
Self-Attentive Associative Memory

Appendix
A. Relationship between OPA and DPA

Lemma 2. For ∀ni, nj ∈ N+,

ni∑
i=1

nj∑
j=1

qjkijvi =

nj∑
j=1

ni∑
i=1

qjkijvi (15)

where qj , kij , vi ∈ R.

Proof. We will prove by induction for all nj ∈ N+.

Base case: when nj = 1, the LHS = RHS =∑ni

i q1ki1vi. Let t ∈ N+ be given and suppose Eq. 15
is true for nj = t. Then

ni∑
i=1

t+1∑
j=1

qjkijvi =

ni∑
i=1

qt+1kit+1vi +

t∑
j=1

qjkijvi


=

ni∑
i=1

qt+1kit+1vi +

ni∑
i=1

t∑
j=1

qjkijvi

=

ni∑
i=1

qt+1kit+1vi +

t∑
j=1

ni∑
i=1

qjkijvi

=

t+1∑
j=1

ni∑
i=1

qjkijvi

Thus, Eq. 15 holds for nj = t + 1 and ∀nj ∈ N+ by the
principle of induction.

Proposition 3. Assume that S is a linear transformation:
S (x) = ax+b (a, b, x ∈ R), we can extractA° fromA⊗ by
using an element-wise linear transformation F (x) = af �
x+bf (af , bf , x ∈ Rdqk ) and a contraction P: Rdqk×dv →
Rdv such that

A° (q,K, V ) = P
(
A⊗ (q,K, V )

)
(16)

where

A° (q,K, V ) =

nkv∑
i=1

S (q · ki) vi (17)

A⊗ (q,K, V ) =

nkv∑
i=1

F (q � ki)⊗ vi (18)

Proof. We derive the LHS. Let ui denote the scalar
S (q · ki), then

ui = S (q · ki) = S

dqk∑
j=1

qjkij


=

dqk∑
j=1

aqjkij + b

where qj and kij are the j-th elements of vector q and ki,
respectively. Let l ∈ Rdv denote the vector A° (q,K, V ) =∑nkv

i=1 uivi, then the t-th element of l is

lt =

nkv∑
i=1

uivit

=

nkv∑
i=1

dqk∑
j=1

aqjkij + b

 vit

=

nkv∑
i=1

dqk∑
j=1

aqjkijvit + b

nkv∑
i=1

vit

= a

nkv∑
i=1

dqk∑
j=1

qjkijvit + b

nkv∑
i=1

vit (19)

We derive the RHS. Let di denote the vector F (q � ki),
then the j-th element of di is

dij = F (qjkij)

= afj qjkij + bfj (20)

Let e ∈ Rdqk×dv denote the matrix A⊗ (q,K, V ) =∑nkv

i=1 di ⊗ vi, then the j-th row, t-column element of e
is

ejt =

nkv∑
i=1

dijvit

=

nkv∑
i=1

(
afj qjkij + bfj

)
vit

=

nkv∑
i=1

afj qjkijvit + bfj

nkv∑
i=1

vit (21)

Let r ∈ Rdv denote the vector
∑dqk
j=1 ej , then the t-th ele-

ment of r is



Self-Attentive Associative Memory

Model Addition complexity Multiplication complexity Physical storage for relationships
DPA O ((dqknq + dv)nkv) O ((dqk + dv)nqnkv) O (nqnkv)
OPA O (nqnkvdqkdv) O (nqdqkdv) O (nqdqkdv)

Table 5. Computational complexity of DPA and OPA with nq queries and nkv key-value pairs. dqk denotes query or key size, while dv
value size.

Model Wall-clock time (second)
LSTM 0.1
NTM 1.8
RMC 0.3
STM 0.3

Table 6. Wall-clock time to process a batch of data on Priority Sort
task. The batch size is 128. All models are implemented using
Pytorch, have around 1 million parameters and run on the same
machine with Tesla V100-SXM2 GPU.

rt =

dqk∑
j=1

ejt

=

dqk∑
j=1

(
nkv∑
i=1

afj qjkijvit + bfj

nkv∑
i=1

vit

)

=

dqk∑
j=1

nkv∑
i=1

afj qjkijvit +

dqk∑
j=1

bfj

nkv∑
i=1

vit (22)

We can always choose afj = a and
∑dqk
j=1 b

f
j = b. Eq. 22

becomes,

rt = a

dqk∑
j=1

nkv∑
i=1

qjkijvit + b

nkv∑
i

vit

According to Lemma 2, lt = rt ∀dqk, nkv ∈ N+ ⇒ l =
r. Also, ∃P as a contraction: P (X) = apX with ap =
[1, ..., 1] ∈ R1×dqk .

