 
2004; Finn et al., 2016; Ho & Ermon, 2016) and have led 
to further research in various directions (Duan et al., 2017; 
Peng et al., 2018a), most prior works only focus on primi-
tive tasks consisting of a single task without a hierarchical 
structure. 

Several previous works have attempted to learn compound 
tasks with additional task-specific information (Meier et al., 
2011; Yang et al., 2015; Xu et al., 2018; Yu et al., 2018). 
Manschitz et al. (2015) used segmented and labeled demon-
strations to infer the transitions between consecutive move-
ment primitives. Shiarlis et al. (2018) introduced an algo-
rithm that can learn compound tasks with task sketches that 
explain the desired sequences of sub-tasks. Recently, Kipf 
et al. (2019) and Sharma et al. (2018) proposed algorithms 
that allow compound tasks to be learned without specifying 
sub-tasks in advance. However, the method proposed in 
Kipf et al. (2019) is built upon BC, which is inadequate for 
high-dimensional tasks due to compounding errors caused 
by covariate shift (Ross & Bagnell, 2010; Ross et al., 2011). 
The approach introduced in Sharma et al. (2018) can learn 
high-dimensional compound tasks but assumes access to a 
pre-trained model and information about the total number 
of sub-tasks to infer the hierarchical structure of compound 
tasks. Unlike these prior works, our method does not use 
task-specific knowledge or pre-trained models to learn com-
pound tasks. 

Information-theoretic concepts are widely used in the fields 
of RL and LfD. Mohamed and Rezende (2015) introduced 
an intrinsically motivated RL algorithm that trains an agent 
to take the actions that yield the highest intrinsic reward, 
where intrinsic rewards are defined as mutual information 
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between states and actions. Eysenbach et al. (2018) in-
troduced DIAYN, which can learn diverse skills without 
a reward function by maximizing the mutual information 
between states and skills. Peng et al. (2018b) introduced a 
regularization technique for adversarial learning, referred 
to as variational discriminator bottleneck (VDB), which en-
forces a constraint on mutual information between input 
observations and a discriminator’s internal representation. 
In our work, we apply a constraint on mutual information, 
conditioned on the previous sub-task, between the current 
sub-task and the current state to prevent unstable sub-task 
transitions. 

3. Preliminaries 
3.1. Markov Decision Process 

The Markov Decision Process (MDP), which is defined by 
the tuple (S, A, P, R, ρ0, γ, T ), is a framework for sequen-
tial decision-making problems. Here, S is the set of states, 
A is the set of actions, P : S × A × S → R+ is the state 
transition model, R : S × A → R is a reward function, 
ρ0 : S → R+ is the initial state distribution, γ is the dis-
count factor, and T is the horizon. An agent’s behavior is 
defined by the policy π : S → P (A), which maps states to 
a probability distribution over actions. The core problem of 
the MDP is to find the optimal policy π∗ that maximizes the 
expected cumulative rewards. RL is one of the approaches 
to solve the core problem when we do not know the model 
of environments. 

3.2. Imitation Learning 

The goal of IL is to learn the optimal policy based on expert 
demonstrations rather than the reward function. The frame-
work is very useful in the fields where the reward function 
cannot be easily defined. Ho and Ermon (2016) proposed a 
novel IL method called GAIL, which is inspired by genera-
tive adversarial networks (GANs) (Goodfellow et al., 2014). 
GAIL consists of two networks, policy π and discriminator 
D, which are trained by adversarial learning. The policy 
aims to confuse the discriminator by generating expert-like 
actions. In contrast, the discriminator’s goal is to distinguish 
between the behavior of experts and the agent being trained. 
Note that the discriminator can be used as a reward function 
for training the policy. The GAIL objective function is as 
follows: 

min max Eπ[log D(s, a)]
π D (1) 

+ EπE [log(1 − D(s, a))] − λH(π) 

where πE is the expert policy and H(π),Eπ [− log π(a|s)] is the 
entropy of the policy being trained. 

