
Causal Effect Identifiability under Partial-Observability

Sanghack Lee 1 Elias Bareinboim 1

Abstract
Causal effect identifiability is concerned with es-
tablishing the effect of intervening on a set of
variables on another set of variables from observa-
tional or interventional distributions under causal
assumptions that are usually encoded in the form
of a causal graph. Most of the results of this liter-
ature implicitly assume that every variable mod-
eled in the graph is measured in the available
distributions. In practice, however, the data col-
lections of the different studies considered do not
measure the same variables, consistently. In this
paper, we study the causal effect identifiability
problem when the available distributions encom-
pass different sets of variables, which we refer to
as identification under partial-observability. We
study a number of properties of the factors that
comprise a causal effect under various levels of
abstraction, and then characterize the relationship
between them with respect to their status relative
to the identification of a targeted intervention. We
establish a sufficient graphical criterion for deter-
mining whether the effects are identifiable from
partially-observed distributions. Finally, building
on these graphical properties, we develop an algo-
rithm that returns a formula for a causal effect in
terms of the available distributions.

1. Introduction
One of the central goals in data sciences (the health and the
social sciences), artificial intelligence, and machine learning
is to discover cause and effect relationships. If the scientific
study is performed appropriately, and causal relations are
eventually discovered, the corresponding effects are more
likely to hold under a broader set of conditions. Causal rela-
tions are usually more stable and generalizable across dis-
parate conditions (Pearl, 2000; Pearl & Mackenzie, 2018).
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Causal inference provides a collection of principles and
tools to help understand the conditions under which these ex-
trapolations can take place (Pearl, 2000; Spirtes et al., 2001;
Bareinboim & Pearl, 2016). For instance, a scientist may
be able to use an observational study to infer the effect of
a new intervention by leveraging knowledge encoded in its
causal model (Pearl, 1995; Tian & Pearl, 2002; Tian, 2002;
Shpitser & Pearl, 2006; Huang & Valtorta, 2006b). Causal
effects can also be inferred across a broad range of condi-
tions, including across disparate populations (Bareinboim &
Pearl, 2014; Lee et al., 2020), under selection bias (Barein-
boim & Pearl, 2012b; Correa & Bareinboim, 2017), missing
data (Mohan & Pearl, 2014), and in the absence of the causal
graph (Jaber et al., 2019), to cite a few. Further, recent ad-
vances in causal inference lead to algorithmic solutions to
combine data collected under multiple, disparate regimes
(observational and interventional) to identify a causal effect
(Lee et al., 2019). Despite all the generality and power pro-
vided by these results, by and large, they implicitly assume
that every modeled variable is consistently available across
the different data collections. Since each study is usually
designed to fulfill its own objectives, datasets across studies
tend to measure different sets of variables (i.e., the datasets
have different columns). As a consequence, relevant data
available to answer a question about a specific effect may
be not usable in another, possibly very related study.

For concreteness, consider the setting where a researcher
aims to understand the effect of physical exercise (X) on
stroke (Y ), written as Px(y), and is then analyzing two re-
lated datasets. The first is based on an experimental study
estimating the effect of physical exercise itself (X) on
blood pressure (C), collected from different age groups
(A); commonly written as PX(A,C). The second dataset
is based on an observational study about the association
among body mass index (BMI, or B), blood pressure (C),
and stroke (Y ), i.e., P (B,C,Y ). The causal graphs rep-
resenting these two studies are shown in Fig. 1a and 1b,
respectively. After conducting standard causal analysis, the
researcher realizes that Px(y), the effect of interest, can-
not be inferred from the two datasets, separately. She then
creates a common representation of their union, which is
summarized in the causal graph shown in Fig. 1c. Unfortu-
nately, the identification algorithms available today assume
full-observability, which means that graphs and datasets
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Figure 1. (a, b) Causal graphs representing experimental
(PX(A,C)) and observational studies (P (B,C,Y )), respectively.
(c) The causal graph representing the union of both studies.

defined over different sets of variables cannot be taken as
input. On the other hand, the effect Px(Y ) is inferable by
the careful combination of these studies through the expres-
sion

∑
a,c Px(a, c)

∑
b P (Y |b, c)P (b). The first factor can

be computed from the experimental study, while the other
two can be obtained from the observational study.

Our goal in this paper is to understand under what con-
ditions inferences such as this one are allowed from first
principles. More broadly, and motivated by the lack of a sys-
tematic treatment to combining partially-observed datasets,
we formally introduce and study the problem of causal effect
identifiability under partial-observability. More specifically,
the main contributions of this work are as follows: (i) We
develop novel machinery to account for partial-observability
constraints, including constructs for co-identification, em-
bedding of critical identification factors, and formal un-
derstanding of minimum viable embeddings. Putting these
results together, we derive a novel graphical condition for
identification under partial-observability; (ii) We then de-
velop the first general algorithm that avoids redundant com-
putations and runs in polynomial time for the known sub-
classes of identifiability problems under full-observability.
Furthermore, we provide a detailed discussion on the neces-
sity of our algorithm and the NP-completeness status of this
particular identifiability problem. Finally, we discuss the
extension of this work to the transportability setting (Barein-
boim & Pearl, 2014) in which the corresponding datasets
may come from multiple, heterogeneous domains.

