
Supplementary Material for Learning Compound Tasks without 
Task-specific Knowledge via Imitation and Self-supervised Learning 

Sang-Hyun Lee 1 2 Seung-Woo Seo 2 

A. Training Details 
We propose an imitation learning method that can learn compound tasks without task-specific knowledge. Our method 
consists of four models: the policy π(at|st, ct), discriminator D(st, at), posterior Q(ct|st, at), and task transition model 
T (ct|ct−1, st). These models are represented as neural networks, and the parameters for each network are θ, ω, ψ and υ. 
The policy and discriminator are trained with adversarial learning, which can be extremely unstable due to the vanishing 
gradient and mode collapse problem. Several previous works have introduced practical ways of stabilizing the training 
process (Arjovsky et al., 2017; Gulrajani et al., 2017). We observed that adding instance noise to the discriminator’s inputs 
is sufficient to stabilize our training (Sønderby et al., 2016). Algorithm 1 describes the overall training procedure of our 
method. The discriminator is updated with RMSprop, and the policy is optimized with PPO (Schulman et al., 2017). The 
posterior and task transition model are both updated using Adam optimizer (Kingma & Ba, 2014). 

B. Derivation Details 
B.1. Sub-task Identification 

In order to identify sub-tasks, our work maximizes the lower bound of mutual information between sub-tasks and corre-
sponding state–action pairs. The lower bound is instantiated closely following InfoGAN (Chen et al., 2016) except that 
we use the task transition model as importance sampling distribution instead of the prior over sub-tasks. This allows us 
to estimate the lower bound LI (π, T, Q) without task-specific knowledge, as discussed in the main paper. The detailed 
derivation process for the lower bound is as follows. 

0I(ct|st, at) = E(st,at)∼πct [Ec0 ∼P (ct|st,at)[log P (ct|st, at)]] + H(ct)t 

0 0 0 = E(st ,at)∼πct [DKL[P (c |st, at)kQ(c |st, at)] + Ec0 ∼P (ct|st,at)[log Q(c |st, at)]] + H(ct)t t tt 

0 . ≥ E(st ,at)∼πct [Ec0 ∼P (ct|st,at)[log Q(ct|st, at)]] + H(ct)t 

= Ect∼P (ct) [E(st,at)∼πct [log Q(ct|st, at)]] + H(ct) 

P (ct) 
= Ect∼T (ct|ct−1,st) [ E(st,at)∼πct [log Q(ct|st, at)]] + H(ct)

T (ct|ct−1, st) 

= LI (π, T, Q) 

B.2. Regularization for Preventing Unstable Sub-task Transitions 

We enforce a constraint on mutual information between the current sub-task and the current state, conditioned on the previous 
sub-task. The constraint allows us to ensure that the task transition model is not susceptible to features irrelevant to sub-task 
transitions. The underlying concept of the regularization technique is information bottleneck, which was first proposed in 
Tishby et al. (2000) to extract informative representation from an original input. Our work instantiates the constraint by 
deriving the upper bound of the mutual information, similar to several previous works (Alemi et al., 2016; Achille & Soatto, 
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Algorithm 1 Proposed Approach for Learning Compound Tasks 

Input: expert demonstrations τE , initial parameters of policy, discriminator, posterior, task transition model and dual 
variable θ0 , ω0 , ψ0 , υ0 and β0 

for i = 0, 1, 2, ... do 
Sample initial sub-tasks c0 ∼ r(c) 
Sample trajectories τ i using hierarchical policies πθi and task transition model Tυi 
Update ωi to ωi+1 with the gradient: 

E EEc0 ∼Tυi (ct|ct−1,st), at ∼πθi (at|st,c
0 )[Oωi log Dωi (st, at)] + EπE [Oωi log(1 − Dωi (st , at ))]t t 

Update ψi to ψi+1 with the gradient: 

0 
0 0−λ1Ec ∼Tυi (ct|ct−1,st), at∼πθi (at |st,c )[Oψi log Qψi (ct|st, at)]t t 

Update θi to θi+1 with the policy gradient method using the following objective: 

Ec0 ∼Tυi (ct|ct−1,st), at∼πθi (at|st,c
0 )[log Dωi+1 (st, at)] − λ1LI (πθi , Tυi , Qψi+1 ) − λ2H(πθi )t t 

E EExtract sub-task sequences c1:T from the sampled demonstrations ct ∼ Qψi+1 (ct|s , a )t t 
Update υi to υi+1 with the gradient: 

0 E E−Ec0 ∼Qψi+1 (ct|sE ,aE )[Oυi log(Tυi (ct|ct−1, st ))] + βi(E(sE ,ct−1)∼p(sE ,ct−1)[Oυi DKL[Tυi (ct|ct−1, st )kr(ct)]])t t t t t 

Adjust βi via dual gradient descent as follows: 

Eβi+1 ← max(0, βi + αβ (E(sE ,ct−1)∼p(sE ,ct−1)[DKL[Tυi+1 (ct|ct−1, st )kr(ct)] − Ic))
t t 

end for 

2018). Interestingly, the upper bound can be obtained in a similar manner to a variational autoencoder (VAE). We introduceR 
the variational approximation r(ct) to the marginal distribution p(ct|ct−1) = T (ct|ct−1, st)p(st) ds, which allows us to 
estimate the uppper bound without evaluating the intractable marginal p(ct|ct−1) by leveraging the non-negativity of the 
Kullback-Leiber (KL) divergence. We model r(ct) as a normal distribution to compute the KL divergence analytically. The 
overall procedure of the derivation is described below. 