Although GAIL obtains huge performance gains over ex-
isting LfD methods on standard control benchmark tasks, 

it cannot consider the variations underlying the demonstra-
tions. To handle these variations, Li et al. (2017) proposed 
InfoGAIL by extending GAIL with the concept of InfoGAN 
(Chen et al., 2016). They design the policy π(a|s, c) to take 
factors of variations as additional inputs, where factors are 
encoded as discrete latent variables. In this setting, they 
maximize the mutual information I(c ; τc) between the la-
tent variables c and the generated trajectories τc ∼ π(a|s, c) 
to identify the salient factors of variations. The objective 
function of InfoGAIL is as follows: 

min max Eπ [log D(s, a)]
π,Q D (2) 
+ EπE [log(1 − D(s, a))] − λ1LI (π, Q) − λ2H(π) 

where Q(c|s, a) is the approximation of the true posterior 
p(c|s, a) and LI (π,Q)= Ec∼p(c),a∼π(·|s,c)[log Q(c|s,a)] + H(c) is 
the variational lower bound of the mutual information 
I(c ; τ ). Note that InfoGAIL requires that demonstrations 
be segmented into salient factors in advance. Unlike this 
work, the goal of our method is to learn compound tasks 
from unsegmented demonstrations. 

3.3. Self-supervised Learning 

Self-supervised learning is a promising paradigm that al-
lows us to learn without explicit supervision, such as hand-
labeled data or extrinsic rewards. In this approach, informa-
tive metadata are extracted from training inputs and used 
as supervisory signals. There are many different forms of 
extracted metadata. Doersch et al. (2015) sampled pairs of 
patches randomly in the same image and used them as su-
pervisory signals for visual representation learning. Pathak 
et al. (2017) defined the intrinsic rewards proportional to 
the prediction error of the state transition model, which 
encourages an agent to explore new states. This method 
enables an agent to be trained without extrinsic rewards, 
unlike traditional RL approaches. In our work, we leverage 
self-supervised learning to learn the hierarchical structure 
of compound tasks without task-specific information. 

4. Proposed Method 
Compound tasks require that an agent understand their hier-
archical structure and infer policies for each sub-task. The 
central challenge of learning compound tasks is that we 
have no explicit supervision from which to learn the hierar-
chical structure of compound tasks. Although several recent 
works have proposed LfD methods that can learn compound 
tasks, their methods address the above challenge with vari-
ous forms of task-specific information (Li et al., 2017; Xu 
et al., 2018; Sharma et al., 2018; Yu et al., 2018; Le et al., 
2018). The requirement of task-specific knowledge makes 
it difficult to scale IL to real-world tasks. Here, we intro-
duce an IL method that can learn compound tasks without 
task-specific knowledge. 
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Figure 2. Left: Structure of task transition model and hierarchical 
policy. The agent in st interacts with the environments using 
its policy π(at|st, ct) and task transition model T (ct|ct−1, st). 
Right: Structure of posterior. The posterior infers sub-tasks ct 

from corresponding state-action pairs (st, at). 

4.1. Problem Setting and Overview 

We focus on the problem of learning compound tasks 
from demonstrations without task-specific knowledge. We 
assume that demonstrations {τ1, τ2, . . . , τN } are neither 
labeled nor segmented into sub-tasks. Each demon-
stration consists of variable length of state–action pairs 
{(s1, a1), (s2, a2), . . . , (sT , aT )}, and each state–action 
pair (st, at) has a corresponding sub-task ct that is encoded 
as a latent variable. Most previous works have encoded 
sub-tasks as discrete latent variables while specifying the 
total number of sub-tasks in advance. However, sub-tasks 
in our work are encoded as continuous latent variables to 
avoid restricting the number of sub-tasks and stably repre-
sent the process of sub-task transitions in latent space. We 
believe that using continuous latent variables contributes to 
performance improvements in our work. 

