
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

A. Implementation Details
Below, we explain the implementation details for CURL
in the DMControl setting. Specifically, we use the SAC
algorithm as the RL objective coupled with CURL and build
on top of the publicly released implementation from Yarats
et al. (2019). We present in detail the hyperparameters
for the architecture and optimization. We do not use any
extra hyperparameter for balancing the contrastive loss and
the reinforcement learning losses. Both the objectives are
weighed equally in the gradient updates.

Table 3. Hyperparameters used for DMControl CURL experiments.
Most hyperparameters values are unchanged across environments
with the exception for action repeat, learning rate, and batch size.

Hyperparameter Value
Random crop True
Observation rendering (100, 100)
Observation downsampling (84, 84)
Replay buffer size 100000
Initial steps 1000
Stacked frames 3
Action repeat 2 finger, spin; walker, walk

8 cartpole, swingup
4 otherwise

Hidden units (MLP) 1024
Evaluation episodes 10
Optimizer Adam
(�1,�2) ! (f✓,⇡ , Q�) (.9, .999)
(�1,�2) ! (↵) (.5, .999)
Learning rate (f✓,⇡ , Q�) 2e� 4 cheetah, run

1e� 3 otherwise
Learning rate (↵) 1e� 4
Batch Size 512 (cheetah), 128 (rest)
Q function EMA ⌧ 0.01
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Non-linearity ReLU
Encoder EMA ⌧ 0.05
Latent dimension 50
Discount � .99
Initial temperature 0.1

Architecture: We use an encoder architecture that is simi-
lar to (Yarats et al., 2019), which we sketch in PyTorch-like
pseuodocode below. The actor and critic both use the same
encoder to embed image observations. A full list of hyper-
parameters is displayed in Table 3.

For contrastive learning, CURL utilizes momentum for the
key encoder (He et al., 2019b) and a bi-linear inner prod-
uct as the similarity measure (van den Oord et al., 2018).
Performance curves ablating these two architectural choices
are shown in Figure 5.

0 1 20 1 2 0 1 2

Encoding keys 
with / without EMA

Using bilinear vs. 
cosine similarity 

Environment Steps (Millions) Environment Steps (Millions)

Figure 5. Performance on cheetah-run environment ablated two-
ways: (left) using the query encoder or exponentially moving
average of the query encoder for encoding keys (right) using the
bi-linear inner product as in (van den Oord et al., 2018) or the
cosine inner product as in He et al. (2019b); Chen et al. (2020)

Pseudo-code for the architecture is provided below:
def encode(x,z_dim):

"""

ConvNet encoder

args:

B-batch_size, C-channels

H,W-spatial_dims

x : shape : [B, C, H, W]

C = 3 * num_frames; 3 - R/G/B

z_dim: latent dimension

"""

x = x / 255.

# c: channels, f: filters

# k: kernel, s: stride

z = Conv2d(c=x.shape[1], f=32, k=3, s=2)])(

x)

z = ReLU(z)

for _ in range(num_layers - 1):

z = Conv2d((c=32, f=32, k=3, s=1))(z)

z = ReLU(z)

z = flatten(z)

# in: input dim, out: output_dim, h:

hiddens

z = mlp(in=z.size(),out=z_dim,h=1024)

z = LayerNorm(z)

z = tanh(z)

Terminology: A common point of confusion is the mean-
ing “training steps.” We use the term environment steps to
denote the amount of times the simulator environment is
stepped through and interaction steps to denote the number
of times the agent steps through its policy. The terms action

repeat or frame skip refer to the number of times an action



CURL: Contrastive Unsupervised Representations for Reinforcement Learning

is repeated when it’s drawn from the agent’s policy. For
example, if action repeat is set to 4, then 100k interaction
steps is equivalent to 400k environment steps.

Batch Updates: After initializing the replay buffer with
observations extracted by a random agent, we sample a
batch of observations, compute the CURL objectives, and
step through the optimizer. Note that since queries and keys
are generated by data-augmenting an observation, we can
generate arbitrarily many keys to increase the contrastive
batch size without sampling any additional observations.