One metaphor that will be informative and facilitate the
understanding of this paper is to compare the task of identifi-
cation under partial-observability to a jigsaw puzzle (Fig. 2).
The targeted causal query and underlying causal graph de-
fine the puzzle and its layout (Sec. 4.1), while each of the
available observational and experimental distributions pro-
vides pieces and chunks (pieces tied together) for the puzzle
(Sec. 4.1.1 and 4.1.2). Then, the given pieces and chunks are
combined, without overlapping each other, to complete the
puzzle, eventually forming the targeted effect (Sec. 4.2). For
simplicity, we start in Sec. 3 the discussion with a relatively
simple class of puzzles, and then build over it, refining its
understanding (just after the preliminaries).
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Figure 2. A high-level abstraction of our problem as a jigsaw puz-
zle. A causal query Px(y) is a puzzle with how its pieces (factors)
should be laid out. Each of the available distributions (represented
as different colors) provides chunks of information, where a chunk
is either a piece or the combination of multiple pieces. The solution
for the puzzle is then putting the subset of chunks together.

2. Preliminaries
Following conventions in the field, a variable is denoted by
an uppercase letter, e.g., Z, and its value is denoted by the
corresponding lowercase letter, z ∈ XZ , where XZ is the
state space of Z. Bold letters are for a set of variables or
values, e.g., z ∈ XZ = ×Z∈ZXZ . For simplicity, we may
omit curly braces, e.g., f({x}) versus f(x), for a singleton
set when it is used as an argument.

This paper builds on the language of Structural Causal Mod-
els (SCM) (Pearl, 2000). Each SCMM is a quadruple, U,
V, F, and P (U). The set of unobserved variables U follows
the joint probability distribution P (U). The set of observed
variables V are specified through the set of structural func-
tions F = {fV }V ∈V, where each function is of the form
fV (paV ,uV ) such that paV and uV are the values for
PAV ⊆ V\{V } and UV ⊆ U, respectively. The SCMM
induces a causal graph G over V where there are directed
edges W → V if W ∈ PAV and bidirected ones W ↔ V
if there exists an unobserved confounder (UC, for short)
U ∈ UW ∩UV . Further,M induces a set of observational
and interventional distributions. One can intervene on X,
setting them to x, which yields a submodelMx, where the
function for X ∈ X inM is replaced by constants x ∈ x.
The distribution generated byMx is denoted by Px(V) (or
P (V | do(x))). For simplicity, PZ(W) denotes a collection
of probabilities {Pz(w)}z∈XZ,w∈XW

, which we may call
PZ(W) just a distribution. For a more detailed discussion
on SCMs, please refer to (Pearl, 2000, Ch. 7).

We denote by VH the vertices of a graphH. We often use V
as the vertices of G where no ambiguity arises. We denote by
pa(W)G the union of parents of W ∈W in G. Similarly,
ch, an, and de are children, ancestors, and descendants.
Additionally, Ch, An, De include their arguments as well,
e.g., Ch(W)G = ch(W)G ∪W. A subgraph of G over
V′ ⊆ V is denoted by G[V′]. Further, GX and GZ denote G
with edges incoming to X and going out from Z removed,
respectively.

The latent projection (or projection, for short) of a causal
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graph is defined in a way to retain the causal relationships
among a subset of variables. This concept is crucial in un-
derstanding partial-observability. We define projection as
below, adopted from (Tian & Pearl, 2003).

Definition 1 (Projection). The projection of a causal graph
G over V on V′ ⊆ V, denoted by G〈V′〉, is a causal graph
over V′ such that for every pair of vertices X and Y :

1. There exists a directed edge X → Y in G〈V′〉 if there
exists a directed path from X to Y in G such that every
vertex other than X and Y on the path is not in V′.

2. There exists a bidirected edge X ↔ Y to G〈V′〉 if
there exists a divergent path1 between X and Y in G
such that every vertex other than X and Y on the path
is not in V′.

We denote by G〈-W〉 a causal graph with W projected
out, i.e., G〈-W〉 = G〈V \W〉. Conditional independence
statements and the rules of do-calculus (Pearl, 1995) on
a projection are valid in G, vice versa. We often simplify
notation involving projections by letting G′ = G〈V′〉. Sim-
ilarly, G′′ and Gj is defined for V′′ and Vj , respectively.
An illustration for how projection induces new edges and
some remarks are provided in App. A in (Lee & Bareinboim,
2020).

Graphical Constructs for Identifiability Throughout
the paper, we fix the use of a few symbols. A query Px(y) is
defined on a causal graph G of an unknown SCMM where
its vertices (or variables) are V where X and Y are possibly
empty disjoint subsets of V. Further, we define a few new
symbols that would greatly help understanding the anatomy
of a given graph with respect to the identification of a query,
namely:

X∗ = X ∩An(Y)GX X+ = An(X∗)G \Y+

Y∗ = Y Y+ = An(Y)GX∗

V∗ = X∗ ∪Y∗ V+ = X+ ∪Y+.

The left column presents essential parts of the query and the
right column describes relevant variables in identifying the
query; Fig. 3 provides an illustration of these notions. Their
meanings and relationships will become more clear when
they appear in lemmas and theorems, especially in Sec. 4.
We will use the same color scheme to visualize graphs.

Concepts for Non-identifiability One of crucial building
blocks for characterizing our problem of interest is a graphi-
cal structure articulating the non-identifiability of a causal
effect. A graph H is said to be a c-component if a subset

1A divergent path between X and Y exists if two directed
paths (X, . . . ,W1) and (W2, . . . ,Y ) in G towards X and Y , re-
spectively, such that W1 = W2 or W1 ↔W2.
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Figure 3. An illustrative example for X+ (light red), Y+ (light
blue), X∗ (dark red), and Y∗ (dark blue). Bidirected edges are not
relevant in defining those symbols and omitted on purpose.
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Figure 4. (a, b) Hedges for Px(y) where, for both cases, {Y }
is the sole root set and the only element of F ′ with F = G.
(c) is not a hedge for Px(y) but {Y1,W}-rooted c-forests F =
G[{Y1,W ,X}] and F ′ = G[{Y1,W}] form a hedge for Px(y).

of its bidirected arcs forms a spanning tree over all vertices
in H (Tian & Pearl, 2002; Tian, 2002). The definition can
be understood as a set of vertices that are connected via
bidirected edges. We utilize the notion of the decomposition
of a set of vertices in a graph with respect to its maximal
c-components, which we call c-component decomposition.
In a special type of c-component, a graph H with root-set
(sink nodes) R is said to be an R-rooted c-forest if H is a
c-component with a minimal number of edges.