Our framework introduces a model that describes the hier-
archical structure of compound tasks. The model takes as 
input the previous sub-task and the current state and returns 
the current sub-task. We call this model the task transi-
tion model T (ct|ct−1, st) because it is similar to the state 
transition model P (st+1|st, at) in the MDP. This model’s 
structure comes from the idea that states include features 
that determine the relationship between sub-tasks. As shown 
in Figure 2, sub-policies π(at|st, ct) are designed to take 
the current sub-task as an additional input, which allows an 
agent to execute the optimal action for the current sub-task. 

We learn compound tasks by alternating between two phases: 
1) identifying sub-tasks and learning their sub-policies si-
multaneously and 2) modeling the relationship between the 
identified sub-tasks. These two phases are dependent on 
each other. In the remainder of this section, we describe 
how our method accomplishes each phase in detail. 

4.2. Sub-task Identification and Sub-policy Learning 

In order to identify sub-tasks, we maximize the mutual 
information I(ct; st, at) between sub-tasks ct and corre-
sponding state-action pairs (st, at) sampled from the policy 
π(at|st, ct) being trained. Maximizing mutual information 
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Figure 3. Overview of training procedure for task transition model. 
Note that the task transition model is represented with recurrent 
models, since it should learn long-term dependencies between 
sub-tasks. 

encourages sub-tasks to determine what actions the agent 
chooses. In other words, it allows us to separate distinct 
types of policies in an unsupervised manner. The concept 
of maximizing mutual information can be instantiated by 
deriving the lower bound of the mutual information (Chen 
et al., 2016). The derived lower bound is estimated with 
samples drawn from the prior distribution P (ct) instead of 
the true posterior distribution P (ct|st, at) on sub-tasks. 

Several previous works assume that the prior P (ct) is known 
before training (Li et al., 2017; Sharma et al., 2018), but 
the assumption requires pre-training step or task-specific 
knowledge, such as the total number of sub-tasks. To avoid 
this requirement, our work uses the task transition model as 
importance sampling distribution for estimating the lower 
bound of the mutual information LI (π, T, Q). This allows 
us to estimate the lower bound without task-specific knowl-
edge because our method trains the task transition model to 
generate useful samples to estimate the lower bound. Math-
ematically, we can write the lower bound of the mutual 
information as follows: 

I(ct ; st, at) 

≥ EP (ct)[Eπ(at|st,ct)[log Q(ct|st, at)]] + H(ct) 

= ET (ct|ct−1,st )[ ωt Eπ(at|st,ct )[log Q(ct|st, at)]] + H(ct) 

= LI (π, T, Q) (3) 

where Q(ct|st, at) is the approximation of the true posterior 
P (ct )P (ct|st, at) and ωt is an importance weight T (ct|ct−1,st) . 

The detailed derivation is given in Appendix B. 

To obtain sub-policies that can imitate distinct behaviors of 
demonstrations, we just add the above regularization term 
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to the GAIL objective in Equation (1), similar to Li et al. 
(2017). The modified objective can then be written as 

min max Eπ,T [log D(st, at)]
π,Q D 

+ EπE [log(1 − D(st, at))] − λ1LI (π, T, Q) − λ2H(π) 
(4) 

where λ1 is the hyperparameter for the regularization term 
and λ2 is the hyperparameter for the entropy term. Note 
that the task transition model is fixed when we update the 
policy, discriminator, and posterior with this objective. 

