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Abstract

Operator-Valued Kernels (OVKs) and associated
vector-valued Reproducing Kernel Hilbert Spaces
provide an elegant way to extend scalar kernel
methods when the output space is a Hilbert space.
Although primarily used in finite dimension for
problems like multi-task regression, the ability of
this framework to deal with infinite dimensional
output spaces unlocks many more applications,
such as functional regression, structured output
prediction, and structured data representation.
However, these sophisticated schemes crucially
rely on the kernel trick in the output space, so
that most of previous works have focused on the
square norm loss function, completely neglecting
robustness issues that may arise in such surrogate
problems. To overcome this limitation, this paper
develops a duality approach that allows to solve
OVK machines for a wide range of loss functions.
The infinite dimensional Lagrange multipliers are
handled through a Double Representer Theorem,
and algorithms for e-insensitive losses and the
Huber loss are thoroughly detailed. Robustness
benefits are emphasized by a theoretical stability
analysis, as well as empirical improvements on
structured data applications.

1. Introduction

Due to increasingly available streaming and network data,
learning to predict complex objects such as structured
outputs or time series has attracted a great deal of attention
in machine learning. Extending the well known kernel
methods devoted to non-vectorial data (Hofmann et al.,
2008), several kernel-based approaches have emerged to
deal with complex output data. While Structural SVM
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and variants cope with discrete structures (Tsochantaridis
et al., 2005; Joachims et al., 2009) through structured
losses, Operator-Valued Kernels (OVKs) and vector-valued
Reproducing Kernel Hilbert Spaces (vv-RKHSs, Micchelli
and Pontil (2005); Carmeli et al. (2006; 2010)) provide a
unique framework to handle both functional and structured
outputs. Vv-RKHSs are classes of functions that map
an arbitrary input set X’ to some output Hilbert space )
(Senkene and Tempel’man, 1973; Caponnetto et al., 2008).
Primarily used with finite dimensional outputs ()} = RP)
to solve multi-task regression (Micchelli and Pontil, 2005;
Baldassarre et al., 2012) and multiple class classification
(Dinuzzo et al., 2011), OVK methods have further been
exploited to handle outputs in infinite dimensional Hilbert
spaces. This has unlocked numerous applications, such as
functional regression (Kadri et al., 2010; 2016), structured
prediction (Brouard et al., 2011; Kadri et al., 2013), infinite
quantile regression (Brault et al., 2019), or structured data
representation learning (Laforgue et al., 2019). Nonetheless,
these sophisticated schemes often come along with a basic
loss function: the output space squared norm, neglecting
desirable properties such as parsimony and robustness.

In nonparametric modeling, model parsimony boils down
to data sparsity, e.g. reducing the number of training data
points on which the model relies to make a prediction. Such
a property is highly valuable (Hastie et al., 2015): not only
does it prevent overfitting but it also alleviates the inherent
computational load of optimization and prediction, allowing
to scale to larger datasets. Another appealing property of a
regression tool is robustness to outliers (Huber, 1964; Zhu
et al., 2008). Real data may suffer from incorrect feature
measurements and spurious annotations, leading to training
datasets contaminated with outliers. Then, minimizing the
squared loss is inappropriate as the least-squares estimates
behave poorly when the residuals distribution is not normal,
but rather heavy-tailed. In (scalar) kernel methods, these
two properties — data sparsity and robustness to outliers —
are imposed through the choice of appropriate losses. Data
sparsity is leveraged by using e-insensitive losses, exploited
in the well known Support Vector Regression (Drucker et al.,
1997) while robust regression (Fung and Mangasarian, 2000)
can be obtained by minimizing the Huber loss function
(Huber, 1964). Driven by three emblematic learning tasks,



Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses

structured prediction, functional regression, and structured
data representation, we propose a general duality framework
that enables sparse data regression and robust regression,
even when working in vv-RKHSs with infinite-dimensional
outputs. Although extensively used within scalar kernel
methods, very few attempts have been made to adapt duality
to vv-RKHSs. In Brouard et al. (2016b), dualization is
presented, but only used in the maximum margin regression
scenario. Sangnier et al. (2017) consider a wider class of
loss functions, including e-insensitive losses to leverage
data sparsity, but only in the case of matrix-valued kernels
(Alvarez et al., 2012), for which the dual problem is finite
dimensional. For a general OVK however, the dual problem
is to be solved over V", and is intractable without additional
work when ) is infinite dimensional. We first notice that
the extensions of e-insensitive losses and the Huber loss to
general Hilbert space are (still) expressed as convolutions
of simpler losses whose Fenchel-Legendre (FL) transforms
are known. Inspired by this remark, we identify general
conditions on the OVKs and FL transforms to establish a
Double Representer Theorem allowing to work with matrix
parameterized representations. In particular, a careful use
of the duality principle considerably broadens the range of
loss functions for which OVK solutions are computable.
The present work thus aims at developing a comprehensive
methodology to solve these dual problems.

