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Abstract
We propose inertial versions of block coordinate
descent methods for solving non-convex non-
smooth composite optimization problems. Our
methods possess three main advantages compared
to current state-of-the-art accelerated first-order
methods: (1) they allow using two different ex-
trapolation points to evaluate the gradients and to
add the inertial force (we will empirically show
that it is more efficient than using a single extrap-
olation point), (2) they allow to randomly pick-
ing the block of variables to update, and (3) they
do not require a restarting step. We prove the
subsequential convergence of the generated se-
quence under mild assumptions, prove the global
convergence under some additional assumptions,
and provide convergence rates. We deploy the
proposed methods to solve non-negative matrix
factorization (NMF) and show that they compete
favourably with the state-of-the-art NMF algo-
rithms. Additional experiments on non-negative
approximate canonical polyadic decomposition,
also known as non-negative tensor factorization,
are also provided.

1. Introduction
In this paper, we consider the following non-smooth non-
convex optimization problem

minimizex∈E F (x) , where F (x) := f(x)+r(x), (1)

and E = E1 × . . .× Es with Ei, i = 1, . . . , s, being finite
dimensional real linear spaces equipped with norm ‖·‖(i)
and inner product 〈·, ·〉(i), f : E → R is a continuous
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but possibly non-smooth non-convex function, and r(x) =∑s
i=1 ri(xi) with ri : Ei → R ∪ {+∞} for i = 1, . . . , s

being proper and lower semi-continuous functions.

Problem (1) covers many applications including compressed
sensing with non-convex “norms” (Attouch et al., 2010),
sparse dictionary learning (Aharon et al., 2006; Xu & Yin,
2016), non-negative matrix factorization (NMF) (Gillis,
2014), and “lp-norm” regularized sparse regression prob-
lems with 0 ≤ p < 1 (Blumensath & Davies, 2009; Natara-
jan, 1995). In this paper, we will focus on NMF which
is defined as follows: given X ∈ Rm×n

+ and the integer
r < min(m,n), solve

min
U,V

1

2
‖X − UV ‖2F such thatU ∈ Rm×r

+ , V ∈ Rr×n
+ .

(2)
NMF is a key problem in data analysis and machine learning
with applications in image processing, document classifica-
tion, hyperspecral unmixing and audio source separation,
to cite a few (Cichocki et al., 2009; Gillis, 2014; Fu et al.,
2019). NMF can be written as a problem of the form (1)
with s = 2, letting f(U, V ) = 1

2 ‖X − UV ‖
2
F , and r1

and r2 being indicator functions r1(U) = IRm×r
+

(U), and

r2(V ) = IRr×n
+

(V ). Note that UV =
∑r
i=1 U:iVi:; hence

NMF can also be written as a function of 2× r variables U:i

(the columns of U ) and Vi: (the rows of V ) for i = 1, . . . , r.

1.1. Related Works

The Gauss-Seidel iteration scheme, also known as the
block coordinate descent (BCD) method, is a standard ap-
proach to solve both convex and non-convex problems in
the form of (1). Starting with a given initial point x(0), the
method generates a sequence

{
x(k)

}
k≥0

by cyclically up-
dating one block of variables at a time while fixing the
values of the other blocks. Let us denote f (k)

i (xi) :=

f
(
x

(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x

(k−1)
s

)
the value of the

objective function for the ith block at the kth iteration of a
BCD method. Based on how the blocks are updated, BCD
methods can typically be classified into three categories:

1. Classical BCD methods update (Grippo & Sciandrone,
2000; Hildreth, 1957) using exact updates:
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x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi) + ri(xi).

2. Proximal BCD methods update (Auslender, 1992;
Grippo & Sciandrone, 2000; Razaviyayn et al., 2013)
using exact updates along with a proximal term:

x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi)+ri(xi)+

1

2β
(k)
i

‖xi−x(k−1)
i ‖2,

(3)
where β(k)

i is referred to as the stepsize.

3. Proximal gradient BCD methods update (Bolte et al.,
2014; Razaviyayn et al., 2013; Tseng & Yun, 2009)
using a linearization of f

x
(k)
i = argmin

xi∈Ei

〈∇f (k)
i (x

(k−1)
i ), xi − x(k−1)

i 〉

+ ri(xi) +
1

2β
(k)
i

‖xi − x(k−1)
i ‖2.

(4)

