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Abstract
Self-supervised learning, which learns by con-
structing artificial labels given only the input
signals, has recently gained considerable at-
tention for learning representations with unla-
beled datasets, i.e., learning without any human-
annotated supervision. In this paper, we show
that such a technique can be used to significantly
improve the model accuracy even under fully-
labeled datasets. Our scheme trains the model
to learn both original and self-supervised tasks,
but is different from conventional multi-task learn-
ing frameworks that optimize the summation of
their corresponding losses. Our main idea is to
learn a single unified task with respect to the joint
distribution of the original and self-supervised
labels, i.e., we augment original labels via self-
supervision of input transformation. This simple,
yet effective approach allows to train models eas-
ier by relaxing a certain invariant constraint dur-
ing learning the original and self-supervised tasks
simultaneously. It also enables an aggregated
inference which combines the predictions from
different augmentations to improve the predic-
tion accuracy. Furthermore, we propose a novel
knowledge transfer technique, which we refer to
as self-distillation, that has the effect of the aggre-
gated inference in a single (faster) inference. We
demonstrate the large accuracy improvement and
wide applicability of our framework on various
fully-supervised settings, e.g., the few-shot and
imbalanced classification scenarios.

1. Introduction
In recent years, self-supervised learning (Doersch et al.,
2015) has shown remarkable success in unsupervised repre-
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sentation learning for images (Doersch et al., 2015; Noroozi
& Favaro, 2016; Larsson et al., 2017; Gidaris et al., 2018;
Zhang et al., 2019a), natural language (Devlin et al., 2018),
and video games (Anand et al., 2019). When human-
annotated labels are scarce, the approach constructs artificial
labels, referred to as self-supervision, only using the input
examples and then learns their representations via predicting
the labels. One of the simplest, yet effective self-supervised
learning approaches is to predict which transformation t
is applied to an input x from observing only the modified
input t(x), e.g., t can be a patch permutation (Noroozi &
Favaro, 2016) or a rotation (Gidaris et al., 2018). To predict
such transformations, a model should distinguish between
what is semantically natural or not, and consequently, it
learns high-level semantic representations of inputs.

The simplicity of transformation-based self-supervision has
encouraged its wide applicability for other purposes beyond
unsupervised representation learning, e.g., semi-supervised
learning (Zhai et al., 2019; Berthelot et al., 2020), improving
robustness (Hendrycks et al., 2019), and training generative
adversarial networks (Chen et al., 2019). The prior works
commonly maintain two separate classifiers (yet sharing
common feature representations) for the original and self-
supervised tasks, and optimize their objectives simultane-
ously. However, this multi-task learning approach typically
provides no accuracy gain when working with fully-labeled
datasets. This inspires us to explore the following question:
how can we effectively utilize the transformation-based self-
supervision for fully-supervised classification tasks?

Contribution. We first discuss our observation that the
multi-task learning approach forces the primary classifier
for the original task to be invariant with respect to trans-
formations of a self-supervised task. For example, when
using rotations as self-supervision (Zhai et al., 2019), which
rotates each image 0, 90, 180, 270 degrees while preserving
its original label, the primary classifier is forced to learn
representations that are invariant to the rotations. Forc-
ing such invariance could lead to increasing complexity of
tasks since the transformations could largely change char-
acteristics of samples and/or meaningful information for
recognizing objects, e.g., image classification {6 vs. 9} or
{bird vs. bat}.1 Consequently, this could hurt the overall

1This is because bats hang typically upside down, while birds
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(b) Aggregation & self-distillation

(c) Rotation (M = 4) (d) Color permutation (M = 6)

Figure 1. (a) An overview of our self-supervised label augmentation and previous approaches with self-supervision. (b) Illustrations of
our aggregation method utilizing all augmented samples and self-distillation method transferring the aggregated knowledge into itself. (c)
Rotation-based augmentation. (d) Color-permutation-based augmentation.

representation learning, and degrade the classification accu-
racy of the primary fully-supervised model (see Table 1 in
Section 3.2).

To tackle this challenge, we propose a simple yet effective
idea (see Figure 1(a)), which is to learn a single unified
task with respect to the joint distribution of the original
and self-supervised labels, instead of two separate tasks
typically used in the prior self-supervision literature. For
example, when training on CIFAR10 (Krizhevsky et al.,
2009) (10 labels) with the self-supervision on rotation (4
labels), we learn the joint probability distribution on all
possible combinations, i.e., 40 labels.