4.3. Learning Relationship between Sub-tasks with 
Self-supervised Learning 

This section describes how we learn the relationship be-
tween sub-tasks without task-specific knowledge while pre-
venting unstable sub-task transitions. The key idea behind 
our approach is to leverage self-supervised learning to train 
the task transition model, which represents the hierarchical 
structure of compound tasks. In particular, we use the poste-
rior Q(ct|st, at) to extract sub-task labels {c1, c2, . . . , cT }i 
from sampled demonstrations {s1, a1, s2, a2, . . . , sT , aT }i 
and then use the extracted sequences of sub-task labels as 
supervisory signals in the training process for the task transi-
tion model. We hypothesize that demonstrations can provide 
us with diverse ways to compose sub-tasks. The objective 
for the task transition model can then be written as 

min EQ(ct|st,at)[− log(T (ct|ct−1, st))] (5)
T 

where s and a are from sampled demonstrations. Figure 3 
shows how our work trains the task transition model in a 
self-supervised manner. 

When we learn the relationship between sub-tasks, one of 
the common degenerate cases that can cause unstable sub-
task transitions is high-frequency switching between sub-
tasks (Fox et al., 2017; Krishnan et al., 2017). It often 
happens near sub-task boundaries and causes sub-optimal 
behavior of an agent. Several prior works have exploited 
task-specific knowledge to tackle the issue, e.g., assuming 
access to desired sequences of sub-tasks or using a specific 
prior distribution for segment boundaries (Shiarlis et al., 
2018; Kipf et al., 2019). Unlike previous works, we want to 
address the issue without task-specific knowledge. 

Our method introduces a task-agnostic regularization tech-
nique to tackle the degenerate case without task-specific 
knowledge. Since the degenerate case can occur in our 
settings when the task transition model is overfitted or sus-
ceptible to features that are irrelevant to sub-task transi-
tions, we need to make the task transition model robust 
to irrelevant features. To this end, the introduced regular-
ization technique applies a constraint on mutual informa-
tion I(ct ; st|ct−1), conditioned on the previous sub-task, 

between the current sub-task and the current state. This en-
ables the task transition model to focus on relevant features 
represented in the current state. The concept of a constraint 
on mutual information between related variables, known as 
information bottleneck, was first proposed in Tishby et al. 
(2000). Following previous works that utilize this concept 
(Alemi et al., 2016; Achille & Soatto, 2018), we instanti-
ate our regularization technique with the variational upper 
bound on the conditional mutual information I(ct ; st|ct−1) 
derived as follows: 

I(ct ; st|ct−1) = Ep(st,ct−1)[DKL[T (ct|ct−1, st)kr(ct)]] 
− Ep(ct−1)[DKL[p(ct|ct−1)kr(ct)]]| {z } 

≥ 0 

≤ Ep(st,ct−1)[DKL[T (ct|ct−1, st)kr(ct)]] 

where r(ct) is an approximation of the marginal distributionR 
p(ct|ct−1) = T (ct|ct−1, st)p(st) ds. We modeled r(ct) 
as a normal distribution in our experiments. Appendix B 
describes the derivation for the variational upper bound in 
detail. 

Consequently, we train the task transition model with the 
following regularized objective function: 

min EQ(ct|st ,at)[− log(T (ct|ct−1, st))]
T (6) 

s.t. Ep(st,ct−1)[DKL[T (ct|ct−1, st)kr(ct)] ≤ Ic 

where Ic is the upper bound of the conditional mutual infor-
mation I(st ; ct|ct−1). The constrained optimization prob-
lem can be solved with a dual gradient descent (Boyd & 
Vandenberghe, 2004), where we alternate between minimiz-
ing the Lagrangian with respect to the task transition model 
and adjusting the dual variable β. The Lagrangian of the 
objective function is obtained by subsuming the constraint 
into the objective with the dual variable β as follows: 

L(T, β) = EQ(ct |st,at)[− log(T (ct|ct−1, st))] 

+ β (Ep(st,ct−1)[DKL[T (ct|ct−1, st)kr(ct)] − Ic), 

and the gradient of the Lagrangian dual function in terms of 
the dual variable β is 

Ep(st,ct−1 )[DKL[T (ct|ct−1, st)kr(ct)] − Ic. 