Incorporating inertial force is a popular and efficient method
to accelerate the convergence of first-order methods. The
inertial term was first introduced by Polyak’s heavy ball
method (Polyak, 1964), which adds to the new direction
a momentum term equal to the difference of the two pre-
vious iterates; this is also known as extrapolation. While
the gradient evaluations used in Polyak’s method are not
affected by the momentum, the famous accelerated gradient
method of Nesterov (1983; 1998; 2004; 2005) evaluates the
gradients at the points which are extrapolated. In the convex
setting, these methods are proved to achieve the optimal
convergence rate, while the computational cost of each it-
eration is essentially unchanged. In the non-convex setting,
the heavy ball method was first considered by Zavriev &
Kostyuk (1993) to solve an unconstrained smooth minimiza-
tion problem. Two inertial proximal gradient methods were
proposed by Ochs et al. (2014) and Boţ & Csetnek (2016) to
solve (1) with s = 1. The method considered by Ochs et al.
(2014), referred to as iPiano, makes use of the inertial force
but does not use the extrapolated points to evaluate the gra-
dients. iPiano was extended for s > 1 and analysed by Ochs
(2019). Pock & Sabach (2016) proposed iPALM to solve (1)
with s = 2. Xu & Yin (2013; 2017) proposed inertial ver-
sions of proximal BCD, cf. (4). Xu & Yin’s methods need
restarting steps to guarantee the decrease of the objective
function. As stated by Nesterov (2004), this relaxation prop-
erty for some problem classes is too expensive and may not
allow optimal convergence. In another line of works, it is
worth mentioning the randomized BCD methods for solving
convex problems; see Fercoq & Richtarik (2015); Nesterov
(2012). The analysis of this type of algorithms considers the
convergence of the function values in expectation. This is
out of the scope of this work.

1.2. Contribution

In this paper, we propose inertial versions for the proximal
and proximal gradient BCD methods (3) and (4), for solv-
ing the non-convex non-smooth problem (1) with multiple
blocks. For the inertial version of the proximal gradient
BCD (4), two extrapolation points can be used to evaluate
gradients and add the inertial force so that the correspond-
ing scheme is more flexible and may lead to significantly
better numerical performance compared with the inertial
methods using a single extrapolation point; this will be con-
firmed with some numerical experiments (see Section 5
and the supplementary material). The idea of using two
different extrapolation points was first used for iPALM to
solve (1) with two blocks; however, the parameters of the
implemented version of iPALM in the experiments by Pock
& Sabach (2016) are chosen outside the theoretical bounds
established in the paper. Our methods for solving (1) with
multiple blocks allow picking deterministically or randomly
the block of variables to update; it was empirically observed
that randomization may lead to better solutions and/or faster
convergence (Xu & Yin, 2017). Another key feature of our
methods is that they do not require restarting steps. We
extend our methods in the framework of Bregman diver-
gence so that they are more general hence admit potentially
more applications. To prove the convergence of the whole
sequence to a critical point of F and derive its convergence
rate, we combine a modification of the convergence proof
recipe by Bolte et al. (2014) with the technique of using aux-
iliary functions (Ochs et al., 2014). By choosing appropriate
parameters that guarantee the convergence, we apply the
methods to NMF. We also apply it to non-negative canoni-
cal polyadic decomposition (NCPD) in the supplementary
material.

2. The Proposed Methods: IBP and IBPG
Algorithm 1 describes our two proposed methods: (1) the
inertial block proximal method (IBP) which is a proximal
BCD method with one extrapolation point, and (2) the iner-
tial block proximal gradient method (IBPG) which is a prox-
imal gradient BCD method with two extrapolation points.

Algorithm 1 includes an outer loop which is indexed by k
and an inner loop which is indexed by j. At the jth itera-
tion of an inner loop, only one block is updated. Table 1
summarizes the notation used in the paper. The choice of
the parameters αk,j , βk,j and γk,j in Algorithm 1 that guar-
antee the convergence will be discussed in Section 3. We
can observe from (7) and (8) that using two extrapolation
points do not bring extra computation cost when compared
with using a single extrapolation point (which happens when
α

(k,j)
i = γ

(k,j)
i ). We make the following standard assump-

tion throughout this paper.
Assumption 1 For all k, all blocks are updated after the
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Table 1. Notation

Notation Definition

x(k,j) x at the jth iteration within the kth
outer loop

x̃(k) the main generated sequence (the out-
put)

Tk number of iterations within the kth
outer loop

f
(k,j)
i (xi) a function of the ith block while fixing

the latest updated values of the other
blocks, i.e.,

= f(x
(k,j−1)
1 , . . . , x

(k,j−1)
i−1 , xi, x

(k,j−1)
i+1 , . . . , x

(k,j−1)
s )

F
(k,j)
i (xi) F

(k,j)
i (xi) = f

(k,j)
i (xi) + ri(xi)

x̄
(k,m)
i the value of block i after it has been

updated m times during the kth outer
loop

dki the total number of times the ith block
is updated during the kth outer loop

ᾱ
(k,m)
i the values of α(k,j)

i ,
β̄
(k,m)
i the values of β(k,j)

i ,
γ̄
(k,m)
i and the values of γ(k,j)

i that are used in
(5), (6), (7), (8), (11) and (12) to update
block i from x̄

(k,m−1)
i to x̄(k,m)

i

{x̄(k,m)
i }k≥1 the sequence that contains the

updates of the ith block, i.e.,

{. . . , x̄(k,1)i , . . . , x̄
(k,dki )
i , . . .}

Tk iterations performed within the kth outer loop, and there
exists a positive constant T̄ such that s ≤ Tk ≤ T̄ .