Shared Representations: The objective of performing con-
trastive learning together with RL is to ensure that the shared
encoder learns rich features that facilitate sample efficient
control. There is a subtle coincidental connection between
MoCo and off-policy RL. Both the frameworks adopt the
usage of a momentum averaged (EMA) version of the un-
derlying model. In MoCo, the EMA encoder is used for
encoding the keys (targets) while in off-policy RL, the EMA
version of the Q-networks are used as targets in the Bellman
error (Mnih et al., 2015; Haarnoja et al., 2018). Thanks to
this connection, CURL shares the convolutional encoder,
momentum coefficient and EMA update between contrastive
and reinforcement learning updates for the shared parame-
ters. The MLP part of the critic that operates on top of these
convolutional features has a separate momentum coefficient
and update decoupled from the image encoder parameters.

Balancing Contrastive and RL Updates: While past work
has learned hyperparameters to balance the auxiliary loss co-
efficient or learning rate relative to the RL objective (Jader-
berg et al., 2016; Yarats et al., 2019), CURL does not need
any such adjustments. We use both the contrastive and RL
objectives together with equal weight and learning rate. This
simplifies the training process compared to other methods,
such as training a VAE jointly (Hafner et al., 2018; 2019;
Lee et al., 2019), that require careful tuning of coefficients
for representation learning.

Differences in Data Collection between Computer Vi-
sion and RL Settings: There are two key differences be-
tween contrastive learning in the computer vision and RL
settings because of their different goals. Unsupervised fea-
ture learning methods built for downstream vision tasks like
image classification assume a setting where there is a large
static dataset of unlabeled images. On the other hand, in RL,
the dataset changes over time to account for the agent’s new
experiences. Secondly, the size of the memory bank of la-
beled images and dataset of unlabeled ones in vision-based
settings are 65K and 1M (or 1B) respectively. The goal in
vision-based methods is to learn from millions of unlabeled
images. On the other hand, the goal in CURL is to develop
sample-efficient RL algorithms. For example, to be able to
solve a task within 100K timesteps (approximately 2 hours
in real-time), an agent can only ingest 100K image frames.

Therefore, unlike MoCo, CURL does not use a memory
bank for contrastive learning. Instead, the negatives are
constructed on the fly for every minibatch sampled from the
agent’s replay buffer for an RL update similar to SimCLR.
The exact implementation is provided as a PyTorch-like
code snippet in 4.7.

Data Augmentation:

Random crop data augmentation has been crucial for the per-
formance of deep learning based computer vision systems in
object recognition, detection and segmentation (Krizhevsky
et al., 2012; Szegedy et al., 2015; Cubuk et al., 2019; Chen
et al., 2020). However, similar augmentation methods have
not seen much adoption in the field of RL even though
several benchmarks use raw pixels as inputs to the model.

CURL adopts the random crop data augmentation as the
stochastic data augmentation applied to a frame stack. To
make it easier for the model to correlate spatio-temporal
patterns in the input, we apply the same random crop (in
terms of box coordinates) across all four frames in the stack
as opposed to extracting different random crop positions
from each frame in the stack. Further, unlike in computer
vision systems where the aspect ratio for random crop is
allowed to be as low as 0.08, we preserve much of the spatial
information as possible and use a constant aspect ratio of
0.84 between the original and cropped. In our experiments,
data augmented samples for CURL are formed by cropping
84⇥ 84 frames from an input frame of 100⇥ 100.

DMControl: We render observations at 100 ⇥ 100 and
randomly crop 84⇥ 84 frames. For evaluation, we render
observations at 100⇥ 100 and center crop to 84⇥ 84 pixels.
We found that implementing random crop efficiently was
extremely important to the success of the algorithm. We
provide pseudocode below:
from skimage import view_as_windows

import numpy as np

def random_crop(imgs, out):

"""

Vectorized random crop

args:

imgs: shape (B,C,H,W)

out: output size (e.g. 84)

"""

# n: batch size.

n = imgs.shape[0]

img_size = imgs.shape[-1] # e.g. 100

crop_max = img_size - out

imgs = np.transpose(imgs, (0, 2, 3, 1))

w1 = np.random.randint(0, crop_max, n)

h1 = np.random.randint(0, crop_max, n)

# creates all sliding window

# combinations of size (out)

windows = view_as_windows(

imgs, (1, out, out, 1))[..., 0,:,:, 0]