Definition 2 (Hedge). A hedge is a pair of R-rooted c-
forests 〈F ,F ′〉 such that F ′ ⊆ F .

A hedge is said to be formed for Px(y) if R ⊆ An(Y)GX ,
F ∩ X 6= ∅, and F ′ ∩ X = ∅, which implies the non-
identifiability of Px(y) from P (V) in G (Shpitser & Pearl,
2006). We prefer to separate the graphical definition of
hedge from the specific syntactic goal/task, following dis-
cussion in (Lee et al., 2019). Such hedge satisfies that
VF\F ′ ⊆ V+ intersects with X∗. Further, VF ′ ⊆ Y+

since X+ being the part of F ′ implies that X ∈ X∗ is in
F ′, which violates the definition. Examples are illustrated in
Fig. 4 where the first two causal graphs are hedges for Px(y)
but the last one isn’t. Omitted proofs and other supporting
materials are provided in (Lee & Bareinboim, 2020).

3. Identifiability with a Single
Partially-Observed Distribution

We begin with a simpler, yet crucial identifiability problem
that concerns with identifying a causal effect given a single
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partially-observed distribution. Using the jigsaw metaphor
discussed earlier, this task can be seen as a puzzle where all
the available chunks are of the same color, as defined next.

Definition 3 (Causal Effect Identifiability under a Partial-
ly-Observed Distribution). Given a causal graph G, let Z′,
V′,X,Y ⊆ V where Z′ ∩V′ = ∅ and X ∩Y = ∅. The
causal effect Px(y) is said to be identifiable from PZ′(V

′)
in G if Px(y) is (uniquely) computable from PZ′(V

′) in
any causal model which induces G and PZ′(V \ Z′) > 0.

The definition is similar to a number of identifiability prob-
lems with full-observability except for the given data being
partially-observed. The positivity assumption is imposed
on PZ′(V \ Z′) (i.e., the full joint before the projection)
instead of the given distribution PZ′(V

′). This is to ensure
that the partial-observability is correctly responsible for the
non-identifiability of a causal effect especially when the
effect is identifiable with PZ′(V \ Z′).

We show multiple necessary criteria as follows.

Proposition 1. A causal effect Px(y) is identifiable from
PZ′(V

′) in G only if

• Y ⊆ V′ (inclusion of outcomes),

• X∗ ⊆ V′ ∪ Z′ (inclusion of minimal treatments), and

• Z′ ∩Y+ = ∅ (undisturbed mechanisms).

Under full-observability, the first condition is implied by
the third condition, and the second condition holds trivially
since Z′ ∪ V′ = V and X,Y ⊆ V. The third condition
highlights that an intervention prohibits the understanding
of the underlying natural mechanisms relevant to the distri-
bution over Y (Lee et al., 2019). When these criteria hold,
the problem is reducible to the classic identifiability.

Lemma 1. Given Px(y) and PZ′(V
′) in G satisfying the

three criteria in Prop. 1, Px(y) is identifiable from PZ′(V
′)

in G if and only if Qx∗\Z′(y) is identifiable in (G \ Z′)〈V′∩
V+〉 where Q = Pz′ with z′ consistent with x+ ∩ Z′.

Roughly speaking, Lemma 1 implies that the effect is iden-
tifiable when there is no structure that embeds a hedge un-
der the projection onto the partially-observed variables. A
simple example is provided (Fig. 5) showing the identifi-
ability of Px(y) given PZ(X,Y ). The effect is not identi-
fiable with P (V) (the existence of a hedge with F = G,
F ′ = G[{W ,Y }]), PW (X,Y ,Z) (a disturbed mechanism),
nor PY (W ,X,Z) (exclusion of outcomes).

Corollary 1 (Soundness and Completeness). Px(y) is
identifiable from PZ′(V

′) in G if and only if Y ⊆ V′,
X∗ ⊆ V′∪Z′, Z′∩Y+ = ∅, and Qx∗\Z′(y) is identifiable
in (G \ Z′)〈V′ ∩ V+〉 where Q = Pz′ with z′ consistent
with x+ ∩ Z′.

X Y

WZ

(a) G

X Y

WZ

(b) G〈-W 〉

X Y

Wz

(c) (G \ {Z})〈-W 〉

Figure 5. Causal diagrams representing the identifiability of Px(y)
given PZ(X,Y ) as Px(y) = Pz(y|x) for any z.
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(c) G〈-A〉

Figure 6. A causal graph G (a) which embeds hedges under differ-
ent projections onto (b) {A,X,Y } and (c) {B,X,Y }.

4. Identifiability with Multiple Partially-
Observed Distributions

We now investigate the main task of this paper, i.e., how
to systematically use multiple distributions with different
levels of observability, as defined next.

Definition 4 (Causal Effect Identifiability under Partial-
ly-Observed Distributions (GID-PO)). Let G be a causal
graph, and X,Y ⊆ V be sets corresponding to the treat-
ment and outcomes variables, respectively. Further, let
P = {PZi

(Vi)}mi=1 be a collection of partially observable
distributions such that Zi and Vi are disjoint subsets of V
for 1 ≤ i ≤ m. The causal effect Px(y) is identifiable from
the graph G and P if it is uniquely computable from P in any
model that induces G where {PZi

(V \ Zi)}mi=1 are positive
distributions.