Illustration with NMF Let us illustrate the proposed
methods for NMF; see the supplementary material for the
application to NCPD. We will use IBPG for NMF with 2
blocks of variables, namely U and V , and IBP with 2 × r
blocks of variables, namely U:,i and Vi,: (1 ≤ i ≤ r).
We choose the Frobenius norm for the proximal terms
in (6) and (8). We have ∇Uf = UV V T − XV T and
∇V f = UTUV − UTX, hence the inertial proximal gra-
dient step (8) of IBPG is a projected gradient step. If we
choose Tk = 2 for all k then each inner loop of IBPG up-
dates U and V once. Our algorithm also allows to choose
Tk > 2, hence updating U or V several times before updat-
ing the other one. As explained by Gillis & Glineur (2012),
repeating the update of U and V accelerates the algorithm
compared to the pure cyclic update rule, because the terms
V V T and XV T (resp. UTU and UTX) in the gradient of
U (resp. V ) do not need to be recomputed hence the sec-
ond evaluation of the gradient is much cheaper; namely,
O(mr2) (resp. O(nr2)) vs. O(mnr) operations; while
r � min(m,n) for most applications. Regarding IBP,
the inertial proximal step (6) has a closed form:

Algorithm 1 IBP and IBPG

Initialize: Choose x̃(0) = x̃(−1). Choose a method: IBP
or IBPG. Parameters are chosen as in Section 3.
for k = 1, . . . do
x(k,0) = x̃(k−1).
for j = 1, . . . , Tk do

Choose i ∈ {1, . . . , s} deterministically or ran-
domly such that Assumption 1 is satisfied. Let yi be
the value of the ith block before it was updated to
x

(k,j−1)
i .

For IBP: extrapolate

x̂i = x
(k,j−1)
i + α

(k,j)
i

(
x

(k,j−1)
i − yi

)
, (5)

and compute

x
(k,j)
i = argmin

xi

F
(k,j)
i (xi) +

1

2β
(k,j)
i

‖xi − x̂i‖2 .

(6)
For IBPG: extrapolate

x̂i = x
(k,j−1)
i + α

(k,j)
i

(
x

(k,j−1)
i − yi

)
,

x̀i = x
(k,j−1)
i + γ

(k,j)
i

(
x

(k,j−1)
i − yi

)
,

(7)

and compute

x
(k,j)
i = argmin

xi

〈∇f (k,j)
i (x̀i), xi − x(k,j−1)

i 〉

+ ri(xi) +
1

2β
(k,j)
i

‖xi − x̂i‖2.
(8)

Let x(k,j)
i′ = x

(k,j−1)
i′ for i′ 6= i.

end for
Update x̃(k) = x(k,Tk).

end for

argmin
U:i≥0

∑ 1

2

∥∥X − i−1∑
q=1

U:qVq: −
r∑

q=i+1

U:qVq: − U:iVi:
∥∥2

+
1

2βi

∥∥U:i − Û:i

∥∥2

= max
(

0,
XV Ti: − (UV )V Ti: + U:iVi:V

T
i: + 1/βiÛ:i

Vi:V Ti: + 1/βi

)
,

and a similar update for the rows of V can be derived by
symmetry since ‖X −UV ‖2F = ‖XT −V TUT ‖2F . For the
same reason as above, IBP should update the columns of
U and the rows of V several times before doing so for the
other one.
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2.1. Extension to Bregman Divergence

The inertial proximal steps (6) and (8) can be generalized by
replacing ‖.‖ by a Bregman divergence. Let Hi : Ei → R
be a strictly convex function that is continuously differen-
tiable. The Bregman distance associated with Hi is defined
as:

Di(u, v) = Hi(u)−Hi(v)−〈∇Hi(v), u− v〉 ,∀u, v ∈ Ei.

The squared Euclidean distance Di(u, v) = 1
2‖u − v‖22

corresponds to Hi(u) = 1
2‖u‖

2
2.

Definition 1 For a given v ∈ Ei, and a positive number β,
the Bregman proximal map of a function φ is defined by

proxHi

β,φ(v) := argmin
u∈Ei

{
φ(u) +

1

β
Di(u, v)

}
. (9)

Definition 2 For given u1 ∈ int dom g, u2 ∈ Ei and β >
0, the Bregman proximal gradient map of a pair of functions
(φ, g) (g is continuously differentiable) is defined by

GproxHi

β,φ,g(u1, u2)

:= argmin
u∈Ei

{
φ(u) + 〈∇g(u1), u〉+

1

β
Di(u, u2)

} (10)

For notation succinctness, whenever the generating func-
tion is clear from the context, we omit Hi in the notation
of the corresponding Bregman proximal maps. As φ can
be non-convex, proxβ,φ(v) and Gproxβ,φ,g(u1, u2) are set-
valued maps in general. Various types of assumptions can
be made to guarantee their well-definedness; see Eckstein
(1993), Teboulle (1997; 2018) for the well-posedness of
(9), and (Bolte et al., 2018, Lemma 3.1), (Bauschke et al.,
2017, Lemma 2) for the well-posedness of (10). Note that
the proximal gradient maps in (Bauschke et al., 2017; Bolte
et al., 2018) use the same point for evaluating the gradient
and the Bregman distance while ours allow using two dif-
ferent points u1 and u2. This modification is important for
our analysis; however, it does not affect the proofs of the
lemmas in those papers.