We compare the complexity of DPA and OPA in Table 5.
In general, compared to that of DPA, OPA’s complexity is
increased by an order of magnitude, which is equivalent
to the size of the patterns. In practice, we keep that value
small (96) to make the training efficient. That said, due
to its high-order nature, our memory model still maintains
enormous memory space. In terms of speed, STM’s running
time is almost the same as RMC’s and much faster than that
of DNC or NTM. Table 6 compares the real running time of
several memory-based models on Priority Sort task.

B. Relationship between OPA and bi-linear model

Proposition 4. Given the number of key-value pairs nkv =
1, and G is a high dimensional linear transformation

G : Rdqk×dv → Rn, G (X) = W gV (X) where W g ∈
Rn×dqkdv , V is a function that flattens its input tensor, then
G (A⊗ (q,K, V )) can be interpreted as a bi-linear model
between f and v1, that is

G
(
A⊗ (q,K, V )

)
[s] =

dqk∑
j=1

dv∑
t=1

W g [s, j, t] f [j] v1 [t]

(23)
where W g [s, j, t] = W g [s] [(j − 1) dv + t],s = 1, ..., n,
j = 1, ..., dqk, t = 1, ..., dv , and f = F (q � k1).

Proof. By definition,

V (F (q � k1)⊗ v1) [(j − 1) dv + t] = (F (q � k1)⊗ v1) [j] [t]
= F (q � k1) [j] v1 [t]

We derive the LHS,

G
(
A⊗ (q,K, V )

)
[s] = (W gV (F (q � k1)⊗ v1)) [s]

=

dqkdv∑
u=1

W g [s] [u]V (F (q � k1)⊗ v1) [u]

=

dqkdv∑
(j−1)dv+t

(W g [s] [(j − 1) dv + t]

× V (F (q � k1)⊗ v1) [(j − 1) dv + t])

=

dqk∑
j=1

dv∑
t=1

W g [s, j, t]F (q � k1) [j] v1 [t]

which equals the RHS.

Prop. 4 is useful since it demonstrates the representational
capacity of OPA is at least equivalent to bi-linear pool-
ing, which is richer than low-rank bi-linear pooling using
Hadamard product, or bi-linear pooling using identity ma-
trix of the bi-linear form (dot product), or the vanilla linear
models using traditional neural networks.

Proposition 5. Given the number of queries nq = dqk, the
number of key-value pairs nkv = 1, Mr

t = SAMθ (M)
where M is an instance of the item memory in the past,
and G is a high dimensional linear transformation G :



Self-Attentive Associative Memory

Rnq×dqk×dv → Rdqk×dv , G (X) = W gVf (X) where
W g ∈ Rdqk×nqdqk , Vf is a function that flattens the first
two dimensions of its input tensor, then Eq. 13 can be inter-
preted as a Hebbian update to the item memory.

Proof. Let k1 = Mk and v1 = Mv when nkv =
1, by definition Vf (SAMθ (M)) [(s− 1) dqk + j, t] =
F (Mq [s]� k1) [j] v1 [t]. We derive,

G (SAMθ (M)) [i, t] = (W gVf (SAMθ (M))) [i, t]

=

nqdqk∑
u=1

W g [i, u]Vf (SAMθ (M)) [u, t]

=

nqdqk∑
(s−1)dqk+j=1

(W g [i, (s− 1) dqk + j]

× F (Mq [s]� k1) [j] v1 [t])

=

nq∑
s=1

dqk∑
j=1

W g [i, s, j] f [s, j] v1 [t]

(24)

where f [s, j] = F (Mq [s]� k1) [j] = F (Mq [s, j] k1 [j]).
It should be noted that with trivial rank-one W g: W g [i] =
diVf (I), di ∈ R, I is the identity matrix, Eq. 24 becomes

G (SAMθ (M)) [i, t] = d [i] v1 [t]

⇒ G (SAMθ (M)) = d⊗ v1

where d ∈ Rdqk , d [i] = di
∑nq

s=1 F (Mq [s, s] k1 [s]). Eq.
13 reads

Mi
t =Mi

t + α3d⊗ v1
which is a Hebbian update with the updated value v1. As
v1 is a stored pattern extracted from M encoded in the
relational memory, the item memory is enhanced with a
long-term stored value from the relational memory.