This label augmentation method, which we refer to as self-
supervised label augmentation (SLA), does not force any
invariance to the transformations without assumption for the
relationship between the original and self-supervised labels.
Furthermore, since we assign different self-supervised labels
for each transformation, it is possible to make a prediction
by aggregation across all transformations at test time, as
illustrated in Figure 1(b). This can provide an (implicit)
ensemble effect using a single model. Finally, to speed up
the inference process without loss of the ensemble effect, we
propose a novel self-distillation technique that transfers the
knowledge of the multiple inferences into a single inference,
as illustrated in Figure 1(b).

In our experiments, we consider two types of input trans-

do not.

formations for self-supervised label augmentation, rotation
(4 transformations) and color permutation (6 transforma-
tions), as illustrated in Figure 1(c) and Figure 1(d), respec-
tively. To demonstrate the wide applicability and compat-
ibility of our method, we experiment with various bench-
mark datasets and classification scenarios, including the
few-shot and imbalanced classification tasks. In all tested
settings, our simple method improves the classification accu-
racy significantly and consistently. For example, our method
achieves 8.60% and 7.05% relative accuracy gains on the
standard fully-supervised task on CIFAR-100 (Krizhevsky
et al., 2009) and the 5-way 5-shot task on FC100 (Oreshkin
et al., 2018), respectively, over relevant baselines.2

2. Self-supervised Label Augmentation
In this section, we provide the details of our self-supervised
label augmentation techniques under focusing on the fully-
supervised scenarios. We first discuss the conventional
multi-task learning approach utilizing self-supervised labels
and its limitations in Section 2.1. Then, we introduce our
learning framework which can fully utilize the power of
self-supervision in Section 2.2. Here, we also propose two
additional techniques: aggregation, which utilizes all differ-
ently augmented samples for providing an ensemble effect
using a single model; and self-distillation, which transfers
the aggregated knowledge into the model itself for accel-

2Code available at https://github.com/hankook/SLA.

https://github.com/hankook/SLA
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erating the inference speed without loss of the ensemble
effect.

Notation. Let x ∈ Rd be an input, y ∈ {1, . . . , N} be its
label where N is the number of classes, LCE be the cross-
entropy loss function, σ(·;u) be the softmax classifier, i.e.,
σi(z;u) = exp(u>i z)/

∑
k exp(u

>
k z), and z = f(x;θ)

be an embedding vector of x where f is a neural network
with the parameter θ. We also let x̃ = t(x) denote an aug-
mented sample using a transformation t, and z̃ = f(x̃;θ)
be the embedding of the augmented sample x̃.

2.1. Multi-task Learning with Self-supervision

In transformation-based self-supervised learning (Doersch
et al., 2015; Noroozi & Favaro, 2016; Larsson et al., 2017;
Gidaris et al., 2018; Zhang et al., 2019a), models learn to
predict which transformation t is applied to an input x given
a modified sample x̃ = t(x). The common approach to
utilize self-supervised labels for other task is to optimize
two losses of the primary and self-supervised tasks, while
sharing the feature space among them (Chen et al., 2019;
Hendrycks et al., 2019; Zhai et al., 2019); that is, the two
tasks are trained in a multi-task learning framework. Thus,
in the fully-supervised setting, one can formulate the multi-
task objective LMT with self-supervision as follows:

LMT(x, y;θ,u,v)

=
1

M

M∑

j=1

LCE(σ(z̃j ;u), y) + LCE(σ(z̃j ;v), j), (1)

where {tj}Mj=1 is pre-defined transformations, x̃j = tj(x)
is a transformed sample by tj , and z̃j = f(x̃j ;θ) is its
embedding of the neural network f . Here, σ(·;u) and
σ(·;v) are classifiers for primary and self-supervised tasks,
respectively. The above loss forces the primary classifier
σ(f(·);u) to be invariant to the transformations {tj}. De-
pending on the type of transformations, forcing such invari-
ance may not make sense, as the statistical characteristics of
the augmented training samples (e.g., via rotation) could be-
come very different from those of original training samples.
In such a case, enforcing invariance to those transforma-
tions would make the learning more difficult, and can even
degrade the performance (see Table 1 in Section 3.2).

In the multi-task learning objective (1), if we do not learn
self-supervision, then it can be considered as a data augmen-
tation objective LDA as follows:

LDA(x, y;θ,u) =
1

M

M∑

j=1

LCE(σ(z̃j ;u), y). (2)

This conventional data augmentation aims to improve upon
the generalization ability of the target neural network f by
leveraging certain transformations that can preserve their se-
mantics, e.g., cropping, contrast enhancement, and flipping.