Algorithm 2 describes IBP and IBPG in the framework of
Bregman divergence.

Throughout this paper, we assume the following.
Assumption 2 (A1) The function Hi, i = 1, . . . , s, is σi-
strongly convex, continuously differentiable and ∇Hi is
LHi

-Lipschitz continuous.

(A2) The proximal maps (9) and (10) are well-defined.

Note that (A1) holds if Hi satisfies LHiI � ∇2Hi � σiI.
A quadratic entropy distance is a typical example of a Breg-
man divergence that satisfies (A1) (Reem et al., 2019). More
discussion about important properties and how to evaluate
(9) and (10) are given in the supplementary material.

Algorithm 2 IBP and IBPG with Bregman divergence

Initialize: Choose x̃(0) = x̃(−1). Choose a method: IBP
or IBPG. Parameters are chosen as in Section 3.
for k = 1, . . . do
x(k,0) = x̃(k−1).
for j = 1, . . . , Tk do

Choose i ∈ {1, . . . , s} deterministically or ran-
domly such that Assumption 1 is satisfied.
Update of IBP: extrapolate as in (5) and compute

x
(k,j)
i ∈ proxHi

β
(k,j)
i ,F

(k,j)
i

(x̂i) . (11)

Update of IBPG: extrapolate as in (7) and compute

x
(k,j)
i ∈ GproxHi

β
(k,j)
i ,ri,fi

(x̀i, x̂i) . (12)

Let x(k,j)
i′ = x

(k,j−1)
i′ for i′ 6= i.

end for
Update x̃(k) = x(k,Tk).

end for

3. Subsequential Convergence
Before providing the subsequential convergence guarantees,
let us elaborate on the notation, in particular x̄(k,m)

i and
dki which will be used much in the upcoming analysis, see
Table 1 for a summary of the notation. The elements of the
sequence x(k,j)

i remain unchanged during many iterations
since only one block is updated within each inner loop of Al-
gorithm 2, that is, we will have x(k,j+1)

i = x
(k,j)
i for many

j’s. To simplify the analysis, we introduce the subsequence
x̄

(k,m)
i of x(k,j)

i that will only record the value of the ith
block when it is actually updated. More precisely, there ex-
ists a subsequence {i1, i2, . . . , idki } of {1, 2, . . . , Tk} such

that x̄(k,m)
i = x

(k,im)
i for all m = 1, 2, . . . , dki . The

previous value of block i before it is updated to x̄
(k,m)
i

is x̄(k,m−1)
i . We have x̄(k,0)

i = x̄
(k−1,dk−1

i )
i = x̃

(k−1)
i

and x̄
(k,dki )
i = x̃

(k)
i . As for x(k,j)

i , we use the notation

x̄
(k,−1)
i = x̄

(k−1,dk−1
i −1)

i .

3.1. Choosing Parameters

We first explain how to choose the parameters for IBP and
IBPG within Algorithm 2 (note that Algorithm 1 is a special
case of Algorithm 2) such that their subsequential conver-
gence is guaranteed. Let us point out that ᾱ(k,m)

i , β̄(k,m)
i ,

and γ̄(k,m)
i are the values of α(k,j)

i , β(k,j)
i and γ(k,j)

i that
are used to update block i from x̄

(k,m−1)
i to x̄(k,m)

i .
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Parameters for IBP Let 0 < ν < 1, δ > 1. For m =

1, . . . , dki and i = 1, . . . , s, denote θ(k,m)
i =

(
LHi

ᾱ
(k,m)
i

)2

2νσiβ̄
(k,m)
i

.

Let θ(k,dki +1)
i = θ

(k+1,1)
i . We choose ᾱ(k,m)

i and β̄(k,m)
i

such that, for m = 1, . . . , dki ,

(1− ν)σi

2β̄
(k,m)
i

≥ δθ(k,m+1)
i . (13)

Parameters for IBPG Considering IBPG, we need to
assume that ∇f (k,j)

i is L(k,j)
i -Lipschitz continuous, with

L
(k,j)
i > 0. For notational clarity, we correspondingly use

L̄
(k,m)
i for L(k,j)

i when updating block i from x̄
(k,m−1)
i

to x̄(k,m)
i . To simplify the upcoming analysis, we choose

β̄
(k,m)
i = σi

κL̄
(k,m)
i

with κ > 1. Let 0 < ν < 1, δ > 1.

Denote

λ
(k,m)
i =

1

2

(
γ̄

(k,m)
i +

κLHi
ᾱ

(k,m)
i

σi

)2 L̄
(k,m)
i

ν(κ− 1)
,

for m = 1, . . . , dki and i = 1, . . . , s. Let λ(k,dki +1)
i =

λ
(k+1,1)
i . We choose ᾱ(k,m)

i , β̄(k,m)
i and γ̄(k,m)

i such that,
for m = 1, . . . , dki ,

(1− ν)(κ− 1)L̄
(k,m)
i

2
≥ δλ(k,m+1)

i . (14)

We make the following standard assumption for the bound-
edness of the parameters; see (Xu & Yin, 2013, Assumption
2), (Bolte et al., 2014, Assumption 2).