Thus, we can alternatively optimize the task transition model 
and adapt the dual variable according to 

T ← arg min L(T, β) 
T (7) 

β ← β + αβ (Ep(st,ct−1) [DKL [T (ct|ct−1,st)kr(ct)]−Ic), 

where αβ is the step size for the dual variable. In practice, 
we update the task transition model with a few gradient 
steps for each iteration. Appendix A provides further details 
of our training procedure. 
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MOUNTAINTOYCAR MOUNTAINTOYCARCONTINUOUS FETCHPICKANDPLACE 

METHOD AVG. RETURN SUCCESS RATE AVG. RETURN SUCCESS RATE AVG. RETURN SUCCESS RATE 

GAIL -200.0 ± 0.0 0.00 -2.72 ± 1.33 0.00 -6.33 ± 6.14 0.77 
BC -200.0 ± 0.0 0.00 -14.34 ± 4.94 0.00 -10.56 ± 6.40 0.29 

OURS -151.43 ± 4.28 1.0 91.94 ± 1.78 1.0 -3.13 ± 1.68 0.98 
CVAE -200.0 ± 0.0 0.00 -32.65 ± 0.83 0.00 -11.07 ± 6.01 0.24 

CVAE+T2M -149.48 ± 35.34 0.87 90.48 ± 9.70 0.98 -10.53 ± 7.37 0.31 

Table 1. Average returns and success rates computed over 100 episodes for each method. Although MountainToyCar and MountainToyCar-
Continuous are relatively simple compound tasks, GAIL and BC perform poorly for both tasks because they cannot infer their hierarchical 
structure. CVAE+T2M achieves results comparable with those of our method for both tasks but fails to learn FetchPickAndPlace, which 
is a complex and high-dimensional compound task. Our method outperforms the baselines across all the compound tasks. The results 
indicate that our work is more scalable and shows better performance than the baselines for compound tasks. 

Figure 4. Learning curves for MountainToyCarContinuous. The 
darker-colored lines and shaded areas denote the average returns 
and standard deviations, respectively, computed over 10 random 
seeds. 
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5. Experiments 
Our experiments is designed to answer the following ques-
tions: 1) Can our method learn the hierarchical structure 
of compound tasks without task-specific knowledge? 2) 
Can our method learn policies for each sub-task without 
task-specific knowledge? 3) Can our method outperform 
previous state-of-the-art methods on compound tasks? 4) 
Can our method achieve performance comparable with that 
of prior works on primitive tasks? The reason we should 
answer the last question is that if our method does not work 
well on primitive tasks, we should investigate whether the 
target task types are primitive or compound before training. 
We want to demonstrate that our method can be applied 
without identifying the task type, which is sometimes not 
straightforward in practice. 

To answer the above questions, we compare our method 
with several baselines: BC, GAIL, and conditional varia-
tional autoencoder (CVAE). BC and GAIL are standard LfD 
algorithms that cannot learn the hierarchical structure of 
compound tasks. Comparing our work with these meth-
ods shows how important understanding the hierarchical 
structure is when solving compound tasks. CVAE is a typ-
ical approach that can identify sub-tasks and learn their 
sub-policies. Since CVAE cannot learn the relationship be-

Figure 5. Top: Training results for MountainToyCar. The task has 
discrete action space: pushing left (0), no pushing (1), and pushing 
right (2). Bottom: Training results for MountainToyCarContinu-
ous. The task has continuous action space: pushing left (negative 
value) and pushing right (positive value). 

tween sub-tasks, we compare our method against CVAE 
augmented with the task transition model, which has the 
same architecture as ours. This shows how efficient our 
method is for learning compound tasks. 