This definition generalizes g-identifiability (GID, Lee et al.,
2019) with partial-observability. An example of the problem
is shown in Fig. 7a, where P (B,C,Y ) and PX(A,C) are
given to identify Px(y) (the same as Fig. 1c). Its formula
can be derived as (see App. D (Lee & Bareinboim, 2020)
for the detailed derivation):

Px(y) =
∑

a,c Px′(a)Px(c|a)
∑

b P (y|b, c)P (b), (1)

where x′ can be any value in XX . Naively incorporating
Cor. 1 into GID, which looks for colored pieces but not
chunks, fails to identify the query since one of the pieces is
not identifiable with any of the given datasets (Fig. 7c).

Lemma 2. Let G be a causal graph and X,Y ⊆ V. A
query Px(y) is not identifiable if there exist two causal mod-
elsM1 andM2 compatible with G such that P 1

Zi
(Vi) =

P 2
Zi
(Vi), for every Pi ∈ P, but P 1

x(y) 6= P 2
x(y) and

P 1
Zi
(V \ Zi) = P 2

Zi
(V \ Zi) > 0.
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Consider a causal graph (Fig. 6a) where two observational
distributions P (X,Y ,A) and P (B,X,Y ) are available. A
causal query Px(y) is identifiable given P (X,Y ,A,B) but
not from each of P (X,Y ,A) and P (B,X,Y ) due to the
existence of a hedge (Cor. 1). Further, one can show that
the query is not identifiable taking both into account: Let
fX = U1, fA = U1 ⊕ U2, fB = U2 be the common
functions betweenM1 andM2, and f1

Y = X⊕A⊕B⊕UY

and f2
Y = UY . Further, let U1 and U2 be two fair coins,

and P (UY = 1) = 0.1 for both models. Then, M1 and
M2 will agree on both P (A,X,Y ) and P (B,X,Y ), while
P 1
X=0(Y = 0) = 0.5 and P 2

X=0(Y = 0) = 0.9.

4.1. Characterization of Factors under Projection

To develop an algorithm capable of combining the differ-
ent parts of the available distributions, we briefly review
approaches to the related problem of decomposing distri-
butions currently known in the literature. A joint proba-
bility distribution P (V) in G can be seen as the product
of causal effects in G. Tian & Pearl (2002) introduced the
Q-decomposition that expresses P (v) using c-factors as
follows: P (v) =

∏
i Qi =

∏
i Pv\si(si), where Si is a

c-component of V.2 We will characterize here such factor-
ization under projections. As a first step, we define the key
notion of generalized c-factors:

Definition 5 (gc-factors). Let V′ be a subset of variables
such that V∗ ⊆ V′ ⊆ V+ and let G′ = G〈V′〉. Let S =
{Si}ki=1 be the c-components of G′[Y+′] where Y+′ =
An(Y)G′

X∗
. Then, the gc-factors of Px(y) in G with respect

to V′ is defined as

FX,Y
G,V′ = {〈pa(Si)G′\Si,Si〉}ki=1.

For example, consider a causal graph G in Fig. 6a and
a query Px(y), where V∗ = {X,Y } and V+ = V.
With V′ = V, Y+′ = {A,B,Y } (i.e., variables
in blue), and S = {{A,B}, {Y }} (i.e., the two c-
components in the blue area). Hence, the gc-factors FX,Y

G,V =
{〈∅, {A,B}〉, 〈{A,B,X}, {Y }〉}. With V′ = {A,X,Y },
G′ is shown in Fig. 6b. In this case, Y+′ = {A,Y },
S = {{A,Y }}, and FX,Y

G,{A,X,Y } = {〈{X}, {A,Y }〉}.

A gc-factor (or, simply, a factor), which is represented as
a pair of sets of variables, can be used to present a set of
distributions, e.g., 〈Xi,Yi〉 ∈ FX,Y

G,V and PXi(Yi). We may
call the first and second elements as X- and Y-side of the
gc-factor, respectively. Graphically, this decomposes Y′+

2Such a factorization leads to a natural divide-and-conquer ap-
proach to the problem of causal identification, which underpins,
sometimes more or less explicitly, most of the results in this lit-
erature (e.g., (Huang & Valtorta, 2006a; Shpitser & Pearl, 2006;
Bareinboim & Pearl, 2012a; 2014; Lee et al., 2019), to cite a
few). Depending on the identification task, one can prove that the
Q-decomposition leads to a complete characterization.

.

A X B C Y

(a) G
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A X B C Y

(b) G〈-B〉

P(a) Pb(c)

Pc (y) Pa,x (b)

(c)

P(a)

Pc (y)

Pa,x (c)

(d)

Figure 7. Causal graphs (a) G and (b) G〈-B〉. Corresponding gc-
factors (c, d) represented as puzzle where identified factors are
colored with green, PX(A,C), and purple, P (B,C,Y ).4

in G′ with respect to c-components so that the Y-side of
every gc-factor is maximally confounded with respect to the
underlying projection. The X-side resides in Y′+ ∪X∗.