Assumption 3 For IBP, there exist positive numbers W1, α
and β such that θ(k,m)

i ≥W1, ᾱ(k,m)
i ≤ α and β ≤ β̄(k,m)

i ,
∀ k ∈ N, m = 1, . . . , dki , i = 1, . . . , s.

For IBPG, there exist positive numbers W1, L > 0, α and
γ such that λ(k,m)

i ≥ W1, L̄(k,m)
i ≤ L, ᾱ(k,m)

i ≤ α and
γ̄

(k,m)
i ≤ γ for all k ∈ N, m = 1, . . . , dki and i = 1, . . . , s.

The algorithm iPALM of Pock & Sabach (2016) is a special
case of IBPG when D is the Euclidean distance, s = 2 and
the two blocks are cyclically updated; however, our chosen
parameters are different. In particular, the stepsize β̄(k,m)

i of
iPALM depends on the inertial parameters (Pock & Sabach,
2016, Formula 4.9), while we choose β̄(k,m)

i independently
of ᾱ(k,m)

i and γ̄(k,m)
i . Our parameters allow using dynamic

inertial parameters (see Section 3.3). As also experimentally
tested by (Pock & Sabach, 2016), choosing the inertial pa-
rameters dynamically leads to a significant improvement of
the algorithm performance. The analysis by Pock & Sabach
(2016) does not support this choice of parameters, while
ours guarantee subsequential convergence.

3.2. Subsequential Convergence Theory

The following proposition serves as a cornerstone to prove
the subsequential convergence.
Proposition 1 Let {x̃(k)} be a sequence generated by Algo-

rithm 2, and consider
{
x̃

(k)
prev

}
with

(
x̃

(k)
prev

)
i

= x̄
(k,dki−1)
i .

Suppose Assumption 1, 2 and 3 are satisfied.

(i) We have
∑∞
k=1

∥∥x̃(k) − x̃
(k)
prev

∥∥2
< ∞ and∑∞

k=1

∑s
i=1

∑dki
m=1

∥∥x̄(k,m)
i − x̄(k,m−1)

i

∥∥2
<∞.

(ii) If there exists a limit point x∗ of
{
x̃(k)

}
(that is, there

exists a subsequence
{
x̃(kn)

}
converging to x∗), then we

have limn→∞ ri

(
x̄

(kn,m)
i

)
= ri (x∗i ) .

Remark 1 (Relax (13) for block-convex F ) For IBP, if F
is block-wise convex then we can choose ᾱ(k,m)

i and β̄(k,m)
i

satisfying

2(1− ν)σi

β̄
(k,m)
i

≥ δθ(k,m+1)
i , for m = 1, . . . , dki , (15)

and Proposition 1 still holds. Compared to (13), Condition
(15) allows larger values of the extrapolation parameters
ᾱ

(k,m)
i when using the same stepsize β̄(k,m)

i .

Remark 2 (Relax (14) for convex ri’s) If the functions
ri’s are convex (note that f is not necessary block-wise
convex) then we can use a larger stepsize. Specifically, we
can use β̄(k,m)

i = σi/L̄
(k,m)
i and

λ
(k,m)
i =

1

2

(
γ̄

(k,m)
i +

LHi ᾱ
(k,m)
i

σi

)2 L̄
(k,m)
i

ν
,

and choose ᾱ(k,m)
i and γ̄(k,m)

i satisfying

(1− ν)L̄
(k,m)
i

2
≥ δλ(k,m+1)

i , for m = 1, . . . , dki , (16)

and Proposition 1 still holds.

Remark 3 (Relax (14) for block-convex f and convex ri’s)
If the ri’s are convex and f(x) is block-wise convex, then
we can use larger extrapolation parameters. Specifically,
we choose Hi(xi) = 1

2 ‖xi‖
2 and let β̄(k,m)

i = 1/L̄
(k,m)
i

and

λ
(k,m)
i =

(γ̄(k,m)
i

)2

+

(
γ̄

(k,m)
i − ᾱ(k,m)

i

)2

ν

 L̄
(k,m)
i

2
,

where 0 < ν < 1, and choose ᾱ(k,m)
i and γ̄(k,m)

i satisfying

1− ν
2

L̄
(k,m)
i ≥ δλ(k,m+1)

i , for m = 1, . . . , dki .

For these values, Proposition 1 still holds. In Section 5
we numerically show that choosing γ̄(k,m)

i 6= ᾱ
(k,m)
i can

significantly improve the performance of the algorithm.
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We now state the local convergence result. The definitions
of critical points can be found in the supplementary material.

Theorem 1 Suppose Assumption 1, 2 and 3 are satisfied.

(i) For IBP, if F is regular then every limit point of the
sequence

{
x̃(k)

}
generated by Algorithm 2 is a critical

point type I of F . If f is continuously differentiable then
every limit point is a critical point type II of F .

(ii) For IBPG, every limit point of the sequence
{
x̃(k)

}
generated by Algorithm 2 is a critical point type II of F .