Here we briefly describe our experimental setup. We evalu-
ate our method on both primitive and compound tasks. In 
order to generate demonstrations for each task, we trained 
expert agents with recent RL algorithms such as ACKTR 
(Wu et al., 2017) and TRPO (Schulman et al., 2015) in dense 
reward settings. The demonstrations were neither labeled 
nor segmented into sub-tasks. We encoded sub-tasks as one-
dimensional continuous latent variables, and the uniform 
distribution was used to sample the initial latent variable 
for each episode. We would like to emphasize that no task-
specific knowledge was used in our experiments. All of 
the experiments were performed on a PC with a 3.60 GHz 
Intel Core i7-9700K Processor, and a GeForce RTX 2080 Ti 
GPU. Appendix C contains further details on our experimen-
tal setup. In the remainder of this section, we discuss the 
results for each task. Note that we denote the task transition 
model as T2M in graphs and tables for brevity. 
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Figure 6. Learning curves for FetchPickAndPlace-v1. The darker-
colored lines and shaded areas denote the average returns and 
standard deviations, respectively, computed over 10 random seeds. 

5.1. Compound Tasks 

Classic Control Tasks: We introduce two low-dimensional 
compound tasks called MountainToyCar and Mountain-
ToyCarContinuous. These tasks are variants of Mountain-
Car and MountainCarContinuous, which are classic control 
tasks provided by OpenAI Gym (Brockman et al., 2016). 
The goal of the origin tasks is to reach the target at the top 
of a hill on the right side. To achieve this goal, an agent 
should utilize momentum by alternating driving up the slope 
on either side. The introduced tasks have the same goal as 
the origin tasks but define the components of states differ-
ently. In contrast to the origin tasks where states include 
the position and velocity of an agent, states in the new tasks 
only consist of position. The modification requires that an 
agent infer the current sub-task and take different actions 
depending on the sub-task even in the same state, which 
poses a significant challenge to traditional LfD algorithms. 

We show the learning curves for MountainToyCarContinu-
ous in Figure 4 and summarize the numerical training results 
for MountainToyCar and MountainToyCarContinuous in Ta-
ble 1. BC and GAIL fail to learn both tasks because they 
cannot infer their hierarchical structure. CVAE without the 
task transition model also cannot learn both tasks, where 
sub-task variables are randomly sampled at each time step. 
In contrast, our work and CVAE augmented with the task 
transition model successfully learn both tasks with high 
average returns. The results demonstrate that learning the 
hierarchical structure of compound tasks is critical for solv-
ing compound tasks. The plots in Figure 5 show the training 
results in an episode for each task. As shown in the snap-
shots A, C, H, and J, our method segments the left and right 
actions on each hill into different sub-tasks, which enables 
our agent to choose different actions even in the same state. 

Figure 7. Sub-task transitions in FetchPickAndPlace-v1. Our work 
segments the episode into two sub-tasks: picking up a box from a 
table and moving that box to the target point. The first segment is 
encoded as latent variables ranging from 0.2 to 0.6, and the second 
segment is encoded as latent variables ranging from -0.6 to -0.4. 

In addition, we can also observe that our method composes 
the identified sub-tasks differently depending on the initial 
state for each episode to leverage momentum to reach the 
target point. These results indicate that our work allows the 
agent to learn the hierarchical structure of both tasks and 
their sup-policies. 

Robotics Task: We evaluate our method on 
FetchPickAndPlace-v1, which is a complex and high-
dimensional compound task from OpenAI Gym Robotics 
(Plappert et al., 2018). In this task, an agent has to pick up 
a box and then move it to a target point using its gripper. 
The box and target point are randomly generated for each 
episode. The task success is originally determined by 
whether an agent moves the box to within 0.05 of the target 
point, but we modified the threshold distance to 0.1 because 
we empirically observed that the original threshold was 
too strong to compare our method with the baselines. The 
most difficult part of the compound task is deciding when 
to close the gripper to pick up the box without knowing 
whether the box has been grabbed. We expect that an agent 
trained with our method can handle that tricky part by 
understanding the task’s hierarchical structure. 