C. OPA and SAM as associative memory1

Proposition 6. If P is a contraction: Rdqk×dv → Rdv ,
P (X) = apX, ap ∈ R1×dqk , then A⊗ (q,K, V ) is
an associative memory that stores patterns {vi}nkv

i=1 and
P (A⊗ (q,K, V )) is a retrieval process. Perfect retrieval is
possible under the following three conditions,

(1) {ki}nkv

i=1 form a set of linearly independent vectors

(2) qi 6= 0, i = 1, ..., dqk

1In this section, we use these following properties without
explanation: a> (b⊗ c) =

(
a>b

)
c> and (b⊗ c) a =

(
c>a

)
b.

(3)F is chosen as F (x) = af � x (af , x ∈ Rdqk , afi 6= 0,
i = 1, ..., dqk)

Proof. By definition, A⊗ (q,K, V ) forms a hetero-
associative memory between xi = F (q � ki) and vi. If

{xi}nkv

i=1 are orthogonal, given some P with ap =
x>
j

‖x>
j ‖

,

then

P
(
A⊗ (q,K, V )

)
=

x>j∥∥x>j ∥∥
nkv∑
i=1

xi ⊗ vi

=

nkv∑
i=1,i6=j

(
x>j xi

)∥∥x>j ∥∥ v>i +

(
x>j xj

)∥∥x>j ∥∥ v>j

= v>j

Hence, we can perfectly retrieve some stored pattern vj
using its associated P . In practice, linearly independent
{xi}nkv

i=1 is enough for perfect retrieval since we can apply
Gram–Schmidt process to construct orthogonal {xi}nkv

i=1.
Another solution is to follow Widrow-Hoff incremental up-
date

A⊗ (q,K, V ) (0) = 0

A⊗ (q,K, V ) (i) = A⊗ (q,K, V ) (i− 1)

+
(
vi −A⊗ (q,K, V ) (i− 1)xi

)
⊗ xi

which also results in possible perfect retrieval given {xi}nkv

i=1

are linearly independent.

Now, we show that if (1) (2) (3) are satisfied, {xi}nkv

i=1 are
linearly independent using proof by contradiction. Assume
that {xi}nkv

i=1 are linearly dependent, ∃ {αi ∈ R}nkv

i=1, not all
zeros such that

−→
0 =

nkv∑
i=1

αixi =

nkv∑
i=1

αiF (q � ki)

=

nkv∑
i=1

αi
(
af � (q � ki)

)
=
(
af � q

)
�

(
nkv∑
i=1

αiki

)
(25)

As (2) (3) hold true, Eq. 25 is equivalent to

−→
0 =

nkv∑
i=1

αiki

which contradicts (1).



Self-Attentive Associative Memory

Prop. 6 is useful as it points out the potential of our OPA
formulation for accurate associative retrieval over several
key-value pairs. That is, despite that many items are ex-
tracted to form the relational representation, we have the
chance to reconstruct any items perfectly if the task requires
item memory. As later we use neural networks to generate
k and q, the model can learn to satisfy conditions (1) and
(2). Although in practice, we use element-wise tanh to
offer non-linear transformation, which is different from (3),
empirical results show that our model still excels at accurate
associative retrieval.

Proposition 7. Assume that the gates in Eq. 10 are kept
constant Ft = It = 1, the item memory construction is
simplified to

M =

N+1∑
i=1

xi ⊗ xi,

where {xi}N+1
i=1 are positive input patterns after feed-

forward neural networks and the relational memory con-
struction is simplified to

Mr = SAMθ (M) ,

and layer normalizations are excluded, then the memory
retrieval is a two-step contraction

vr = softmax
(
z>
)
Mrf (x)

Proof. Without loss of generality, after seeing N + 1 pat-
terns {xi}N+1

i=1 , SAM is given a (noisy or incomplete)
query pattern x that corresponds to some stored pattern
xp = xN+1, that is

{
x>p x ≈ 1

x>i x ≈ 0 i = 1, N

Unrolling Eq. 8 yields

SAMθ (M) [s] =

nkv∑
j=1

F (Mq [s]�Mk [j])⊗Mv [j]

=

nkv∑
j=1

F

(
Wq [s]

(
N+1∑
i=1

xi ⊗ xi

)

�Wk [j]

(
N+1∑
i=1

xi ⊗ xi

))

⊗Wv [j]

(
N+1∑
i=1

xi ⊗ xi

)

=

nkv∑
j=1

F

((
N∑
i=1

Wq [s]xi ⊗ xi

+ Wq [s]xp ⊗ xp)