For brevity, we simplify the notation by F = FX,Y
G,V and a

superscript is delegated to V so that F′ = FX,Y
G,V′ . Also we

interchangeably use a factor 〈Z,W〉 with PZ(W) or with
Pz(w) for an arbitrary assignment. Probabilities associated
with the gc-factors of Px(y) in G with respect to V′ can
form an expression for Px(y).
Proposition 2 (gc-decomposition). For V∗ ⊆ V′ ⊆ V+,

Px(y) =
∑

y+′\Y
∏
{i|〈Xi,Yi〉∈F′} Pxi

(yi) (2)

The algorithm for general-identifiability (Lee et al., 2019)
makes the use of this decomposition based on F (i.e., re-
stricted to V′ = V+) and identifies each factor using one of
the available distributions. However, such strategy relying
on the decomposition based on F is insufficient for handling
partially-observed distributions. Recall Fig. 7a where Px(y)
can be factorized as

Px(y) =
∑

a,b,cP (a)Pa,x(b)Pb(c)Pc(y), (3)

following Prop. 2. Unfortunately, Pa,x(b) = P (b|a,x) is
not identifiable from each of available distributions since
no distribution includes all A,B,X (Cor. 1). On the other
hand, a gc-decomposition based on a projection onto V′ =
{A,C,X,Y } (Fig. 7b) yields

Px(y) =
∑

a,cP (a)Pa,x(c)Pc(y), (4)

which allows each factor to be identified by at least one of
the available distributions (i.e., P (a) = Px′(a), for any x′ ∈
XX , Pa,x(c) = Px(c|a), and Pc(y) =

∑
b P (y|b, c)P (b)).

This provides a basis to the following sufficient condition.
Lemma 3 (Soundness). Let G, Px(y), P be the causal
graph, the query, and the distributions forming a GID-PO in-
stance. If there exists a subset of variables V∗ ⊆ V′ ⊆ V+

such that every term Pxi
(yi) in each gc-factor 〈Xi,Yi〉 in

F′ is identifiable from P ∈ P, then Px(y) is identifiable
from P in G.
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Given Lemma 3, we are interested in finding V′, a subset
of V, which would yield a gc-decomposition where each
gc-factor is identifiable.5 We note that a natural solution
emerges since one could search over an exponential number
of subsets of V+. While this would certainly lead to a sound
procedure, it is clearly the case that this offers little to no
insight into the problem. This motivates us to study the rela-
tionships among gc-factors at different levels of projections
so as to develop an efficient solution while avoiding this
naive, and clearly intractable solution.

4.1.1. EMBEDDING FACTOR AND CO-IDENTIFICATION

In this section, we formally relate gc-factors before and after
marginalizations through two new concepts called embed-
ding factor and co-identification, which associate factors
and their identification under various levels of projections
so as for us to perceive the task of identification from a more
comprehensive view.

Comparing the decompositions in Eqs. (3) and (4) based on
G and G〈-B〉, respectively, we observe that two factors P (a)
and Pc(y), which does not have B in it, are shared while
other two factors Pa,x(b) and Pb(c) in Eq. (3) are replaced to
Pa,x(c) in Eq. (4) where we can elicit

∑
b Pa,x(b)Pb(c) =

Pa,x(c). We characterize such changes in gc-factors before
and after a projection (equivalently, a marginalization).

Proposition 3 (Factors under Marginalization). Let W ⊂
V′ and V′′ = V′ \W where W ∩V∗ = ∅. Let H be an
undirected graph where vertices are 〈X′j ,Y′j〉 ∈ F′ and an
edge exists if two factors satisfy their Y-sides intersecting
with Ch(W )G′ for some W ∈W. Then, vertices (i.e., gc-
factors) in each connected component ofH are merged to
form 〈X′′k ,Y′′k〉 ∈ F′′ such that

Y′′k =
(
∪j∈jY′j

)
\W, X′′k = (∪j∈jX′j) \Y′′k \W,

where j is the set of indices of gc-factors in F′ forming
the connected component. Other gc-factors without W are
remained intact, shared by both F′ and F′′.

For instance, marginalizing B out in Eq. (3) will
consolidate factors whose Y-sides intersecting with
Ch(B)G={B,C}, that is, Pa,x(b) and Pb(c). Further,∑

b Pa,x(b)Pb(c) will result in a new gc-factor that
has its Y-side, ({B}∪{C})\{B}={C} and X-side,
({A,X}∪{B})\{C}\{B}={A,X}. We introduce an em-
bedding relationship to describe the connection between the
factors merged through a projection and a resulting factor.

Definition 6 (Embedding Factor). A gc-factor 〈X′,Y′〉 ∈
5After submitting this work (in early February, 2020), Lee &

Shpitser (2020) independently introduced the problem of ‘mID’,
where ‘m’ stands for marginal distributions, which corresponds
to the notion of partial-observability here (Def. 4). Even though
there are subtle differences in terminology and notation, their main
result in this context (Lemma 3) can be seen as our Lemma 3.

P(a) Pax (b) Pb(c) Pc (y)

Px (b) Pax (c) Pb(y)

Px (c) Pax (y)

Px (y)

(a)

1 2 3 4

∑
a12

∑
b23

∑
c34

∑
ab123

∑
bc234

∑
abc1234

(b)

Figure 8. (a) embedding relationships among gc-factors where a
directed edge i→ j indicates that j embeds i (represented with a
transitive reduction). (b) the same embedding relationships with a
sum-product notation.

F′ is said to be embedded in a gc-factor 〈X′′,Y′′〉 ∈ F′′
for V∗ ⊆ V′′ ⊆ V′ if Y′′ contains any variable in the Y
parts of gc-factors in the connected component containing
〈X′,Y′〉 in H, which is constructed as follows. H is an
undirected graph of gc-factors in F′ where there exists an
edge between two factors, say 〈X′i,Y′i〉, 〈X′j ,Y′j〉, if both
share V′ \V′′, that is,

(X′i ∪Y′i) ∩ (X′j ∪Y′j) ∩ (V′ \V′′) 6= ∅.