The rest of the paper is organized as follows. In Section 2,
we introduce OVKs, recall the general formulation of dual
problems for OVK machines, and derive their solvable finite
dimensional reformulation. Section 3 is devoted to specific
instantiations of this problem for e-insensitive losses and the
Huber loss, with algorithms duly explicited. In Section 4, we
apply our framework to induce sparsity and robustness into
structured prediction, functional regression, and structured
data representation. Proofs are postponed to the Appendix.

2. Learning in vv-RKHSs

After reminders on OVKs and vv-RKHS learning theory,
this section exposes the duality approach for the regularized
empirical risk minimization problem in vv-RKHSs. Two
strategies are then detailed to solve infinite dimensional dual
problems, either under an assumption on the kernel, or by
approximating the dual. In the following, ) is assumed to
be a separable Hilbert space.

Definition 1. An OVK is an application C: X x X — L(}),
that satisfies the following two properties for all n € N*:

1) V(z,2') e X x X, Kz, 2') = K(z/, 2)#,

2)V (2, 4i)iy € (X x V)" Z<yz,

1,j=1

(T, 25)y)y =

with L(E) the set of bounded linear operators on vector
space E, and A# the adjoint of any operator A.

A simple example of OVK is the separable kernel.

Definition 2. K : X x X — L(J) is a separable kernel
iff there exist a scalar kernel k : X x X — R and a
positive semi-definite operator A € L(Y) such that for all
(x,2') € X% it holds: K(z,2') = k(z,2")A.

Similarly to scalar-valued kernels, an OVK can be uniquely
associated to a functional space from X" to ): its vv-RKHS.

Theorem 1. Let K be an OVK, and for x € X, let
Koy — Kpy € F(X,Y) the linear operator such that:
Vo' e X, (Kyy)(2') = K(2/, x)y. Then, there is a unique
Hilbert space Hx < F(X,)Y) the vw-RKHS associated to
K such that Vx € X it holds:

(i) K. spans the space Hi (Vye YV: Ky € Hi)
(ii) Ky is bounded for the uniform norm

(iii) Vf € Hyc, f(x) = K¥ f (reproducing property)
Given a sample S = {(z;,¥:)71} € (X x V)" of n i.i.d.
realizations of a generic random variable (X,Y), an OVK
K:XxX — L(Y),aconvex loss function £ : Y x ) — R,
and a regularization parameter A > 0, the general form of
an OVK-based learning problem is to find h that solves:

min fZE (), yi)

2
. 1
min S

Similarly to scalar ones, a crucial tool in operator-valued
kernel methods is the Representer Theorem, ensuring that
h actually pertains to a reduced subspace of Hy.

Theorem 2. (Theorem 4.2 in Micchelli and Pontil (2005))
There exists (&;)?_, € Y™ such that

. 1 & )
h = E;K(,xl)al

Although Theorem 2 drastically downscales the search
domain (from Hx to V™), it gives no further information
about the (&;)"_;. One way to gain insight about these
coefficients is to perform Problem (1)’s dualization, with
the notation ¢; : y € ) — {(y, y;) for any i < n.
Theorem 3. (Appendix B in Brouard et al. (2016b)) The
solution to Problem (1) is given by

A 1 &
=— E L), 2
h Ani=1lC(,x)oz ()

with (&) 1§ € Y™ the solutions t0 the dual problem

. 1
(alrrr»uneyn Zé —ai) 2An Z (s, Klwi, 25)3)y

i=1 4,j=1

3)
where f* : o€ Y = sup,cy (@, y)y, — f(y) denotes the
Fenchel-Legendre transform of a function f : ) — R.
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Refer to Appendix A.1 for Theorem 3’s proof, that has been
reproduced for self-containedness. Dualization brings in
additional information about the optimal coefficients (notice
nonetheless that Theorem 2 holds true for a much wider
class of problems). As it is, Problem (3) is however of
little interest, since the optimization must be performed
on the infinite dimensional space }”. Depending on the
problem, we propose two solutions: either using a Double
Representer Theorem, or by approximating Problem (3).

Notation. If /C is identity decomposable (i.e. K = k Iy),
KX and KY denote the input and output gram matrices.
For any matrix M, M;. represents its i*" line, and | M|, ,
its £, 4 row wise mixed norm, i.e. the ¢, norm of the ¢,
norms of its lines. xg denotes the characteristic function
of a set S, null on S and equal to +o0 otherwise, f g is
the infimal convolution of f and g (Bauschke et al., 2011),
(fOg)(z) = inf, f(y) + g(z — y). Finally, #S is the
cardinality of any set S, and | - |op the operator norm.