�

(
N∑
i=1

Wk [j]xi ⊗ xi +Wk [j]xp ⊗ xp

))

⊗

(
N∑
i=1

Wv [j]xi ⊗ xi +Wv [j]xp ⊗ xp

)
(26)

When d > N , it is generally possible to find Wq, Wk and
Wv that satisfy the following system of equations:



Wq [s]xi = 0, i = 1, N,

Wq [s]xp = 1

Wk [j]xi = 0, i = 1, N

Wk [j]xp = 1

Wv [j]xi = 1, i = 1, N

Wv [j]xp = 1

We also assume that F is chosen as square root function,
then Eq. 26 simplifies to

SAMθ (M) [s] =

nkv∑
j=1

F (xp � xp)⊗
N+1∑
i=1

xi

= nkvxp ⊗
N+1∑
i=1

xi

= nkv

N+1∑
i=1

xp ⊗ xi

The first contraction softmax
(
z>
)
Mr can be interpreted

as an attention to {SAMθ (M) [s]}nq

s=1, which equals

nkv

N+1∑
i=1

xp ⊗ xi



Self-Attentive Associative Memory

The second contraction is similar to a normal associative
memory retrieval. When we choose f (x) = x

nkv
, the re-

trieval reads

vr =

(
nkv

N+1∑
i=1

xp ⊗ xi

)
x

nkv

=

N+1∑
i=1

(
x>i x

)
xp

≈ xp

D. Implementation of gate functions

Ft
(
Mi

t−1, xt
)
=WFxt + UF tanh

(
Mi

t−1
)
+ bF

It
(
Mi

t−1, xt
)
=WIxt + UI tanh

(
Mi

t−1
)
+ bI

Here, WF , UF , WI , WI ∈ Rd×d are parametric weights,
bF , bI ∈ R are biases and + is broadcasted if needed.

E. Learning curves on ablation study

We plot the learning curves of evaluated modes for Asso-
ciative retrieval with length 30, 50 and N th-farthest in Fig.
4. For N th-farthest, the last input in the sequence is treated
as the query for TPR. We keep the standard number of enti-
ties/roles and tune TPR2 with different hidden dimensions
(40, 128, 256) and optimizers (Nadam and Adam). All con-
figurations fail to converge for the normal N th-farthest as
shown in Fig. 4 (right). When we reduce the problem size
to 4 8-dimensional input vectors, TPR can reach perfect per-
formance, which indicates the problem here is more about
scaling to bigger relational reasoning contexts.

F. Implementation of baselines for algorithmic and
geometric/graph tasks

Following Graves et al. (2014), we use RMSprop optimizer
with a learning rate of 10−4 and a batch size of 128 for all
baselines.

• LSTM and ALSTM: Both use 512-dimensional hidden
vectors for all tasks.

• NTM3, DNC4: Both use a 256-dimensional LSTM
controller for all tasks. For algorithmic tasks, NTM
uses a 128-slot external memory, each slot is a 32-
dimensional vector. Following the standard setting,

2https://github.com/ischlag/TPR-RNN
3https://github.com/vlgiitr/ntm-pytorch
4https://github.com/deepmind/dnc

NTM uses 1 control head for Copy, RAR and 5
control heads for Priority sort. For geometric/graph
tasks, DNC is equipped with 64-dimensional 20-slot
external memory and 4-head controller. In geomet-
ric/graph problems, 20 slots are about the number of
points/nodes. We also tested with layer-normalized
DNC without temporal link matrix and got similar re-
sults.

• RMC5: We use the default setting with total 1024 di-
mensions for memory of 8 heads and 8 slots. We also
tried with different numbers of slots {1, 4, 16} and
Adam optimizer but the performance did not change.

• STM: We use the same setting across tasks nq = 8,
d = 96, nr = 96. α1,α2, and α3 are learnable.

G. Order of relationship

In this paper, we do not formally define the concept of or-
der of relationship. Rather, we describe it using concrete
examples. When a problem requires to compute the relation-
ship between items, we regard it as a first-order relational
problem. For example, sorting is first-order relational. Copy
is even zero-order relational since it can be solved without
considering item relationships. When a problem requires to
compute the relationship between relationships of items, we
regard it as a second-order relational problem and so on.