On the other hands, if a transformation modifies the seman-
tics, the invariant property with respect to the transformation
could interfere with semantic representation learning (see
Table 1 in Section 3.2).

2.2. Eliminating Invariance via Joint-label Classifier

Our key idea is to remove the unnecessary invariant prop-
erty of the classifier σ(f(·);u) in (1) and (2) among the
transformed samples. To this end, we use a joint soft-
max classifier ρ(·;w) which represents the joint probability
as P (i, j|x̃) = ρij(z̃;w) = exp(w>ij z̃)/

∑
k,l exp(w

>
klz̃).

Then, our training objective can be written as

LSLA(x, y;θ,w) =
1

M

M∑

j=1

LCE(ρ(z̃j ;w), (y, j)), (3)

where LCE(ρ(z̃;w), (i, j)) = − log ρij(z̃;w). Note that
this framework only increases the number of labels, thus
the number of additional parameters is negligible compared
to that of the whole network, e.g., only 0.4% parameters
are newly introduced when using ResNet-32 (He et al.,
2016). We also remark that the above objective can be
reduced to the multi-task learning objective LMT (1) when
wij = ui + vj for all i, j, and the data augmentation ob-
jective LDA (2) when wij = ui for all i. From the per-
spective of optimization, LMT and LSLA consider the same
set of multi-labels, but the former requires the additional
constraint, thus it is harder to optimize than the latter. The
difference between the conventional augmentation, multi-
task learning and ours is illustrated in Figure 1(a). During
training, we feed all M augmented samples simultaneously
for each iteration as Gidaris et al. (2018) did, i.e., we min-
imize 1

|B|
∑

(x,y)∈B LSLA(x, y;θ,w) for each mini-batch
B. We also assume that the first transformation is the iden-
tity function, i.e., x̃1 = t1(x) = x.

Aggregated inference. Given a test sample x or its aug-
mented sample x̃j = tj(x) by a transformation tj , we
do not need to consider all N × M labels for the pre-
diction of its original label, because we already know
which transformation is applied. Therefore, we make a
prediction using the conditional probability P (i|x̃j , j) =
exp(w>ij z̃j)/

∑
k exp(w

>
kj z̃j) where z̃j = f(x̃j). Further-

more, for all possible transformations {tj}, we aggregate
the corresponding conditional probabilities to improve the
classification accuracy, i.e., we train a single model, which
can perform inference like an ensemble model. To compute
the probability of the aggregated inference, we first average
pre-softmax activations (i.e., logits), and then compute the
softmax probability as follows:

Paggregated(i|x) =
exp(si)∑N

k=1 exp(sk)
, (4)
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where si = 1
M

∑M
j=1w

>
ij z̃j . Since we assign different la-

bels for each transformation tj , our aggregation scheme
improves accuracy significantly. Somewhat surprisingly, it
achieves comparable performance with the ensemble of mul-
tiple independent models in our experiments (see Table 2 in
Section 3.2). We refer to the counterpart of the aggregation
as single inference, which uses only the non-augmented
or original sample x̃1 = x, i.e., predicts a label using
P (i|x̃1, j=1) = exp(w>i1f(x;θ))/

∑
k exp(w

>
k1f(x;θ)).

Self-distillation from aggregation. Although the afore-
mentioned aggregated inference achieves outstanding per-
formance, it requires to compute z̃j = f(x̃j) for all j, i.e.,
it requires M times higher computation cost than the single
inference. To accelerate the inference, we perform self-
distillation (Hinton et al., 2015; Lan et al., 2018) from the
aggregated knowledge Paggregated(·|x) to another classifier
σ(f(x;θ);u) parameterized by u, as illustrated in Figure
1(b). Then, the classifier σ(f(x;θ);u) can maintain the ag-
gregated knowledge using only one embedding z = f(x).
To this end, we optimize the following objective:

LSLA+SD(x, y;θ,w,u) = LSLA(x, y;θ,w)

+DKL(Paggregated(·|x)‖σ(z;u))
+ βLCE(σ(z;u), y), (5)

where β is a hyperparameter and we simply choose β ∈
{0, 1}. When computing the gradient of LSLA+SD, we con-
sider Paggregated(·|x) as a constant. After training, we use
σ(f(x;θ);u) for inference without aggregation.