2.1. The Double Representer Theorem

In order to make Problem (3) solvable, we need assumptions
on the loss and the kernel. Let Y denote span(y;, i < n).
Assumptions 1 and 2 characterize admissible losses through
conditions on their Fenchel-Legendre (FL) transforms. They
are standard for kernel methods, and ensure computability
by stipulating that only dot products are involved.

Assumption 1. Vi < n, Y(aY¥,at) € Y x Y*, it holds

£:(a¥) < (0¥ + ab).
Assumption 2. Vi < n,3L; : R™"+"* — R such that for all
w = (wj)j<n €R", 152(-2?:1 wj yj) = Li(waKY)~

Regarding the OVK, the key point is Assumption 3. Roughly
speaking, Y is what we see and know about output space )/,
while Y= represents the part we ignore. What we need is an
OVK somewhat aligned with the outputs, in the sense that
the little we know about ) should be preserved through /C.
As for Assumption 4, it helps simplifying the computations.

Assumption 3. Vi, j < n, Y is invariant by K(x;, x;), i.e.
Vyel, yeY = K(z;,zj)ye.

Remark 1. It is important to notice that we do not need
Assumption 3 to hold true for every collection {y; }i<n € V™.
It rather constitutes an a posteriori condition to ensure that
the kernel is aligned with the training sample at hand. If Y is
finite dimensional, one may hope that with sufficiently many
outputs, then Y spans ), and every matrix-valued kernel
then fits. If Y is infinite dimensional, identity-decomposable
kernels are admissible (which despite simple expressions
may describe nontrivial dependences in infinite dimensional
spaces). Moreover, separable kernels with operators similar
to the empirical covariance ), y; ® y; (Kadri et al., 2013)
are also eligible, opening the door to ad-hoc and learned
kernels, see Appendix A.8 for further examples.

Assumption 4. There exist T' = 1, and for every t < T
admissible scalar kernels k; : X x X — R as well as
positive semi-definite operators Ay € L(Y), such that for
all (x,2') € X? it holds: K(z,2') = Zthl ki(z, 2") Ag.

Under Assumption 4, KX and K denote the matrices such
that [KtX]” = kt(l‘i,l‘j), [Kty]ij = <yi7Atyj>y- Notice
that it is by no means restrictive, since every shift-invariant
OVK can be approximated arbitrarily closely by kernels
satisfying Assumption 4. Furthermore, if for all t < T', A,
keeps Y invariant, then Assumption 3 is directly fulfilled.
Under these assumptions, Theorem 4 proves that the optimal
coefficients lie in Y™, ensuring the solutions computability.

Theorem 4. Let { : Y x Y — R be a loss function
with Fenchel-Legendre transforms satisfying Assumptions 1
and 2, and IC be an OVK verifying Assumption 3. Then, the
solution to Problem (1) is given by

h=—+ An > K(20) @ s “)
52
with Q = [&;] € R"*™ the solution to the dual problem
i L (9., K Tr(MT 0 Q)
ngm; (i, KY) + Qe

with M the n* tensor such that Mk = {yx,
2

v K@i, z5)y0)p,
and M its rewriting as a n® x n? block matrix. If kernel K
further sattgﬁes Assumption 4, then tensor M simplifies to

Miji = > [ K55 [ K} 1k, and the problem rewrites
i Li (i, KY) + —— > Tr (K QKY Q7
o2, Z K¢ sh Z ).

(&)

See Appendix A.2 for the proof. This theorem can be seen
as a Double Representer Theorem, since both theorems
share analogous proofs and consequences: a search domain
reduction, respectively from Hyx to ", and Y™ to R™*™.

Remark 2. The Double Representer Theorem emphasizes
that only the knowledge of the n* tensor M is required to
make OVK problems in infinite dimensional output spaces
computable. Although it might seem prohibitive at first sight,
one has to keep in mind that, like for scalar kernel methods,
a first n? cost is needed to use (input) kernels with infinite
dimensional feature maps, while the second n? cost allows
for handling infinite dimensional outputs. In the case of a
decomposable kernel, one has M; ;. = K K},. One only
needs two n? matrices, recovering the scalar complexity.

We now present a non-exhaustive list of admissible losses
(one may refer to Appendix A.3 for the proof).

Proposition 1. The following losses have Fenchel-Legendre
transforms verifying Assumptions I and 2:
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o Ui(y) = fy,zi)), 2z € Yand f : R —> R con-
vex. This encompasses maximum-margin regression,
obtained with z; = y; and f(t) = max(0,1 —¢).

o () = £y
fT(t) is continuous over R. This includes all
power functions %HyHg,for n>1land A > 0.