Z h Z Z i p(st, ct|ct−1)
I(ct, st|ct−1) = p(st, ct|ct−1) log dsdc p(ct−1)dc 

C C S p(st|ct−1)p(ct|ct−1)Z h Z Z iT (ct|ct−1, st) 
= p(st|ct−1)T (ct|ct−1, st) log dsdc p(ct−1)dc 

C C S p(ct|ct−1)Z h Z Z iT (ct|ct−1, st) 
= p(st|ct−1)T (ct|ct−1, st) log dsdc p(ct−1)dc 

C C S r(ct)Z h Z Z i r(ct)
+ p(st|ct−1)T (ct|ct−1, st) log dsdc p(ct−1)dc 

C C S p(ct|ct−1)Z Z 
= p(st, ct−1)DKL[T (ct|ct−1, st)kr(ct)]dsdc 

C S Z h Z i r(ct)
+ p(ct|ct−1) log dc p(ct−1)dc 

C C p(ct|ct−1) 

= E(st,ct−1)∼p(st,ct−1)[DKL[T (ct|ct−1, st)kr(ct)]] − Ect−1∼p(ct−1)[DKL[p(ct|ct−1)kr(ct)]]| {z } 
≥ 0 

≤ E(st,ct−1)∼p(st,ct−1)[DKL[T (ct|ct−1, st)kr(ct)]] 
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C. Implementation Details 
C.1. Model Architecture 

Here, we describe the structure of the models included in our method. The discriminator and policy have the same network 
structure described in Ho and Ermon (2016). The policy network outputs a categorical distribution over actions for discrete 
tasks, whereas it outputs the mean and standard deviations of a Gaussian distribution for continuous tasks. The posterior and 
the task transition model have two layers of 100 units with ReLU activations. Since the task transition model should learn 
the long-term dependencies between sub-tasks, it is followed by GRU (Cho et al., 2014), which is a recurrent neural network 
that leverages a gated architecture. 

We evaluate our method against several baselines: BC, GAIL, and CVAE. CVAE consists of an encoder and a decoder. The 
encoder takes a state and an action as inputs and returns a latent variable that encodes sub-tasks. The decoder, which is the 
policy in our case, takes the latent variable and state as inputs and returns an action. The states are regarded as conditional 
variables in the training procedure for CVAE. To provide a fair comparison, the policy networks for each baseline and the 
discriminator network in GAIL have the same architecture as in our method. 

C.2. Hyperparameter Setting 

Table 1 describes the hyperparameters used for our experiments. These hyperparameters were tuned through a 
coarse grid search, e.g., policy learning rate over {0.00001, 0.00003, 0.0001, 0.0003, 0.001}, entropy coefficient over 
{0.0, 0.001, 0.01, 0.1}, and mini-batch size over {32, 64, 128, 256, 512}. 

HYPERPARAMETER VALUE 

PPO CLIPPING FACTOR 0.2 
DISCOUNT FACTOR 0.99 
GAE PARAMETER 0.95 

VALUE FUNCTION COEFFICIENT 0.5 
ENTROPY COEFFICIENT 0.01 

HORIZON 2048 
MINI-BATCH SIZE 64 

ADAM β1 0.9 
ADAM β2 0.999 

LEARNING RATE(POLICY) 0.0003 
LEARNING RATE(OTHERS) 0.0001 

IC 0.2 
β0 0.0 

Table 1. Hyperparameters 

C.3. Environment Description 

Table 2 provides further details about the tasks we used for our experiments. Although we do not evaluate our method on 
MountainCar and MountainCarContinuous, we add them to the table for comparison with the newly introduced tasks, which 
we call MountainToyCar and MountainToyCarContinuous. 

ENVIRONMENT STATE ACTION TASK TYPE MAXIMUM STEP 

MOUNTAINCAR 2 3(DISCRETE) PRIMITIVE 200 
MOUNTAINTOYCAR 1 3(DISCRETE) COMPOUND 200 

MOUNTAINCARCONTINUOUS 2 1(CONTINUOUS) PRIMITIVE 999 
MOUNTAINTOYCARCONTINUOUS 1 1(CONTINUOUS) COMPOUND 999 

FETCHPICKANDPLACE 28 4(CONTINUOUS) COMPOUND 50 
HOPPER 11 3(CONTINUOUS) PRIMITIVE 1000 

HALFCHEETAH 17 6(CONTINUOUS) PRIMITIVE 1000 
WALKER2D 17 6(CONTINUOUS) PRIMITIVE 1000 

Table 2. Benchmark tasks 
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