3. Experiments
We experimentally validate our self-supervised label aug-
mentation techniques described in Section 2. Throughout
this section, we refer to data augmentation LDA (2) as DA,
multi-task learning LMT (1) as MT, and our self-supervised
label augmentation LSLA (3) as SLA for notational sim-
plicity. We also refer baselines which use only random
cropping and flipping for data augmentation (without rota-
tion and color permutation) as “Baseline”. Note that DA is
different from Baseline because DA uses self-supervision as
augmentation (e.g., rotation) while Baseline does not. Af-
ter training with LSLA, we consider two inference schemes:
the single inference P (i|x, j = 1) and the aggregated in-
ference Paggregated(i|x) denoted by SLA+SI and SLA+AG,
respectively. We also denote the self-distillation method
LSLA+SD (5) as SLA+SD which uses only the single infer-
ence σ(f(x;θ);u).

3.1. Setup

Datasets and models. We evaluate our method on var-
ious classification datasets: CIFAR10/100 (Krizhevsky
et al., 2009), Caltech-UCSD Birds or CUB200 (Wah et al.,

2011), Indoor Scene Recognition or MIT67 (Quattoni &
Torralba, 2009), Stanford Dogs (Khosla et al., 2011), and
tiny-ImageNet3 for standard or imbalanced image classifi-
cation; mini-ImageNet (Vinyals et al., 2016), CIFAR-FS
(Bertinetto et al., 2019), and FC100 (Oreshkin et al., 2018)
for few-shot classification. Note that CUB200, MIT67, and
Stanford Dogs are fine-grained datasets. We use 32-layer
residual networks (He et al., 2016) for CIFAR and 18-layer
residual networks for three fine-grained datasets and tiny-
ImageNet unless otherwise stated.

Implementation details. For the standard image classifi-
cation datasets, we use SGD with a learning rate of 0.1,
momentum of 0.9, and weight decay of 10−4. We train
for 80k iterations with a batch size of 128. For the fine-
grained datasets, we train for 30k iterations with a batch
size of 32 because they have a relatively smaller number of
training samples. We decay the learning rate by the con-
stant factor of 0.1 at 50% and 75% iterations. We report
the average accuracy of three trials for all experiments un-
less otherwise noted. When combining with other methods,
we use publicly available codes and follow their experi-
mental setups: MetaOptNet (Lee et al., 2019) for few-shot
learning, LDAM (Cao et al., 2019) for imbalanced datasets,
and FastAutoAugment (Lim et al., 2019) and CutMix (Yun
et al., 2019) for advanced augmentation experiments. In the
supplementary material, we provide pseudo-codes of our
algorithm, which can be easily implemented.

Choices of transformation. Since using the entire input
images during training is important for image classification,
some self-supervision techniques are not suitable for our
purpose. For example, the Jigsaw puzzle approach (Noroozi
& Favaro, 2016) divides an input image to 3 × 3 patches
and then computes their embedding separately. Prediction
using such embedding performs worse than that using the
entire image. To avoid this issue, we choose two transfor-
mations that use the entire input image without cropping:
rotation (Gidaris et al., 2018) and color permutation. Ro-
tation constructs M = 4 rotated images (0◦, 90◦, 180◦,
270◦) as illustrated in Figure 1(c). This transformation is
widely used for self-supervision due to its simplicity (Chen
et al., 2019; Zhai et al., 2019). Color permutation constructs
M = 3! = 6 different images via swapping RGB channels
as illustrated in Figure 1(d). This transformation can be use-
ful when color information is important such as fine-grained
classification datasets.

3.2. Ablation Study

Toy example for intuition. To provide intuition on the
difficulty of learning an invariant property with respect to
certain transformations, we here introduce simple examples:
three binary digit-image classification tasks, {1 vs. 9}, {4

3 https://tiny-imagenet.herokuapp.com/

https://tiny-imagenet.herokuapp.com/
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(a) Upright images (b) 1 vs. 9 rotated images (c) 4 vs. 9 rotated images (d) 6 vs. 9 rotated images

Figure 2. Visualization of raw pixels of 1, 4, 6 and 9 in MNIST (LeCun et al., 1998) by t-SNE (Maaten & Hinton, 2008). Colors and
shapes indicate digits and rotation, respectively.

Table 1. Classification accuracy (%) of single inference using
data augmentation (DA), multi-task learning (MT), and our self-
supervised label augmentation (SLA) with rotation. The best
accuracy is indicated as bold.

Dataset Baseline DA MT SLA+SI

CIFAR10 92.39 90.44 90.79 92.50
CIFAR100 68.27 65.73 66.10 68.68

tiny-ImageNet 63.11 60.21 58.04 63.99

Table 2. Classification accuracy (%) of the independent ensemble
(IE) and our aggregation using rotation (SLA+AG). Note that a
single model requires 0.46M parameters while four independent
models do 1.86M parameters. The best accuracy is indicated as
bold.