Learning curves for FetchPickAndPlace-v1 are shown in 
Figure 6. We initialized the policy networks in our method 
and GAIL with pre-trained models through CVAE and BC, 
respectively. Our method significantly outperforms GAIL 
that achieves the best result among the baselines. This 
implies that understanding the hierarchical structure is im-
portant to achieve a performance gain for complex com-
pound tasks. Although CVAE augmented with the task 
transition model can learn the hierarchical structure of com-
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METHOD HALFCHEETAH WALKER2D HOPPER 

GAIL 
BC 

OURS 
CVAE+T2M 

4872.84 ± 82.42 
3664.40 ± 1730.83 
5063.62 ± 76.39 
3753.52 ± 1564.79 

7031.15 ± 64.46 
4241.33 ± 2901.16 
7045.08 ± 54.44 
5059.42 ± 2522.85 

3597.89 ± 6.43 
2233.27 ± 260.54 
3588.02 ± 4.50 
2394.88 ± 240.69 

Table 2. Average returns computed over 100 episodes for each method. All tasks are primitive tasks where an agent does not need to learn 
hierarchical policies. Although BC and CVAE+T2M perform properly in these tasks, they yield high variance due to compounding errors. 
Our method achieves performance comparable with that of GAIL across all the primitive tasks. 

(a) HalfCheetah-v2 (b) Walker2d-v2 (c) Hopper-v2 

Figure 8. Learning curves for primitive tasks. The darker-colored lines and shaded areas denote the average returns and standard deviations, 
respectively, computed over 10 random seeds. These graphs indicate that our method can successfully learn primitive tasks. 

pound tasks, it cannot learn the high-dimensional task due 
to compounding errors, as discussed in Section 2. This re-
sult demonstrates that our method is more efficient than the 
baselines to deal with high-dimensional compound tasks. 

Table 1 shows the average returns and success rates for 
FetchPickAndPlace-v1. We compute the results over 100 
episodes based on the provided dense rewards, which are 
defined as the negative distance between a box and a target 
point. The results show that our method performs signif-
icantly better than the baselines. To our knowledge, our 
method achieves state-of-the-art performance on this task 
without even using task-specific knowledge, outperforming 
previous IL methods (Sharma et al., 2018). In Figure 7, we 
show the plot of sub-task variables inferred by our method 
with snapshots. This plot represents that our work segments 
the compound task into two sub-tasks: picking up a box 
from a table and moving the box to a target point. We show 
our agent’s movements for the first sub-task in snapshots A 
and B, and those for the second sub-task in snapshots C and 
D. The plot also describes that the transition from the first 
to second sub-task is performed properly without unstable 
switching between them. 

5.2. Primitive Tasks 

We also conduct experiments on three primitive tasks: 
HalfCheetah-v2, Walker2d-v2, and Hopper-v2. The tasks 
are simulated using the MuJoCo physics engine (Todorov 

et al., 2012). We show the learning curves and training 
results for each task in Figure 8 and Table 2, respectively. 
The results show that all the baselines achieve relatively 
good performance, unlike in compound tasks. This implies 
that an agent does not need to learn hierarchical policies 
to solve primitive tasks, where states are in one-to-one cor-
respondence with the optimal or expert-like actions. In 
addition, we also observe that our method achieves perfor-
mance comparable with that of GAIL, which attains the best 
performance among the baselines. This result demonstrates 
that our method can be applied to any target task without 
identifying its type. 

6. Conclusion 
Our work present a novel IL method that can learn com-
pound tasks without task-specific knowledge. The key idea 
is to leverage self-supervised learning to train the model that 
describes the hierarchical structure of compound tasks. We 
evaluate our method on several compound tasks, including 
the newly introduced tasks. Our experimental results demon-
strate that the proposed method can learn their hierarchical 
structure and policies for each sub-task, outperforming pre-
vious methods. In future work, we will extend our work 
to address more difficult scenarios, such as long-term or 
image-based compound tasks. Another interesting direction 
for future work is to investigate how the sample efficiency 
of our method can be improved. 
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