Note that a gc-factor is also a (non-proper) embedding factor
of itself, and Px(y), the query itself as 〈X,Y〉 is an em-
bedding factor of every gc-factor. We illustrate embedding
relationships among every gc-factor of Px(y) in G (Fig. 7a)
in Fig. 8a. The four factors at the bottom correspond to
F and the corresponding embedding relationships are rep-
resented as directed edges. For instance, 〈{A,X}, {C}〉
(i.e., Pa,x(c)) is an embedding factor of 〈{B}, {C}〉 and
〈{A,X}, {B}〉 (Fig. 7a). Quantitatively, embedding rela-
tionships can be understood as sum-product relationships
(Fig. 7b), where projections are equivalent to marginaliza-
tions.

Although a gc-factor in F (a finest-grained factor) cannot be
identified, it can be identified as a group under the summa-
tion, i.e., its embedding factor (a coarser-grained factor) is
identified.

Definition 7 (Co-Identification). If a factor Q is identifiable
with a distribution, the factors in F embedded in Q are said
to be co-identified with the distribution with respect to Q.

With the puzzle metaphor, co-identification of a factor refers
to whether there will be a colored chunk which covers the
piece. Following the strategy described in Lemma 3, Px(y)
will only be identified when every gc-factor in F is co-
identified by one of the available distributions. However,
there can be an exponential number of embedding factors
for a gc-factor in F. Hence, we investigate the relationship
between (non-)identifiability of embedding factors.
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Y2Y1
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(b) G〈-E〉

XA

D B

Y2Y1

E

(c) G〈-{E,D}〉

P(ab) Pax (d)

Pbe(y2) Pd (ey1)

Σa

Σe

Σb Σd

(d) F

P(ab) Pax (d) Pbe(y2) Pd (ey1)

Px (bd) Pe(ay2) Pax (ey1) Pbd (y)

Pex (dy2) Px (bey1) Pd (ay) Pabx (y)

Px (y)

(e) Hasse diagram

Figure 9. (a, b, c) Illustrations of causal diagrams with c-components in Y′+ highlighted which correspond to Y-side of gc-factors, (d)
F as a puzzle and how pieces are merged by marginalization, (e) a Hasse diagram for the embedding relationships among factors (not
exhaustive) where four vertices at the bottom are F. The highlighted areas in (a, b, c) correspond to the right three vertices in (e).

4.1.2. MINIMUM VIABLE EMBEDDING FACTOR

We introduce the crucial concept of minimum viable embed-
ding factor (MVEF) that will help with the characterization
of the co-identification of gc-factors in F with respect to a
single available distribution. Its purpose is to find the finest-
grained factors that a (partially-observed) distribution might
be able to identify. In other words, as the default decom-
position offers the factors (F) of the right granularity for
fully-observed distributions, we attempt to find factors of
appropriate granularity with respect to a single partially-
observed distribution.
Definition 8 (Minimum Viable Embedding Factor (MVEF)).
An embedding factor 〈X†,Y†〉 ∈ F† of a gc-factor
〈Xi,Yi〉 ∈ F is said to be a minimum viable embed-
ding factor of 〈Xi,Yi〉 with respect to PZ′(V

′) if the
three criteria holds true: Y† ⊆ V′; X† ⊆ V′ ∪ Z′; and
Z′ ∩ An(Y†)G

X†
= ∅, and V \ V† is minimal. Further,

V \V† is said to be a MVEF-admissible set.

Given one of available distributions P, we want to check
whether it co-identifies a gc-factor in F. Among an expo-
nential number of its embedding factors, we can choose an
embedding factor, which satisfies the necessary conditions
as specified in Prop. 1. A polynomial time algorithm for
finding out an MVEF is depicted in App. D (Lee & Barein-
boim, 2020). The algorithm iteratively seeks variables to be
projected out in order to satisfy the necessary conditions.

For example, take a look at a graph Fig. 9a where there
are four factors in F (Fig. 9d). Consider co-identifying a
factor Pd(e, y1) (with its Y side highlighted in Fig. 9a)
with PB(A,X,Y) ∈ P. Since D and E do not appear
in Z′ = {B} and Z′ ∪ V′ = {B,A,X,Y}, respectively
(Prop. 1), we may project out both D and E in G at once,
and examine the resulting embedding factor of Pd(e, y1)
in G〈-{E,D}〉 (Fig. 9c), that is, Pa,b,x(y). The puzzle di-
agram illustrates how projecting out D and E, or equiva-
lently,

∑
d,e yields a chunk with three pieces except P (a, b).

Further, a Hasse diagram (Fig. 9e) represents the transitive
reduction of embedding relationships where one can exam-
ine that Pa,b,x(y) embeds the three factors in F excluding

P (a, b) and other two intermediate factors. Another exam-
ple is given in Appendix showing that obtaining an MVEF
may take multiple steps.

An MVEF, if exists, is uniquely determined. Further,
MVEFs obtained given a distribution for a subset of gc-
factors are disjoint with respect to embedded gc-factors.

Proposition 4 (Uniqueness). If an MVEF exists for a gc-
factor with respect to a distribution, then it is unique.

Proposition 5 (Disjointness). Given a distribution, let Q
and R be MVEFs of two gc-factors in F, respectively. Then
either Q = R or there is no common gc-factor embedded in
Q and R.

MVEFs are only a subset of all factors at different levels. If
they are identifiable with a distribution, then they correspond
to same-colored chunks. Should we further examine the
possibility of other chunks of the same color? If an MVEF
is found and not identified, is it still possible for factors
further embedding the MVEF to be identifiable? We show
the non-identifiability of factors embedding a non-identified
MVEF.