Single Model 4 Models

Dataset Baseline SLA+AG IE IE + SLA+AG

CIFAR10 92.39 94.50 94.36 95.10
CIFAR100 68.27 74.14 74.82 76.40

tiny-ImageNet 63.11 66.95 68.18 69.01

vs. 9}, and {6 vs. 9} in MNIST (LeCun et al., 1998) using
linear classifiers based on raw pixel values. As illustrated
in Figure 2(a), it is often easier to classify the upright digits
using a linear classifier, e.g., 0.2% error when classifying
only upright 6s and 9s. Note that 4 and 9 have similar
shapes, so their pixel values are closer than other pairs. After
rotating digits while preserving labels, the linear classifiers
can still distinguish between rotated 1 and 9 as illustrated
in Figure 2(b), but cannot between rotated 4, 6 and 9, as
illustrated in Figure 2(c) and 2(d), e.g., 13% error when
classifying rotated 6s and 9s. These examples show that
linear separable data could be no longer linear separable
after augmentation by some transformations such as rotation,
i.e., explain why forcing an invariant property can increase
the difficulty of learning tasks. However, if assigning a
different label for each rotation (as we propose in this paper),
then the linear classifier can classify the rotated digits, e.g.,
1.1% error when classifying rotated 6s and 9s.

Comparison with DA and MT. We empirically verify that
our proposed method can utilize self-supervision without
loss of accuracy on fully-supervised datasets while data aug-

Figure 3. Training curves of data augmentation (DA), multi-task
learning (MT), and our self-supervised label augmentation (SLA)
with rotation. The solid and dashed lines indicate training and test
accuracy on CIFAR100, respectively.

mentation and multi-task learning approaches cannot. To
this end, we train models on generic classification datasets,
CIFAR10/100 and tiny-ImageNet, using three different ob-
jectives: data augmentation LDA (2), multi-task learning
LMT (1), and our self-supervised label augmentation LSLA
(3) with rotation. As reported in Table 1, LDA and LMT
degrade the performance significantly compared to the base-
line that does not use the rotation-based augmentation. How-
ever, when training with LSLA, the performance is slightly
improved. Figure 3 shows the classification accuracy of
training and test samples in CIFAR100 during training. As
shown in the figure, LDA causes a higher generalization error
than others because LDA forces the unnecessary invariant
property. Moreover, optimizing LMT is harder than doing
LSLA as described in Section 2.2, thus the former achieves
the lower accuracy on both training and test samples than
the latter. These results show that learning invariance to
some transformations, e.g., rotation, makes optimization
harder and degrades the performance. Namely, such trans-
formations should be carefully handled.

Comparison with independent ensemble. Next, to evalu-
ate the effect of the aggregation in SLA-trained models, we
compare the aggregation using rotation with independent
ensemble (IE) which aggregates the pre-softmax activations
(i.e., logits) over independently trained models.4 We here

4In the supplementary material, we also compare our method
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Table 3. Classification accuracy (%) on various benchmark datasets using self-supervised label augmentation with rotation and color
permutation. SLA+SD and SLA+AG indicate the single inference trained by LSLA+SD, and the aggregated inference trained by LSLA,
respectively. The relative gain is shown in brackets.

Rotation Color Permutation

Dataset Baseline SLA+SD SLA+AG SLA+SD SLA+AG

CIFAR10 92.39 93.26 (+0.94%) 94.50 (+2.28%) 91.51 (-0.95%) 92.51 (+0.13%)
CIFAR100 68.27 71.85 (+5.24%) 74.14 (+8.60%) 68.33 (+0.09%) 69.14 (+1.27%)
CUB200 54.24 62.54 (+15.3%) 64.41 (+18.8%) 60.95 (+12.4%) 61.10 (+12.6%)
MIT67 54.75 63.54 (+16.1%) 64.85 (+18.4%) 60.03 (+9.64%) 59.99 (+9.57%)

Stanford Dogs 60.62 66.55 (+9.78%) 68.70 (+13.3%) 65.92 (+8.74%) 67.03 (+10.6%)
tiny-ImageNet 63.11 65.53 (+3.83%) 66.95 (+6.08%) 63.98 (+1.38%) 64.15 (+1.65%)

Table 4. Classification accuracy (%) of SLA+AG based on the set
(each row) of composed transformations. We first choose subsets of
rotation and color permutation (see first two columns) and compose
them where M is the number of composed transformations. ALL
indicates that we compose all rotations and/or color permutations.
The best accuracy is indicated as bold.