CURL: Contrastive Unsupervised Representations for Reinforcement Learning

# selects a random window

# for each batch element

cropped = windows[np.arange(n), w1, h1]

return cropped

B. Atari100k Implementation Details
The flexibility of CURL allows us to apply it to discrete
control setting with minimal modifications. Similar to our
rationale for picking SAC as the baseline RL algorithm to
couple CURL with (for continuous control), we pick the
data-efficient version of Rainbow DQN (Efficient Rainbow)
(van Hasselt et al., 2019) for Atari100K which performs
competitively with an older version of SimPLe (most re-
cent version has improved numbers). In order to understand
specifically what the gains from CURL are without any
other changes, we adopt the exact same hyperparameters
specified in the paper (van Hasselt et al., 2019) (including
a modified convolutional encoder that uses larger kernel
size and stride of 5). We present the details in Table 4.
Similar to DMControl, the contrastive objective and the
RL objective are weighted equally for learning (except for
Pong, Freeway, Boxing and PrivateEye for which we used a
coefficient of 0.05 for the momentum contastive loss. On
a large majority (22 out of 26) of the games, we do not
use this adjustment. While it is standard practice to use
the same hyperparameters for all games in Atari, papers
proposing auxiliary losses have adopted a different practice
of using game specific coefficients (Jaderberg et al., 2016).).
We use the Efficient Rainbow codebase from https:

//github.com/Kaixhin/Rainbow which has a re-
produced version of van Hasselt et al. (2019). We evaluate
with 20 random seeds and report the mean score for each
game given the high variance nature of the Atari100k steps
benchmark. We restrict ourselves to using grayscale render-
ings of image observations and use random crop of frame
stack as data augmentation.

C. Benchmarking Data Efficiency
Tables 1 and 2 show the episode returns of DMControl100k,
DMControl500k, and Atari100k across CURL and a number
of pixel-based baselines. CURL outperforms all baseline
pixel-based methods across experiments on both DMCon-
trol100k and DMControl500k. On Atari100k experiments,
CURL coupled with Eff Rainbow outperforms the baseline
on the majority of games tested (19 out of 26 games).

D. Further Investigation of Data-Efficiency in
Contrastive RL

To further benchmark CURL’s sample-efficiency, we com-
pare it to state-based SAC on a total of 16 DMControl envi-
ronments. Shown in Figure 7, CURL matches state-based

Table 4. Hyperparameters used for Atari100K CURL experiments.
Hyperparameters are unchanged across games.

Hyperparameter Value
Random crop True
Image size (84, 84)
Data Augmentation Random Crop (Train)
Replay buffer size 100000
Training frames 400000
Training steps 100000
Frame skip 4
Stacked frames 4
Action repeat 4
Replay period every 1
Q network: channels 32, 64
Q network: filter size 5⇥ 5, 5⇥ 5
Q network: stride 5, 5
Q network: hidden units 256
Momentum (EMA for CURL) ⌧ 0.001
Non-linearity ReLU
Reward Clipping [�1, 1]
Multi step return 20
Minimum replay size for sampling 1600
Max frames per episode 108K
Update Distributional Double Q
Target Network Update Period every 2000 updates
Support-of-Q-distribution 51 bins
Discount � 0.99
Batch Size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: �1 0.9
Optimizer: �2 0.999
Optimizer ✏ 0.000015
Max gradient norm 10
Exploration Noisy Nets
Noisy nets parameter 0.1
Priority exponent 0.5
Priority correction 0.4 ! 1
Hardware CPU

data-efficiency on most of the environments, but lags behind
state-based SAC on more challenging environments.

E. Ablations
E.1. Learning Temporal Dynamics

To gain insight as to whether CURL learns temporal dy-
namics across the stacked frames, we also train a variant
of CURL where the discriminants are individual frames as
opposed to stacked ones. This can be done by sampling
stacked frames from the replay buffer but only using the
first frame to update the contrastive loss:

f_q = x_q[:,:3,...] # (B,C,H,W), C=9.

f_k = x_k[:,:3,...]

