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A. BMPO Performance Guarantee
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Figure 6. Bidirectional rollout.

Lemma A.1. (Bidirectional Branched Rollout Returns Bound). Let η1, η2 be the expected returns of two bidirectional
branched rollouts. Out of the branch, we assume that the expected total variation distance between these two dynamics at
each timestep t is bounded as maxtE(s,a)∼pt1(s,a)DTV (ppre1 (s′|s, a) ‖ppre2 (s′|s, a)) ≤ εprem , similarly, the forward branch
dynamic bounded as maxtE(s,a)∼pt1(s,a)DTV (pfor1 (s′|s, a) ‖pfor2 (s′|s, a)) ≤ εform , and the backward branch dynamic
bounded as maxtE(s′,a)∼pt1(s′,a)DTV (pback1 (s|s′, a) ‖pback2 (s|s′, a)) ≤ εbackm . Likewise, the total variation distance of
policy is bounded by εpreπ , εforπ and εbackπ , respectively (as Figure 6 shows). Then the returns are bounded as
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Proof. Lemma B.1 and Lemma B.2 imply that state marginal error at each timestep can be bounded by the divergence
at the current timestep plus the state marginal error at the next (Lemma B.1), or previous (Lemma B.2) timestep. And
by employing Lemma B.3, we can convert the (s,a) joint distribution to marginal distributions. Thus, letting d1(s, a) and
d2(s, a) denote the state-action marginals, we can write:
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Similarly, for k1<t ≤ k1 + k2:
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And for t>k1 + k2:

DTV

(
dt1(s, a)‖dt2(s, a)

)
≤ (t− k1 − k2) (εprem + εpreπ ) + k2

(
εform + εforπ

)
+ εpreπ + εforπ (14)

We can now bound the difference in occupancy measures by averaging the state marginal error over time, weighted by the
discount:
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Multiplying this bound by 2rmax

1−γ to convert the occupancy measure difference into a returns bound completes the proof.

Theorem A.1. (BMPO Return Discrepancy Upper Bound) Assume that the expected total variation dis-
tance between the learned forward model p̂ and the true dynamics p at each timestep t is bounded as
maxtE(s,a)∼πt

[DTV (p (s′|s, a) ‖p̂ (s′|s, a))] ≤ εform . Similarly, the error of backward model q̂ is bounded as
maxtE(s′,a)∼πt

[DTV (q (s|s′, a) ‖q̂ (s|s′, a))] ≤ εbackm and the variation between current policy and the behavioral policy
is bounded as maxsDTV (πD(a|s)‖π(a|s)) ≤ επ. Assume εform ≈ εbackm = εm and εbackπ = 0, then under a branched
rollouts scheme with a backward branch length of k1 and a forward branch length of k2, the returns are bounded as:
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Proof. Using Lemma A.1, out of the branch, we only suffer from error of executing old policy πD, so, set εpreπ = επ and
εprem = 0. Then in the branched rollout, we execute current policy, so the only error comes from using the learned model to
simulate. Set εforπ = εbackπ = 0 and εform = εbackm = εm. Plugging these in Lemma B.1 we can get:
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B. Useful Lemmas
In this section, we give proofs of the lemmas used before.

Lemma B.1. (Backward State Marginal Distance Bound). Suppose the expected total variation distance between two
backward dynamics is bounded as maxtE(s′,a)∼pt1 [DTV (p1 (s|s′, a) ‖p2 (s|s′, a))] ≤ εbackm and the backward policy
divergences are bounded as maxs′ DTV (π1(a|s′)‖π2(a|s′)) ≤ εbackπ . Then the state marginal distance at timestep t can be
bounded as:

DTV

(
pt1(s)‖pt2(s)

)
≤ εbackm + εbackπ +DTV

(
pt+1
1 (s)‖pt+1

2 (s)
)
. (17)