Rotation Tr Color permutation Tc M CUB200

0◦ RGB 1 54.24
0◦, 180◦ RGB 2 58.92

ALL RGB 4 64.41
0◦ RGB, GBR, BRG 3 56.47
0◦ ALL 6 61.10

0◦, 180◦ RGB, GBR, BRG 6 60.87
ALL RGB, GBR, BRG 12 65.53
ALL ALL 24 65.43

use four independent models (i.e., 4× more parameters than
ours) since IE with four models and SLA+AG have the
same inference cost. Surprisingly, as reported in Table 2,
the aggregation using rotation achieves competitive perfor-
mance compared to the ensemble. When using both IE and
SLA+AG with rotation, i.e., the same number of parameters
as the ensemble, the accuracy is improved further.

3.3. Evaluation on Standard Setting

We demonstrate the effectiveness of our self-supervised aug-
mentation method on various image classification datasets:
CIFAR10/100, CUB200, MIT67, Stanford Dogs, and tiny-
ImageNet. We first evaluate the effect of aggregated infer-
ence Paggregated(·|x) in (4) of Section 2.2: see the SLA+AG
column in Table 3. Using rotation as augmentation im-
proves the classification accuracy on all datasets, e.g., 8.60%
and 18.8% relative gain over baselines on CIFAR100 and
CUB200, respectively. With color permutation, the per-
formance improvements are less significant on CIFAR and
tiny-ImageNet, but it still provides meaningful gains on
fine-grained datasets, e.g., 12.6% and 10.6% relative gain
on CUB200 and Stanford Dogs, respectively. In the supple-

with ten-crop (Krizhevsky et al., 2012).

Table 5. Classification error rates (%) of various augmentation
methods with SLA+SD on CIFAR 10/100. We train WideResNet-
40-2 (Zagoruyko & Komodakis, 2016b) and PyramidNet200 (Han
et al., 2017) following the experimental setup of Lim et al. (2019)
and Yun et al. (2019), respectively. The best accuracy is indicated
as bold.

CIFAR10 CIFAR100

WRN-40-2 5.24 25.63
+ Cutout 4.33 23.87
+ Cutout + SLA+SD (ours) 3.36 20.42
+ FastAutoAugment 3.78 21.63
+ FastAutoAugment + SLA+SD (ours) 3.06 19.49
+ AutoAugment 3.70 21.44
+ AutoAugment + SLA+SD (ours) 2.95 18.87

PyramidNet200 3.85 16.45
+ Mixup 3.09 15.63
+ CutMix 2.88 14.47
+ CutMix + SLA+SD (ours) 1.80 12.24

mentary material, we also provide additional experiments
on large-scale datasets, e.g., iNaturalist (Van Horn et al.,
2018) of 8k labels, to demonstrate the scalability of SLA
with respect to the number of labels.

Since both transformations are effective on the fine-grained
datasets, we also test composed transformations of the two
different types of transformations for further improvements.
To construct the composed ones, we first choose two subsets
Tr and Tc of rotation and color permutation, respectively,
e.g., Tr = {0◦, 180◦} or Tc = {RGB,GBR,BRG}. Then,
we compose them, i.e., T = {tc ◦ tr : tr ∈ Tr, tc ∈ Tc}. It
means that t = tc ◦ tr ∈ T rotates an image by tr and then
swaps color channels by tc. As reported in Table 4, using
a larger set T improves the aggregation inference further.
However, under too many transformations, the aggregation
performance can be degraded since the optimization be-
comes too harder. When using M = 12 transformations,
we achieve the best performance, 20.8% relatively higher
than the baseline on CUB200. Similar experiments on Stan-
ford Dogs are reported in the supplementary material.

We further apply SLA+SD (that is faster than SLA+AG in
inference) with existing augmentation techniques, Cutout
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Table 6. Average classification accuracy (%) with 95% confidence intervals of 1000 5-way few-shot tasks on mini-ImageNet, CIFAR-FS,
and FC100. † and ‡ indicates 4-layer convolutional and 28-layer residual networks (Zagoruyko & Komodakis, 2016b), respectively.
Others use 12-layer residual networks as Lee et al. (2019). We follow the same experimental settings as Lee et al. (2019) did. The best
accuracy is indicated as bold.

mini-ImageNet CIFAR-FS FC100

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML† (Finn et al., 2017) 48.70±1.84 63.11±0.92 58.9±1.9 71.5±1.0 - -
R2D2† (Bertinetto et al., 2019) - - 65.3±0.2 79.4±0.1 - -