3.3. Choice of Parameters for NMF

Let us illustrate the choice of parameters for NMF. In the
remainder of this paper, in the context of NMF, we will refer
to IBPG as Algoritm 1 with the choice Tk = 2 (cyclic up-
date of U and V ), and to IBPG-A with the choice Tk > 2 (U
and V are updated several times). IBPG-A is expected to be
more efficient; see the discussion in Section 2. For IBPG and
IBPG-A, we take L̄(k,m)

1 = L̃
(k)
1 =

∥∥(Ṽ (k−1))T Ṽ (k−1)
∥∥

and L̄(k,m)
2 = L̃

(k)
2 =

∥∥(Ũ (k))T Ũ (k)
∥∥ for m ≥ 1. We

take β̄(k,m)
i = 1/L̃

(k)
i , γ̄(k,m)

i = min
{
τk−1
τk

, γ̃

√
L̃

(k−1)
i

L̃
(k)
i

}
and ᾱ

(k,m)
i = ᾰγ̄

(k,m)
i , where τ0 = 1, τk = 1

2 (1 +√
1 + 4τ2

k−1), γ̃ = 0.99 and ᾰ = 1.01. We can verify

that there exists δ > 1 such that γ̆2
(
(ᾰ− 1)2/ν + 1

)
<

(1−ν)/δ with ν = 0.0099. Hence, our choice of parameters
satisfy the conditions of Remark 3.

Regarding IBP, we choose 1/β
(k,m)
i = 0.001 and α(k,m)

i =
α̃(k) = min(β̄, γα̃(k−1)), with β̄ = 1, γ = 1.01 and
α̃(1) = 0.6. This choice of parameters satisfies the con-
ditions of Remark 1.

4. Global Convergence
A key tool of the upcoming global convergence (i.e., the
whole sequence converges to a critical point) analysis is the
Kurdyka-Łojasiewicz (KL) function defined as follows.

Definition 3 A function φ(x) is said to have the KL prop-
erty at x̄ ∈ dom ∂ φ if there exists η ∈ (0,+∞], a neigh-
borhood U of x̄ and a concave function ξ : [0, η) → R+

that is continuously differentiable on (0, η), continuous at 0,
ξ(0) = 0, and ξ′(s) > 0 for all s ∈ (0, η), such that for all
x ∈ U ∩ [φ(x̄) < φ(x) < φ(x̄) + η], we have

ξ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1. (17)

dist (0, ∂φ(x)) = min {‖y‖ : y ∈ ∂φ(x)}. If φ(x) has the
KL property at each point of dom ∂φ then φ is a KL function.

The class of KL functions is rich enough to cover many
non-convex non-smooth functions found in practical appli-
cations. Some noticeable examples are real analytic func-

tions, semi-algebraic functions, and locally strongly convex
functions (Bochnak et al., 1998; Bolte et al., 2014).

4.1. Global Convergence Recipe

Attouch et al. (2010; 2013) and Bolte et al. (2014) were
the first to prove the global convergence of proximal point
algorithms for solving non-convex non-smooth problems.
We note that a direct deployment of the methodology to
our proposed algorithms is not possible since the relaxation
property does not hold (that is, the objective functions are
not monotonically decreasing) and our methods allow for a
randomized strategy. In the following theorem, we modify
the proof recipe of Bolte et al. (2014) so that it is applicable
to our proposed methods.

Theorem 2 Let Φ : RN → (−∞,+∞] be a proper and
lower semicontinuous function which is bounded from below.
Let A be a generic algorithm which generates a bounded
sequence

{
z(k)

}
by z(0) ∈ RN , z(k+1) ∈ A(z(k)), k =

0, 1, . . . Assume that there exist positive constants ρ1, ρ2

and ρ3 and a non-negative sequence {ζk}k∈N such that the
following conditions are satisfied

(B1) Sufficient decrease property:

ρ1‖z(k) − z(k+1)‖2 ≤ ρ2ζ
2
k ≤ Φ(z(k))− Φ(z(k+1)),

∀ k = 0, 1, . . .

(B2) Boundedness of subgradient:

‖w(k+1)‖ ≤ ρ3ζk, w
(k) ∈ ∂Φ(z(k)),∀k = 0, 1, . . .

(B3) KL property: Φ is a KL function.

(B4) A continuity condition: If a subsequence {z(kn)} con-
verges to z̄ then Φ(z(kn))→ Φ(z̄) as n→∞.

Then we have
∑∞
k=1 ζk < ∞ and {z(k)} converges to a

critical point of Φ.

We remark that if we take ζk = ‖z(k) − z(k+1)‖ then The-
orem 2 recovers the proof recipe of Bolte et al. (2014).
The following theorem establish the convergence rate under
Łojasiewicz property.

Theorem 3 Suppose Φ is a KL function and ξ(a) of Defi-
nition 3 has the form ξ(a) = Ca1−ω for some C > 0 and
ω ∈ [0, 1). Then we have

(i) If ω = 0 then {z(k)} converges after a finite number of
steps.

(ii) If ω ∈ (0, 1/2] then there exists ω1 > 0 and ω2 ∈ [0, 1)
such that

∥∥z(k) − z̄
∥∥ ≤ ω1ω

k
2 .