From this observation, we hypothesize that the computa-
tional complexity of a problem roughly corresponds to the
order of relationship in the problem. For example, if a
problem requires a solution whose computational complex-
ity between O (N) and O

(
N2
)

where N is the input size,
it means the solution basically computes the relationship
between any pair of input items and thus corresponds to
first-order relationship. Table 7 summarizes our hypothesis
on the order of relationship in some of our problems.

By design, our proposed STM stores a mixture of relation-
ships between items in a relational memory, which approx-
imately corresponds to a maximum of second-order rela-
tional capacity. The distillation process in STM transforms
the relational memory to the output and thus determines
the order of relationship that STM can offer. We can mea-
sure the degree that STM involves in relational mining by
analyzing the learned weight G2 of the distillation process.
Intuitively, a high-rank transformation G2 can capture more
relational information from the relational memory. Triv-
ial low-rank G corresponds to item-based retrieval without
much relational mining (Prop. 5). The numerical rank of a
matrixA is defined as r (A) = ‖A‖2F / ‖A‖

2
2, which relaxes

the exact notion of rank (Rudelson & Vershynin, 2007).

We report the numerical rank of learned G2 ∈ R6144×96

5https://github.com/L0SG/relational-rnn-pytorch



Self-Attentive Associative Memory

Figure 4. Testing accuracy (%) on associative retrieval L=30 (left), L=50 (middle) and N th-farthest (right).

Task General complexity Order
Copy/Associative retrieval O (N) 0

Sort O (N logN) 1
Convex hull O (N logN) 1

Shortest path6 O (E log V ) 1
Minimum spanning tree O (E log V ) 1

RAR/N th-Farthest O
(
N2 logN

)
2

Traveling salesman problem NP-hard many

Table 7. Order of relationship in some problems.

Task r (G2)
Associative retrieval 9.42±0.5

N th-Farthest 83.20±0.2
Copy 79.00±0.3
Sort 79.58±0.1
RAR 83.30±0.2

Convex hull 80.78±0.6
Traveling salesman problem 83.58±0.3

Shortest path 79.81±0.2
Minimum spanning tree 79.57±0.5

Table 8. Mean and std. of numerical rank of the leanred weight
G2 for several tasks. The upper bound for the rank is 96.

for different tasks in Table 8. For each task, we run the
training 5 times and take the mean and std. of r (G2). The
rank is generally higher for tasks that have higher orders
of relationship. That said, the model tends to overuse its
relational capacity. Even for the zero-order Copy task, the
rank for the distillation transformation is still very high.

H. Geometry and graph task description

In this testbed, we use RMSprop optimizer with a learning
rate of 10−4 and a batch size of 128 for all baselines. STM
uses the same setting across tasks nq = 8, d = 96, nr = 96.

6The input is sequence of triplets, which is equivalent to se-
quence of edges. Hence, the complexity is based on the number of
edges in the graph.

The random one-hot features can be extended to binary
features, which is much harder and will be investigated in
our future works.

Convex hull Given a set of N points with 2D coordinates,
the model is trained to output a list of points that forms a
convex hull sorted by coordinates. Training is done with
N ∼ [5, 20]. Testing is done with N = 5 and N = 10
(no prebuilt dataset available for N = 20). The output is a
sequence of 20-dimensional one-hot vectors representing
the features of the solution points in the convex-hull.

Traveling salesman problem Given a set of N points
with 2D coordinates, the model is trained to output a list
of points that forms a closed tour sorted by coordinates.
Training is done with N ∼ [5, 10]. Testing is done with
N = 5 and N = 10. The output is a sequence of 20-
dimensional one-hot vectors representing the features of the
solution points in the optimal tour.

Shortest path The graph is generated according to the fol-
lowing rules: (1) choose the number of nodes N ∼ [5, 20],
(2) after constructing a path that goes through every node
in the graph (to make the graph connected), determine ran-
domly the edge between nodes (number of edges E ∼
[6, 30]), (3) for each edge set the weight w ∼ [1, 10]. We
generate 100,000 and 10,000 graphs for training and testing,
respectively. The representation for an input graph is a se-
quence of triplets followed by 2 feature vectors representing
the source and destination node. The output is a sequence
of 40-dimensional one-hot feature vectors representing the
solution nodes in the shortest path.

Minimum spanning tree We use the same generated in-
put graphs from the Shortest path task. The representation
for an input graph is only a sequence of triplets. The output
is a sequence of 40-dimensional one-hot feature vectors rep-
resenting the features of the nodes in the solution edges of
the minimum spanning tree.

Some generated samples of the four tasks are visualized in



Self-Attentive Associative Memory

Fig. 5. Learning curves are given in Fig. 6.