RelationNet† (Sung et al., 2018) 50.44±0.82 65.32±0.70 55.0±1.0 69.3±0.8 - -
SNAIL (Mishra et al., 2018) 55.71±0.99 68.88±0.92 - - - -

TADAM (Oreshkin et al., 2018) 58.50±0.30 76.70±0.30 - - 40.1±0.4 56.1±0.4

LEO‡ (Rusu et al., 2019) 61.76±0.08 77.59±0.12 - - - -
MetaOptNet-SVM (Lee et al., 2019) 62.64±0.61 78.63±0.46 72.0±0.7 84.2±0.5 41.1±0.6 55.5±0.6

ProtoNet (Snell et al., 2017) 59.25±0.64 75.60±0.48 72.2±0.7 83.5±0.5 37.5±0.6 52.5±0.6

ProtoNet + SLA+AG (ours) 62.22±0.69 77.78±0.51 74.6±0.7 86.8±0.5 40.0±0.6 55.7±0.6

MetaOptNet-RR (Lee et al., 2019) 61.41±0.61 77.88±0.46 72.6±0.7 84.3±0.5 40.5±0.6 55.3±0.6

MetaOptNet-RR + SLA+AG (ours) 62.93±0.63 79.63±0.47 73.5±0.7 86.7±0.5 42.2±0.6 59.2±0.5

(DeVries & Taylor, 2017), CutMix (Yun et al., 2019), Au-
toAugment (Cubuk et al., 2019), and FastAutoAugment
(Lim et al., 2019) into recent architectures (Zagoruyko &
Komodakis, 2016b; Han et al., 2017). Note that SLA uses
semantically-sensitive transformations for assigning differ-
ent labels, while conventional data augmentation methods
use semantically-invariant transformations for preserving
labels. Thus, transformations using SLA and conventional
data augmentation (DA) techniques do not overlap. For
example, the AutoAugment (Cubuk et al., 2019) policy ro-
tates images at most 30 degrees, while SLA does at least 90
degrees. Therefore, SLA can be naturally combined with
the existing DA methods. As reported in Table 5, SLA+SD
consistently reduces the classification errors. As a result, it
achieves 1.80% and 12.24% error rates on CIFAR10/100,
respectively. These results demonstrate the compatibility of
the proposed method.

3.4. Evaluation on Limited-data Setting

Limited-data regime. Our augmentation techniques are
also effective when only few training samples are available.
To evaluate the effectiveness, we first construct sub-datasets
of CIFAR100 via randomly choosing n ∈ {25, 50, 100,
250} samples for each class, and then train models with
and without our rotation-based self-supervised label aug-
mentation. As shown in Figure 4, our scheme improves
the accuracy relatively up to 37.5% under aggregation and
21.9% without aggregation.

Few-shot classification. Motivated by the above results
in the limited-data regime, we also apply our SLA+AG5

method to solve few-shot classification, combined with re-
5In few-shot learning, it is hard to define the additional classifier

σ(f(x;θ);u) in (5) for unseen classes when applying SLA+SD.

Figure 4. Relative improvements (%) over baselines under varying
the number of training samples per class in CIFAR100.

cent approaches, ProtoNet (Snell et al., 2017) and MetaOpt-
Net (Lee et al., 2019) specialized for this problem. Note that
our method augments N -way K-shot tasks to NM -way
K-shot when using M -way transformations. As reported in
Table 6, ours improves consistently 5-way 1/5-shot classifi-
cation accuracy on mini-ImageNet, CIFAR-FS, and FC100.
For example, we obtain 7.05% relative improvements on
5-shot tasks of FC100. Here, we remark that one may obtain
further improvements by applying additional data augmen-
tation techniques to ours (and the baselines), as we shown in
Section 3.3. However, we found that training with the state-
of-the-art data augmentation technique and/or testing with
ten-crop (Krizhevsky et al., 2012) do not always provide
meaningful improvements for the few-show experiments,
e.g., the AutoAugment (Cubuk et al., 2019) policy and ten-
crop provide marginal (<1%) accuracy gain on FC100 under
ProtoNet in our experiments.

Imbalanced classification. Finally, we consider a setting
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Table 7. Classification accuracy (%) on imbalanced datasets of CIFAR10/100. Imbalance Ratio is the ratio between the numbers of
samples of most and least frequent classes. We follow the experimental settings of Cao et al. (2019). The best accuracy is indicated as
bold, and we use brackets to report the relative accuracy gains over each counterpart that does not use SLA.