(iii) If ω ∈ (1/2, 1) then there exists ω1 > 0 such that∥∥z(k) − z̄
∥∥ ≤ ω1k

−(1−ω)/(2ω−1).
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4.2. Global Convergence of IBP and IBPG

We need the use of the following auxiliary function

Ψ(ý, y̆) := F (ý) + ρD(ý, y̆),

where ρ > 0 and D(ý, y̆) =
∑s
i=1Di(ýi, y̆i). Recall that

(x̃
(k)
prev)i = x̄

(k,dki−1)
i . Let us consider the sequence

{
Y (k)

}
with Y (k) =

(
ý(k), y̆(k)

)
=
(
x̃(k), x̃

(k)
prev

)
. We then have

Ψ(Y (k)) = F (x̃(k)) + ρD(x̃(k), x̃(k)
prev), (18)

‖Y (k)−Y (k+1)‖2 = ‖x̃(k)−x̃(k+1)‖2+‖x̃(k)
prev−x̃(k+1)

prev ‖2.

We define

ϕ2
k :=

s∑
i=1

d
(k+1)
i∑
m=0

‖x̄(k+1,m)
i − x̄(k+1,m−1)

i ‖2

=

s∑
i=1

d
(k+1)
i∑
m=1

‖x̄(k+1,m)
i − x̄(k+1,m−1)

i ‖2

+ ‖x̃(k) − x̃(k)
prev‖2.

We make the following additional assumption.
Assumption 4 The sequences

{
x̃(k)

}
k∈N generated by Al-

gorithm 2 are bounded.

In Proposition 2 we will prove that Ψ(Y (k)) is non-
increasing; thus, Ψ(Y (k)) is upper bounded by Ψ(Y (−1)).
Moreover, note that D(x̃(k), x̃

(k)
prev) ≥ 0. Hence, from

(18) this implies that F
(
x̃(k)

)
is also upper bounded by

Ψ
(
Y (−1)

)
. Therefore, we can say that Assumption 4 is

satisfied when F has bounded level sets. Denote σ =
min {σ1, . . . , σs} and LH = max {LH1

, . . . , LHs
}.

The following proposition gives an upper bound for the sub-
gradients and a sufficient decrease property for

{
Ψ
(
Y (k)

)}
.

Proposition 2 Suppose Assumption 1, 2, 3 and 4 hold.

(i) Suppose f is continuously differentiable and ∇f is Lips-
chitz continuous on bounded subsets of E (this is a standard
assumption, see (Xu & Yin, 2013, Lemma 2.6), (Bolte et al.,
2014, Assumption 2 iv)). We have ‖q̂(k+1)‖ = O(ϕk) for
some q̂(k) ∈ ∂Ψ

(
Y (k)

)
.

(ii) Together with the condition in Proposition 2 (i), assume
that there exists a constant W2 such that ∀ k ∈ N, m =
1, . . . , dki and i = 1, . . . , s, we have θ(k,m)

i ≤ W2 for IBP,
λ

(k,m)
i ≤ W2 for IBPG and δ > (LHW2)/(σW1). Let
ρ = δW1

LH
+ W2

σ in (18) and let ρ2 = δσW1

2LH
− W2

2 . Then

Ψ(Y (k))−Ψ(Y (k+1)) ≥ ρ2ϕ
2
k.

We are now ready to state our global convergence result.

Theorem 4 Assume F is a KL-function and the conditions
of Proposition 2 are satisfied. Then the whole sequence
{x̃(k)} generated by IBP or IBPG converges to a critical
point type II of F .

We note that
∥∥Y (k) − Y ∗

∥∥ ≥ ∥∥x̃(k) − x∗
∥∥, hence the con-

vergence rate of the sequence {x̃(k)} is at least the same
order as the rate of {Y (k)}. If Ψ is a KL function with
ξ(a) = Ca1−ω , then we can apply Theorem 3 to derive the
convergence rate of {Y (k)}.

Remark 4 Note that we need the additional condition δ >
LHW2

σW1
in order to obtain the global convergence in Theorem

4. Therefore, it makes sense to show that there exists δ such
that Condition (14) for IBPG (or Condition (13) for IBP) is
also satisfied. See the supplementary material for the proof.

The parameters of IBP for NMF in Section 3.3 satisfy the
conditions for global convergence.

5. Numerical Results for NMF
In this section, we compare our IBP, IBPG and IBPG-A (see
Section 3.3) with the following NMF algorithms:

+ A-HALS: the accelerated hierarchical alternating least
squares algorithm (Gillis & Glineur, 2012). A-HALS out-
performs standard projected gradient, the popular multi-
plicative updates and alternating non-negative least squares
(Kim et al., 2014; Gillis, 2014).

+ E-A-HALS: the acceleration version of A-HALS proposed
by Ang & Gillis (2019). This algorithm was experimentally
shown to outperform A-HALS. This is, as far as we know,
one of the most efficient NMF algorithms. Note that E-A-
HALS is a heuristic with no convergence guarantees.

+ APGC: the accelerated proximal gradient coordinate de-
scent method proposed by Xu & Yin (2013) which corre-
sponds exactly to IBPG with γ̃ = ᾰ = 0.9999.