Lemma 4 (Hedge over Embedding Factors). Consider a
gc-factor 〈Xi,Yi〉 ∈ F and a distribution PZ′(V

′). The
gc-factor is not co-identifiable with PZ′(V

′) with respect to
any of its embedding factors if its MVEF does not exist or
there exists a hedge for Px†\Z′(y

†) in (G \ Z′)〈V′〉 given
the MVEF 〈X†,Y†〉 ∈ F†.

Hence, the failure to identify an MVEF informs us that none
of its embedding factors needs to be examined for (non-
)identifiability. Below is a complementing lemma that, with
puzzle terms, any chunks of the same color is composed of
MVEFs (i.e., the smallest chunks of the color).

Lemma 5 (Compositionality). Given a distribution
PZ′(V

′), any identifiable embedding factor of a gc-factor
in F can be represented as the summation over the product
of a subset of identified MVEFs.

For instance, given that P (a) and Pa,x(c) are identified
with PX(A,C) (Fig. 7d), it is clear to see the identifiability
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of Px(c) as
∑

a P (a)Pa,x(c) and checking it is redundant.
Thus, finding MVEFs and checking their identifiability are
sufficient to comprehend how one distribution contributes
to co-identification of a portion of factors.

4.2. Algorithm for GID-PO

Previous sections discussed what factors of different lev-
els of projections will be available from each distribution.
Hence, identified MVEFs from available distributions be-
come chunks of different colors, which needs to be put
together to complete the causal jigsaw puzzle Px(y).

We devise a two-phase algorithm called GID-PO (Alg. 1),
which first identifies MVEFs co-identifying gc-factors in
F (colorful chunks), and then combine them to produce a
formula for Px(y). The implementation of the first phase
is straightforward given the characterizations of MVEFs in
the previous section. For every gc-factor in F and a distribu-
tion in P (Line 3), the existence of MVEF is first checked
(Line 5). If it exists and identifiable, then record information
including the MVEF and the gc-factors embedded in the
MVEF (i.e., co-identified), the used distribution, and what
variables are marginalized out (Lines 7–9).

With the colorful chunks of identified MVEFs, the second
phase of the algorithm tries to complete the big picture.
Based on Prop. 2, it attempts to select MVEFs whose co-
identified gc-factors (represented as their indices in F) do
not overlap. This reduces to solving an exact cover (Line 13),
an NP-complete problem (Karp, 1972): given a family I of
subsets of a set [n] = {1, . . . ,n}, whether there exists a
subfamily I′ ⊆ I such that sets in I′ are disjoint and ∪I′ =
∪I = [n]. If a solution exists, then an expression for Px(y)
is written as the summation of product of sub-formulas
corresponding to selected MVEFs where the variables to be
marginalized follows Eq. (2) except that the part of variables
are moved inside the sub-formulas (Line 16). Finally, we
show next that this approach is indeed correct.

Theorem 1 (Soundness). GID-PO is sound.

Remarkably, GID-PO is more efficient than a naive imple-
mentation of Lemma 3, which would require to run a tra-
ditional identifiability algorithm (O(|V|4)), for exponen-
tially many gc-factors and for each dataset. On the other
hand, GID-PO requires for the identifiability algorithm to
run |F| times for each distribution to collect the identi-
fied MVEFs. Then, an exact cover runs in time exponen-
tial in the number of uniquely identified MVEFs, which
is upper bounded by |F|. More specifically, GID-PO will
run in O(`mn4 + 2`) while a naive implementation for
Lemma 3 runs in O(mn42n), where n=|V|, m=|P|, and
`=|F|. Further, if the problem instance is compatible with
g-identifiability, where no partial-observability is involved,
then the algorithm runs in a polynomial time in |V| since

Algorithm 1 GID-PO

1: Input: G a causal graph, x and y value assignments for a
query, P a collection of available distributions

2: Prepare J an empty collection.
3: for 〈PZ′(V

′), 〈Xi,Yi〉〉 ∈ P× F do
4: continue if an MVEF that embeds 〈Xi,Yi〉 is already

found by the same data PZ′(V
′).

5: 〈X†,Y†〉,W† ← MVEF(〈Xi,Yi〉,PZ′(V
′)).

6: continue if the MVEF is co-identified by some data.
7: if 〈X†,Y†〉 exists and identifiable with PZ′(V

′) then
8: i← the indices of factors in F embedded in the MVEF.
9: Add 〈〈X†,Y†〉,W†, i, 〈Z′,V′〉〉 to J.

10: end if
11: end for
12: Let I be the collection of indices in J.
13: if I′ ←exact cover with {1, . . . , |F|} and I then
14: Let J′ ⊆ J be the subcollection matching the solution I′.
15: Let W′ be the union of all MVEF-admissible sets in J′.
16: return

∑
y+′\(Y∪W′)

∏
J′ GID(Px†(y

†),G〈V′〉, {Z′}).
17: end if
18: return NULL.

every identified MVEF will be a single-piece chunk and an
exact cover algorithm will spot uncovered elements first.

5. Discussions: Completeness, Complexity,
Conditional Effects, and Transportability

We conjecture that Lemma 3 is also a necessary condition
and, hence, our algorithm is sound and complete. We can
show, under the completeness conjecture, that the decision
version of our problem is NP-complete. Further, we discuss
two possible extensions to this work.