During the actor-critic update, frames in the batch are en-



CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Environment Steps (Millions)

reacher hard

cartpole swing.

cartpole bal. sparse

cartpole bal.

finger spin

walker stand

cup catch

walker walk

reacher easy

finger turn hard

cheetah run

finger turn easy

hopper stand

hopper hop

cartpole swing. sparse

pendulum swing

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. The number of steps it takes a prior leading pixel-based
method, Dreamer, to achieve the same score that CURL achieves
at 100k training steps (clipped at 1M steps). On average, CURL is
4.5x more data-efficient. We chose Dreamer because the authors
(Hafner et al., 2019) report performance for all of the above en-
vironments while other baselines like SLAC and SAC+AE only
benchmark on 4 and 6 environments, respectively. For further
comparison of CURL with these methods, the reader is referred to
Table 1 and Figure 4.

coded individually into latent codes, which are then concate-
nated before being passed to a dense network.
# x: (B,C,H,W), C=9.

z1 = encode(x[:,:3,...])

z2 = encode(x[:,3:6,...])

z3 = encode(x[:,6:9,...])

z = torch.cat([z1,z2,z3],-1)

Encoding each frame indiviudally ensures that the con-
trastive objective only has access to visual discriminants.
Comparing the visual and spatiotemporal variants of CURL
in Figure 8 shows that the variant trained on stacked frames
outperforms the visual-only version in most environments.
The only exceptions are reacher and ball-in-cup environ-
ments. Indeed, in those environments the visual signal is
strong enough to solve the task optimally, whereas in other
environments, such as walker and cheetah, where balance
or coordination is required, visual information alone is in-
sufficient.

Environment Steps (Millions)

Ep
iso

de
 S

co
re

State SACCURL

Figure 7. CURL compared to state-based SAC run for 3 seeds on
each of 16 selected DMControl environments. For the 6 environ-
ments in 4, CURL performance is averaged over 10 seeds.

E.2. Increasing Gradient Updates per Agent Step

Although most baselines we benchmark against use one
gradient update per agent step, it was recently empirically
shown that increasing the ratio of gradients per step im-
proves data-efficiency in RL (Kielak, 2020). This finding
is also supported by SLAC (Lee et al., 2019), where results
are shown with a ratio of 1:1 (SLACv1) and 3:1 (SLACv2).
We

Table 5. Scores achieved by CURL and SLAC when run with a
3:1 ratio of gradient updates per agent step on DMControl500k
and DMControl100k. CURL achieves state-of-the-art performance
on the majority (3 out of 4) environments on DMControl500k.
Performance of both algorithms is improved relative to the 1:1 ratio
reported for all baselines in Table 1 but at the cost of significant
compute and wall-clock time overhead.

DMCONTROL500K CURL SLACV2

FINGER, SPIN 923 ± 50 884 ± 98
WALKER, WALK 911 ± 35 891 ± 60
CHEETAH, RUN 545 ± 39 791 ± 37

BALL IN CUP, CATCH 948 ± 21 885 ± 154

DMCONTROL100K CURL SLACV2

FINGER, SPIN 741± 118 728 ±212
WALKER, WALK 428 ± 59 513 ± 41
CHEETAH, RUN 314 ± 46 438 ± 76

BALL IN CUP, CATCH 899 ± 47 837 ± 147



CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL 
(stacked frames)

CURL 
(individual frames)

D4PG 
(1e8 steps)

Environment Steps (Millions)

Finger, spin Cartpole, swingup Reacher, easy

Cheetah, run Walker, walk Ball in cup, catch

Ev
alu

at
ion

 S
co

re
s

0.0 0.2 0.4 0.6 0.8 0.0 0.8 1.6 2.4 3.2 4.01.0

0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

0.0 0.4 0.8 1.2 1.6 2.0

Figure 8. CURL with temporal and visual discrimination (red)
compared to CURL with only visual discrimination (green). In
most settings, the variant with temporal variant outperforms the
purely visual variant of CURL. The two exceptions are reacher
and ball in cup environments, suggesting that learning dynamics
is not necessary for those two environments. Note that the walker
environment was run with action repeat of 4, whereas walker walk
in the main results Table 1 and Figure 7 was run with action repeat
of 2.