+ iPALM: the inertial proximal alternating linearized mini-
mization method proposed by Pock & Sabach (2016).

We define the relative errors relerrork =
‖X−Ũ(k)Ṽ (k)‖

F

‖X‖F
.

We let emin = 0 for the experiments with low-rank synthetic
data sets, and in the other experiments emin is the lowest
relative error obtained by any algorithms with any initializa-
tions. We define E(k) = relerrork − emin. These are the
same settings as in (Gillis & Glineur, 2012). All tests are
preformed using Matlab R2015a on a laptop Intel CORE i7-
8550U CPU @1.8GHz 16GB RAM. The code is available at
https://github.com/LeThiKhanhHien/IBPG

Experiments with synthetic data sets. Two low-rank
matrices of size 200 × 200 and 200 × 500 are generated
by letting X = UV , where U and V are generated by
commands rand(m, r) and rand(r,n) with r = 20. For

https://github.com/LeThiKhanhHien/IBPG
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Figure 1. Average value of E(k) with respect to time on 2 random low-rank matrices: 200× 200 (the left) and 200× 500 (the right).

each X , we run all algorithms with the same 50 random
initializations U0 = rand(m, r), V0 = rand(r,n), and for
each initialization we run each algorithm for 20 seconds.
Figure 1 illustrates the evolution of the average ofE(k) over
50 initializations with respect to time.

To compare the accuracy of the solutions, we generate 80
random m× n matrices, m and n are random integer num-
bers in the interval [200,500]. For each X we run the algo-
rithms for 20 seconds with 1 random initialization. Table 2
reports the average and standard deviation (std) of the errors.
It also provides a ranking between the different algorithms:
the ith entry of the ranking vector indicates how many times
the corresponding algorithm obtained the ith best solution.

We observe that (i) in terms of convergence speed and the
final errors obtained, IBPG-A outperforms the other algo-
rithms, and (ii) APGC and iPALM converge slower than
IBPG and APGC produces worse solutions. This illustrates
the fact that using two extrapolated points may lead to a
faster convergence.

Experiments with real data sets. In these experiments,
we will only keep the best performing algorithms, namely
IBPG-A and E-A-HALS, along with APGC for our obser-
vation purpose. For each data set, we generate 35 random
initializations and for each initialization we run each al-
gorithm for 200 seconds. We test the algorithms on two
widely used hyperspectral images, namely the Urban and
San Diego data sets; see (Gillis et al., 2015). We let r = 10.

Figure 2 reports the evolution of the average value of E(k),

Table 2. Average, standard deviation and ranking of the value of
E(k) at the last iteration among the different runs on the low-rank
synthetic data sets. The best performance is highlighed in bold.

Algorithm mean± std ranking
A-HALS 1.227 10−3 ± 7.365 10−4 ( 1, 0, 3, 4, 7, 24, 41)
E-A-HALS 8.501 10−4 ± 6.882 10−4 (16, 10, 12, 13, 17, 3, 9)
IBPG-A 5.036 10−4 ± 5.522 10−4 (39, 10, 14, 10, 3, 2, 2)
IPG 1.209 10−3 ± 7.386 10−4 ( 0, 3, 5, 7, 15, 39, 11)
APGC 8.726 10−4 ± 6.561 10−4 ( 3, 10, 14, 22, 18, 3, 10)
IBPG 6.621 10−4 ± 6.371 10−4 (17, 17, 15, 11, 14, 2, 4)
iPALM 6.759 10−4 ± 6.302 10−4 (17, 22, 13, 12, 6, 7, 3)

Table 3. Average error, standard deviation and ranking among the
different runs for urban and SanDiego data sets.

Algorithm mean ± std ranking
E-A-HALS 0.018823± 6.739 10−4 (17, 28, 25)

IBPG-A 0.018316± 9.745 10−4 (53, 15, 2)
APGC 0.018728± 7.779 10−4 (0, 27, 43)

and Table 3 reports the average error, standard deviation and
ranking of the final value of E(k) among the 70 runs (2 data
sets with 35 initializations for each data set).

We see that IBPG-A outperforms E-A-HALS and APGC
both in terms of convergence speed and accuracy.

6. Conclusion
We have analysed inertial versions of proximal BCD and
proximal gradient BCD methods for solving non-convex
non-smooth composite optimization problems. Our meth-
ods do not require restarting steps, and allow the use of
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Figure 2. Average value of E(k) with respect to time on 2 hyperspectral images: urban (the left) and SanDiego (the right).

randomized strategies and of two extrapolation points. We
first proved sub-sequential convergence of the generated se-
quence to a critical point of F (Theorem 1) and then, under
some additional assumptions, convergence of the whole se-
quence (Theorem 4). We showed that the proposed methods
compared favourably with state-of-the-art algorithms for
NMF. Additional experiments on NMF and NCPD are given
in the supplementary material. Exploring other Bregman
divergences for IBP and IBPG to solve NMF and NCPD
may lead to other efficient algorithms for NMF and NCPD.
This is one of our future research directions.
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