I. Reinforcement learning task description

We trained Openai Gym’s PongNoFrameskip-v4 using
Asynchronous Advantage Actor-Critic (A3C) with hyper-
parameters: 32 workers, shared Adam optimizer with a
learning rate of 10−4, γ = 0.99. To extract scene features
for LSTM and STM, we use 4 convolutional layers (32
kernels with 5 × 5 kernel sizes and a stride of 1), each of
which is followed by a 2× 2 max-pooling layer, resulting
in 1024-dimensional feature vectors. The LSTM ’s hidden
size is 512. STM uses nq = 8, d = 96, nr = 96.

J. bAbI task description

We use the train/validation/test split introduced in bAbI’s en-
valid-10k v1.2 dataset. To make STM suitable for question
answering task, each story is preprocessed into a sentence-
level sequence, which is fed into our STM as the input
sequence. The question, which is only 1 sentence, is pre-
processed to a query vector. Then, we utilize the Inference
module, which takes the query as input to extract the output
answer from our relational memoryMr. The preprocess-
ing and the Inference module are the same as in Schlag &
Schmidhuber (2018). STM’s hyper-parameters are fixed to
nq = 20, d = 90, nr = 96. We train our model jointly for
20 tasks with a batch size of 128, using Adam optimizer
with a learning rate of 0.006, β1 = 0.9 and β2 = 0.99.
Details of all runs are listed in Table 9.

K. Characteristics of memory-based neural networks

Table 10 compares the characteristics of common neural net-
works with memory. Biological plausibility is determined
based on the design of the model. It is unlikely that human
memory employs RAM-like behaviors as in NTM, DNC,
and RMC. Fixed-size memory is inevitable for online and
life-long learning, which also reflects biological plausibil-
ity. Relational extraction and recurrent dynamics are often
required in powerful models. As shown in the table, our
proposed model exhibits all the nice features that a memory
model should have.



Self-Attentive Associative Memory

Figure 5. Samples of geometry and graph tasks. From top to bottom: Convex hull, TSP, Shortest path and Minimum spanning tree. Blue
denotes the ground-truth solution.

Figure 6. Learning curves on geometry and graph tasks.



Self-Attentive Associative Memory

Task run-1 run-2 run-3 run-4 run-5 run-6 run-7 run-8 run-9 run-10 Mean
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00
2 0.1 0.6 0.1 0.1 0.7 0.2 0.2 0.0 0.1 0.0 0.21 ± 0.23
3 3.4 3.2 1.0 1.3 2.4 3.8 3.2 0.5 0.9 1.6 2.13 ± 1.14
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00
5 0.6 0.2 0.6 0.6 0.7 0.5 0.9 0.5 0.7 0.4 0.57 ± 0.18
6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.00 ± 0.00
7 1.0 0.9 0.5 0.6 0.9 1.4 1.0 0.6 0.5 0.7 0.81 ± 0.27
8 0.2 0.1 0.1 0.2 0.0 0.0 0.1 0.2 0.1 0.2 0.12 ± 0.07
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00

10 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.03 ± 0.06
11 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 ± 0.03
12 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.04 ± 0.05
13 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 ± 0.03
14 0.1 0.0 0.1 0.0 0.1 0.3 0.0 0.1 0.5 0.4 0.16 ± 0.17
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00
16 0.3 0.2 0.2 0.3 0.1 0.3 0.6 0.5 0.3 0.1 0.29 ± 0.15
17 0.6 2.6 0.4 0.4 0.5 2.1 3.5 0.5 0.9 0.3 1.18 ± 1.07
18 1.0 0.3 0.2 0.1 0.4 0.4 0.2 0.0 0.1 0.0 0.27 ± 0.28
19 4.4 0.3 0.8 0.0 8.8 0.4 0.3 0.1 4.7 0.8 2.06 ± 2.79
20 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.00 ± 0.00

Average 0.59 0.43 0.21 0.19 0.73 0.48 0.50 0.15 0.44 0.23 0.39 ± 0.18
Failed task 0 0 0 0 1 0 0 0 0 0 0.10 ± 0.30(>5%)

Table 9. Results from 10 runs of STM on bAbI 10k. Bold denotes best run.

Model Fixed-size Relational Recurrent Biologically
memory extraction dynamics plausible

RNN, LSTM � " � �

NTM, DNC � " � "

RMC � � � "

Transformer " � " "

UT " � � "

Attentional LSTM " � � "

STM � � � �

Table 10. Characteristics of some neural memory models