E.3. Decoupling Representation Learning from
Reinforcement Learning

Typically, Deep RL representations depend almost entirely
on the reward function specific to a task. However, hand-
crafted representations such as the proprioceptive state are
independent of the reward function. It is much more de-
sirable to learn reward-agnostic representations, so that the
same representation can be re-used across different RL tasks.
We test whether CURL can learn such representations by
comparing CURL to a variant where the critic gradients
are backpropagated through the critic and contrastive dense
feedforward networks but stopped before reaching the con-
volutional neural network (CNN) part of the encoder.

Scores displayed in Figure 9 show that for many environ-
ments, the detached CNN representations are sufficient to
learn an optimal policy. The major exception is the chee-
tah environment, where the detached representation signifi-
cantly under-performs. Though promising, we leave further
exploration of task-agnostic representations for future work.

E.4. Predicting State from Pixels

Despite improved sample-efficiency on most DMControl
tasks, there is still a visible gap between the performance of
SAC on state and SAC with CURL in some environments.
Since CURL learns representations by performing instance

CURL CURL (detached)

Random features

SAC+AE (detached)

D4PG (1e8 steps)

Environment Steps (Millions)

Ev
alu

at
ion

 S
co

re
s

Finger, spin Cartpole, swingup Reacher, easy

Cheetah, run Walker, walk Ball in cup, catch
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.4 0.8 1.2 1.6 2.0

0.0 0.8 1.6 2.4 3.2 4.0

0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

0.0 0.4 0.8 1.2 1.6 2.0

Figure 9. CURL where the CNN part of the encoder receives gra-
dients from both the contrastive loss and critic (red) compared to
CURL with the convolutional part of the encoder trained only with
the contrastive objective (green). The detached encoder variant is
able to learn representations that enable near-optimal learning on
most environments, except for cheetah. As in Figure 8, the walker
environment was run with action repeat of 4.

discrimination across stacks of three frames, it’s possible
that the reason for degraded sample-efficiency on more chal-
lenging tasks is due to partial-observability of the ground
truth state.

To test this hypothesis, we perform supervised regression
(X,Y ) from pixels X to the proprioceptive state Y , where
each data point x 2 X is a stack of three consecutive frames
and y 2 Y is the corresponding state extracted from the
simulator. We find that the error in predicting the state
from pixels correlates with the policy performance of pixel-
based methods. Test-time error rates displayed in Figure
10 show that environments that CURL solves as efficiently
as state-based SAC have low error-rates in predicting the
state from stacks of pixels. The prediction error increases
for more challenging environments, such as cheetah-run and
walker-walk. Finally, the error is highest for environments
where current pixel-based methods, CURL included, make
no progress at all (Tassa et al., 2018), such as humanoid and
swimmer.

This investigation suggests that degraded policy perfor-
mance on challenging tasks may result from the lack of
requisite information about the underlying state in the pixel
data used for learning representations. We leave further
investigation for future work.

E.5. CURL + Efficient Rainbow Atari runs

We report the scores (Tables 6 and 7) for 20 seeds across the
26 Atari games in the Atari100k benchmark for CURL cou-



CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Figure 10. Test-time mean squared error for predicting the proprio-
ceptive state from pixels on a number of DMControl environments.
In DMControl, environments fall into two groups - where the state
corresponds to either (a) positions and velocities of the robot joints
or (b) the joint angles and angular velocities.

pled with Efficient Rainbow. The variance across multiple
seeds is considerably high in this benchmark. Therefore, we
report the scores for each of the seeds along with the mean
and standard deviation for each game.



CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Pacman Frostbite Asterix KungFuMaster Kangaroo Gopher RoadRunner JamesBond BattleZone Seaquest Assault Krull Qbert
1287 2292 850 8470 600 1036 2820 305 18100 322 634.2 3404.3 1020
1608 1046 525 10870 2280 574 3190 265 18200 236 696.8 2443.5 650
1466 1209 655 10920 1940 540 7840 335 26800 352 655.2 6791.4 830
1430 255 565 7730 1140 618 12060 145 21300 386 443 3022.5 902.5
1114 426 715 17525 520 534 8340 565 7900 458 546 3892.2 3957.5
1083 2280 715 3560 600 596 6920 565 8100 224 564.9 3505.5 772.5
2301 259 770 10940 600 502 2230 350 12000 282 514.4 2564.1 782.5
1128 335 980 23420 900 998 4250 365 16500 339 516.6 4079.7 727.5
1184 1409 665 15160 600 950 1570 140 23900 526 661.5 2376.4 705
1510 258 610 15370 730 544 6300 425 19900 436 664.5 4161.8 757.5
2343 335 905 22260 600 796 3100 315 10000 272 529 3311.1 647.5
1063 1062 800 17320 880 522 1060 335 11200 428 445.2 2517.3 562.5
2040 1542 675 31820 220 392 6050 735 9700 358 573.3 3764.7 2425
1195 1102 795 23360 920 780 11810 950 23500 533 531.3 10150.2 1112.5
1343 2461 585 27460 600 792 4630 520 10500 968 663.6 2883.6 527.5
1354 257 865 7770 2300 454 2530 755 18100 314 795.3 5123.7 472.5
1925 513 730 8820 320 564 6840 750 9000 378 633 3652.5 610
1228 1826 680 2980 600 522 6580 795 8900 168 674.1 2376.4 697.5
1099 1889 965 10100 600 496 10720 450 10700 242 604.8 11745 1847.5
1608 2869 640 10300 500 1176 4380 355 13100 467 665.7 2826 840

1465.5 1181.3 734.5 14307.8 872.5 669.3 5661 471 14870 384.5 600.6 4229.6 1042.4
397.5 856.2 129.8 7919.3 600.1 220.6 3289.3 226.2 5964.3 170.2 89.5 2540.6 828.4

Table 6. CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds for each of the above games, with the last
two rows being the mean and standard deviation across the runs.

UpNDown Hero CrazyClimber ChopperComm. DemonAttack Amidar Alien BankHeist Breakout Freeway Pong PrivateEye Boxing
3529 8747.5 19090 560 611.5 150.9 616 95 3.6 29.2 -19.3 100 -0.5
772 3026 8290 1530 707.5 131.2 923 184 5 25.4 -16.9 100 -11.4
5972 7146 12160 1390 843.5 141.5 467 75 3.2 27.6 -12 100 4
2793 7686 8920 1100 330.5 133.7 441 232 5.1 28.6 -19.6 100 3.6
3546 7335 11360 500 759 157.1 716 187 2.9 22.8 -17.8 1357.4 6.2
4552 7325 4110 990 940 125.4 453 367 6.3 29.6 -18.9 100 5
2972 7275.5 9460 780 1136 183.2 273 186 5.9 23.3 -15.9 0 -1.7
2865 3115 20630 1180 758 153.6 540 68 2.6 27.6 -15.2 100 0.1
3098 7424 6780 1380 772.5 127.8 499 60 5.9 26.1 -18.7 100 3.5
1953 7475 13570 970 820 149.4 475 123 4.3 28.3 -13.3 100 -0.5
1467 3135 11890 1200 784 125.7 553 72 3.2 21.8 -17.2 1510 -22.1
2912 5060.5 9160 1130 1080 130.4 446 53 4.8 21.8 -20.1 100 -1.8
4123 4409 10960 1380 847 133 533 68 6.3 28.9 -16.5 100 1.6
2334 6979 17360 1230 771.5 140.5 968 36 7.3 28.2 -14.9 100 3.6
2605 4159 8930 1350 907.5 133.8 499 53 4.8 28.3 -19.3 100 -17.6
2432 7560 11510 1080 1095.5 191.8 523 105 3.7 26.8 -15.6 0 21.7
3826 8587 22690 1210 700 115.5 616 276 6.6 27.5 -21 100 2
3052 4683.5 8120 840 803.5 164 475 69 5.5 26.5 -10.5 0 5.9
3131 7317 13500 730 818 131.7 525 50 4.3 26.8 -13.3 100 18.7
1169 7141 14440 640 866 122.4 622 273 6.2 28.6 -13.1 100 3.7

2955.2 6279.3 12146.5 1058.5 817.6 142.1 558.2 131.6 4.9 26.7 -16.5 218.4 1.2
1181.1 1871.5 4765.6 299.1 176.6 20.0 160.3 94.4 1.4 2.4 2.9 417.9 10.0

Table 7. CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds for each of the above games, with the last
two rows being the mean and standard deviation across the runs.