Imbalanced CIFAR10 Imbalanced CIFAR100

Imbalance Ratio (Nmax/Nmin) 100 10 100 10

Baseline 70.36 86.39 38.32 55.70
Baseline + SLA+SD (ours) 74.61 (+6.04%) 89.55 (+3.66%) 43.42 (+13.3%) 60.79 (+9.14%)

CB-RW (Cui et al., 2019) 72.37 86.54 33.99 57.12
CB-RW + SLA+SD (ours) 77.02 (+6.43%) 89.50 (+3.42%) 37.50 (+10.3%) 61.00 (+6.79%)

LDAM-DRW (Cao et al., 2019) 77.03 88.16 42.04 58.71
LDAM-DRW + SLA+SD (ours) 80.24 (+4.17%) 89.58 (+1.61%) 45.53 (+8.30%) 59.89 (+1.67%)

of imbalanced training datasets, where the number of in-
stances per class largely differs and some classes have only
a few training instances. For this experiment, we combine
our SLA+SD method with two recent approaches, the Class-
Balanced (CB) loss (Cui et al., 2019) and LDAM (Cao et al.,
2019), specialized for this problem. Under imbalanced
datasets of CIFAR10/100, which have long-tailed label dis-
tributions, our approach consistently improves the classifi-
cation accuracy as reported in Table 7 (e.g., up to 13.3%
relative gain on an imbalanced CIFAR100 dataset). The re-
sults show the wide applicability of our self-supervised label
augmentation. Here, we emphasize that all tested methods
(including our SLA+SD) have the same inference time.

4. Related Work
Self-supervised learning. For representation learning in
unlabeled datasets, self-supervised learning approaches con-
struct artificial labels (referred to as self-supervision) using
only input signals, and then learn to predict them. The self-
supervision can be constructed in various ways. A simple
one of them is transformation-based approaches (Doersch
et al., 2015; Noroozi & Favaro, 2016; Larsson et al., 2017;
Gidaris et al., 2018; Zhang et al., 2019a). They first mod-
ify inputs by a transformation, e.g., rotation (Gidaris et al.,
2018) and patch permutation (Noroozi & Favaro, 2016), and
then assign the transformation as the input’s label.

Another approach is clustering-based (Bojanowski & Joulin,
2017; Caron et al., 2018; Wu et al., 2018; YM. et al., 2020).
They first perform clustering using the current model, and
then assign labels using the cluster indices. When perform-
ing this procedure iteratively, the quality of representations
is gradually improved. Instead of clustering, Wu et al. (2018)
assign different labels for each sample, i.e., consider each
sample as a cluster.

While the recent clustering-based approaches outperform
transformation-based ones for unsupervised learning, the
latter is widely used for other purposes due to its simplicity,

e.g., semi-supervised learning (Zhai et al., 2019; Berthelot
et al., 2020), improving robustness (Hendrycks et al., 2019),
and training generative adversarial networks (Chen et al.,
2019). In this paper, we also utilize transformation-based
self-supervision, but aim to improve accuracy under full-
supervised datasets.

Self-distillation. Hinton et al. (2015) propose a knowl-
edge distillation technique, which improves a network via
transferring (or distilling) knowledge of a pre-trained larger
network. There are many advanced distillation techniques
(Zagoruyko & Komodakis, 2016a; Park et al., 2019; Ahn
et al., 2019; Tian et al., 2020), but they should train the
larger network first, which leads to high training costs.
To overcome this shortcoming, self-distillation approaches,
which transfer own knowledge into itself, have been devel-
oped. (Lan et al., 2018; Zhang et al., 2019b; Xu & Liu,
2019). They utilize partially-independent architectures (Lan
et al., 2018), data distortion (Xu & Liu, 2019), or hidden
layers (Zhang et al., 2019b) for distillation. While these
approaches perform distillation on the same label space,
our framework transfers knowledge between different la-
bel spaces augmented by self-supervised transformations.
Thus our approach could enjoy an orthogonal usage with
the existing ones; for example, one can distill aggregated
knowledge Paggregated (4) into hidden layers as Zhang et al.
(2019b) did.

5. Conclusion
We proposed a simple yet effective approach utilizing self-
supervision on fully-labeled datasets via learning a single
unified task with respect to the joint distribution of the origi-
nal and self-supervised labels. We think that our work could
bring in many interesting directions for future research;
for instance, one can revisit prior works on applications of
self-supervision, e.g., semi-supervised learning with self-
supervision (Zhai et al., 2019; Berthelot et al., 2020). Apply-
ing our joint learning framework to fully-supervised tasks
other than the few-shot or imbalanced classification task, or
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learning to select tasks that are helpful toward improving the
main task prediction accuracy, are other interesting future
research directions.
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