Proof. Let the total variation distance of state at time t be denoted as εt = DTV (pt1(s)‖pt2(s)).
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Lemma B.2. (Forward State Marginal Distance Bound) ((Janner et al., 2019), Lemma B.2, B.3). Suppose the expected
TVD between two forward dynamics is bounded as maxtE(s,a)∼pt1 [DTV (p1 (s′|s, a) ‖p2 (s′|s, a))] ≤ εform and the forward
policy divergences are bounded as maxs′ DTV (π1(a|s)‖π2(a|s)) ≤ εforπ . Then the state marginal distance at timestep t
can be bounded as:
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Lemma B.3. (TVD Of Joint Distributions) ((Janner et al., 2019), Lemma B.1). Suppose we have two distributions
p1(x, y) = p1(x)p1(y|x) and p2(x, y) = p2(x)p2(y|x). We can bound the total variation distance of the joint distributions
as:

DTV (p1(x, y)‖p2(x, y)) ≤ DTV (p1(x)‖p2(x)) + max
x

DTV (p1(y|x)‖p2(y|x)) . (19)

C. Environment Settings
In this section, we provide a comparison of the environment settings used in our experiments. Among them, ’Hopper-NT’
and ’Walker2d-NT’ refer to the settings in Langlois et al. (2019) and others are the standard version.

Table 1. Observation and action dimension, and task horizon of the environments used in our experiments.

Environment Name Observation Space Dimension Action Space Dimension Steps Per Epoch

Pendulum 3 1 200
Hopper 11 3 1000

Hopper-NT 11 3 1000
Walker2d 17 6 1000

Walker2d-NT 17 6 1000
Ant 27 8 1000
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Table 2. Reward function and termination states condition of the environments used in our experiments. θt denotes the joint angle, xt
denotes the position in x direction, at denotes the action control input, and zt denotes the height.

Environment Name Reward Function Termination States Condition

Pendulum −θ2t − 0.1θ̇2t − 0.001 ‖at‖22 None
Hopper ẋt − 0.001 ‖at‖22 + 1 zt ≤ 0.7 or θt ≥ 0.2

Hopper-NT ẋt − 0.1 ‖at‖22 − 3.0× (zt − 1.3)
2

+ 1 None
Walker2d ẋt − 0.001 ‖at‖22 + 1 zt ≤ 0.8 or zt ≥ 2.0 or |θt| ≥ 1.0

Walker2d-NT ẋt − 0.1 ‖at‖22 − 3.0× (zt − 1.3)
2

+ 1 None
Ant ẋt − 0.5 ‖at‖22 + 1 zt ≤ 0.2 or zt ≥ 1.0

D. Hyperparameters

Table 3. Hyperparameter settings for BMPO. x → y over epochs a → b means clipped linear function, i.e. for epoch e, f(e) =
clip((x+ e−a

b−a
· (x− y)), x, y). Other hyperparameters not listed here are the same as those in MBPO (Janner et al., 2019).

Environment Name k1 k2 β MPC Horizon Epochs

Pendulum
1→ 5 over

epochs 1→ 5
1→ 5 over

epochs 1→ 5
0.01→ 0 over
epochs 0→ 10

6 20

Hopper
1→ 15 over

epochs 20→ 150
1→ 15 over

epochs 20→ 150
0.004→ 0.003 over

epochs 20→ 30
6 100

Hopper-NT
1→ 15 over

epochs 20→ 150
1→ 15 over

epochs 20→ 150
0.01 6 100

Walker2d 1 1
0.01→ 0 over

epochs 0→ 100
1 200

Walker2d-NT 1 1 0.01 0 200

Ant 1
1→ 25 over

epochs 20→ 100
0.003 0 300

E. Computing Infrastructure
In this section, we provide a description of the computing infrastructure used to run all the experiments in Table 4. We also
show the computation time comparison between our algorithm and the MBPO baseline in Table 5.

Table 4. Computing infrastructure.

CPU GPU Memory

AMD2990WX RTX2080TI×4 256GB

Table 5. Computation time in hours for one experiment.

Pendulum Hopper Hopper-NT Walker2d Walker2d-NT Ant

BMPO 0.49 16.34 17.98 27.24 27.34 71.51
MBPO 0.41 10.33 11.12 22.26 21.32 57.42