On Completeness Our intuition for its completeness
lies in the fact that each gc-factor in F provides non-
decomposable information about the model. Formally speak-
ing, a probability Pw(z) ∈ F is not identifiable from the
combination of smaller pieces, i.e., P = {PW′(Z′) | Z′ ⊆
Z,W′ ⊆ W} \ {PW(Z)}. Following Lemma 2, we can
construct two modelsM1 andM2 where W and UCs are
independent fair coins and each Z ∈ Z takes parents (in-
cluding UCs) with exclusive-or for both models except the
fact that one Z ′ ∈ Z flips its value forM2. Further, esti-
mates for proper embedding factors and other gc-factors
will not pinpoint a gc-factor of interest. For example, does
knowing a chunk {f , g} and piece {g} allow us to infer
what {f} is? Consider an equation h =

∫
x
f(x) · g(x)dx.

Generally, knowing h and g does not allow us to infer what
f is. Having a number of such equations may help charac-
terizing f but it won’t identify f unless the domain of X
is small and finite. For such reasons, we conjecture that F
provides a fundamental, necessary, and sufficient building
blocks for constructing Px(y) given marginal interventional
distributions. A rigorous proof for the completeness is still
under investigation.
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On NP-Completeness Assume that we have proved the
completeness of the algorithm, which reflects Prop. 2. Then,
we can show that the decision problem of the puzzle is
indeed NP-complete. We present a polynomial reduction of
an exact cover problem to a GID-PO problem instance.

Consider an arbitrary exact cover problem with a universe
[n] and a collection of its subsets.6 We construct a causal
graph G with V = {Vi,j}1≤i<j≤n and its direct edges are
Vi,j → Vj,i for i < j. We add bidirected edges to connect
Vi,: = {Vi,j}j 6=i side by side. Examples of such causal
graph with n = 3 and n = 4 are shown in Figs. 10a and 10b.
We then fix a query as P (V′) where V′ = {Vj,i}j>i are
the sink nodes in G. Each gc-factor 〈pa(Vi,:),Vi,:〉 ∈ F
represents element i in the universe [n], e.g., P (V1,2,V1,3)
for 1 and P (V3,1,V3,2|do(V1,3,V2,3)) for 3. Given a sub-
set of integers w ⊆ [n], there exists a corresponding dis-
tribution PX†(Y

†) in P such that 〈X†,Y†〉 ∈ F† is an
MVEF of any of gc-factor corresponding to w ∈ w where
V† = V \ {Vi,j}{i 6=j|i,j∈w}. For instance, a subset of inte-
gers for an exact cover problem in Fig. 10a will be matched
to the following distributions:

{1} = P (V1,2,V1,3)

{2} = P (V2,1,V2,3 | do(V1,2))

{3} = P (V3,1,V3,2 | do(V1,3,V2,3))

{1, 2} = P (V1,3,V2,1,V2,3)

{1, 3} = P (V1,2,V3,1,V3,2 | do(V2,3))

{2, 3} = P (V2,1,V3,1,V3,2 | do(V1,2,V1,3))

{1, 2, 3} = P (V2,1,V3,1,V3,2)

Hence, the construction can be done in a polynomial time
of n|I|, the size of the problem. Further, Alg. 1 yields an
identification formula if and only if the reduced problem
has an exact cover solution since each set as an available
distribution can only identify itself but not others: Therefore,
under the completeness of Lemma 3, we can show that the
decision problem of general identifiability under partial-
observability is NP-complete.

Generalization to Transportability and Conditional Dis-
tributions One of the natural extensions of this work is in
the context of transportability (Pearl & Bareinboim, 2011;
Bareinboim & Pearl, 2014; Lee et al., 2020). Transportabil-
ity is concerned with the fusion of datasets collected from
heterogeneous domains, where the mechanisms for some of
the variables differ from a domain in which a causal effect
is sought. Unless the differences between a source and a
target (pieces’ shapes are incompatible) are directly on the
Y-side of a factor, a similar procedure can be applied.

Another generalization is identifying a conditional interven-

6An empty set can be simply ignored because it does not con-
tribute to answering the exact cover problem.
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Figure 10. Causal diagrams for exact cover problems with universe
(a) {1, 2, 3} and (b) {1, 2, 3, 4}.

tional distribution, e.g., Px(y|w) is delegated to identifying
Px′,w′(y,w

′′) (Tian, 2004; Lee et al., 2020). This change
only requires an additional pre- and post-process of the re-
sult from GID-PO or its extension to transportability. We
provide the generalization of our problem taking account
both directions in App. F (Lee & Bareinboim, 2020).

6. Conclusions
We introduced the general identifiability problem when the
available distributions are only partially observable, which
is named GID-PO. We investigated how a causal query
can be factorized under different levels of projections, and
then introduced new constructs called embedding factors
and co-identification. These constructs make explicit the
connection of the factors required to identify the targeted
query and the available observed distributions, which allows
a systematic view of the problem of identifiability under
different granularities. We introduced a new graphical struc-
ture called minimum viable embedding factor (MVEF) and
studied its properties, including its uniqueness, disjointed-
ness, and compositionality. Putting these results together,
we developed a new algorithm (GID-PO) that efficiently and
systematically examines the identifiability of embedding
factors and combines the identified MVEFs to compose the
expression for a given query. Since each of the factors cannot
be identified from smaller marginal interventional distribu-
tions, we conjecture that the procedure is also necessary.
Assuming its completeness, we showed that the decision
version of this new identifiability problem is NP-complete;
yet, it does run in a polynomial time in the number of ob-
served variables for the problems under full-observability
(Lee et al., 2019). Noting that, in practice, available datasets
are measured inconsistently with respect to the variables
they cover – they usually have different columns – we hope
the results in this paper can help data scientists tackle more
challenging identification instances and determine causal
effects in more intricate and realistic scenarios.
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