), f: Ry — R convex increasing s.t.
t —
e Y\ > 0, with By the centered ball of radius ),

= U(y) = Ayl
= U(y) = x8,(¥),

= (y) = Alyllog(llyl),
= {(y) = Alexp([ly[) = 1).

o Ui(y) = f(y—vi), [* verifying Assumptions I and 2.

e Any infimal convolution involving functions satisfying
Assumptions 1 and 2. This encompasses e-insensitive
losses (Sangnier et al., 2017), the Huber loss (Huber,
1964), and generally all Moreau or Pasch-Hausdorff
envelopes (Moreau, 1962; Bauschke et al., 2011).

2.2. Approximating the Dual Problem

If Assumption 3 is not satisfied, another way to get a finite
dimensional decomposition similar to that of Theorem 4
is to approximate the dual problem. This may be done by
restricting the dual variables to suitable finite dimensional
subsets of ), if the following hypothesis on kernel K holds.

Assumption 5. The kernel KC = k - A is a separable OVK,
with A a compact operator.

Recalling that A is by design self adjoint and positive, its
compactness then allows for a spectral decomposition: there
exists an orthonormal basis (wj);?ozl of ), and some positive
(Aj)7Z,, ordered in a non-increasing fashion and converging

to zero, such that A = Z;OZI Aj9; ® 15 (Osborn, 1975).

Using such a basis, one can say that there exists (w;)?_; €
(2(R)"™ such that Vi < n,dq; = Y72, ©i;4;. Since this
leads to an infinite size representation of the dual variables,
the idea is then to restrict the search space to the eigenspace
associated to the m largest eigenvalues of A, for some m >
0. Let YV, denote span({y;}7.,), and S = diag(\;)7.;.
An approximated dual problem reads

. n . 1 n
min _ Zgl (—Ozi)-Fm Z <Oéi,]C($i,$j)Oéj>y,

()71 €YVn i 3,j=1
(6)

We now state a condition similar to Assumption 2, which
makes the solution to Problem (6) computable.

Assumption 6. Vi < n,3L; : R?™ — R such that
Vw=(wj)jsm €R™, (=327, wj ¥;) = Li(w, Ri),
with R € R™*™ the matrix such that R;; = {y;,V;)y.

Remark 3. Assumption 6 is similar to Assumption 2, except
that the output Gram matrix KY is replaced by matrix R
storing the dot products between the orthonormal family
{1; =1 and the outputs. In particular, all losses explicited
in Proposition 1 have FL transforms verifying Assumption 6.

Theorem 5. Let K be an OVK meeting Assumption 5
andf :Y x Y — R be a loss function with FL transforms
satisfying Assumption 6. Then, Problem (6) is equivalent to

n 1
i Li (4, R:.) + —Tr (KXQSQT). (7
o, 241 Qe Bi) + 5o (KXQSQT) . 1)

Denoting by 0= [@ij] € R™™™ the solution to Problem (7),
the associated predictor is finally given by

n m

b= 303 k) A 0, ®)

i=1j=1

Remark 4. The rationale behind the above approximation
is that under compactness of A, Equation (8) constitutes
a reasonable approximation of Equation (2). Notice that
Kadri et al. (2016) use a truncated spectral decomposition
of the operator to implement a functional version of Kernel
Ridge Regression, without resorting to dualization however.

3. Application to Robust Losses

We now instantiate Theorem 4’s dual problem for three loss
functions encouraging data sparsity and robustness. They
write as infimal convolutions, and are thus hardly tractable
in the primal. Their dual problems enjoy simple resolution
algorithms that are thoroughly detailed. A stability analysis
is also carried out to highlight the hyperparameters impact.

3.1. Complete Dual Resolution for Three Robust Losses

As a first go, we recall the important notion of e-insensitive
losses. Following in the footsteps of Sangnier et al. (2017),
we extend them in a natural way from R” to any Hilbert
space ). To avoid additional notation, in this subsection ¢
denotes the loss taken w.r.t. one argument (previously ¢;).

Definition 3. Ler ¢ : Y — R, be a convex loss such that
£(0) = 0, and € > 0. The e-insensitive version of ¢, denoted
L, is defined by L. (y) = ({0 x5.)(y), or again:

0 iflyly < e
inf {(y — ed)

ldly<1

otherwise

Vyel, Ee(y) :{

In other terms, £, (y) is the smallest value of £ within the ball
of radius e centered at y. As revealed by the next definition,
natural choices for ¢ yield extensions of celebrated scalar
loss functions to infinite dimensional Hilbert spaces.
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Definition 4. If¢{ = |- |y, then |- |y, = max(]-|y —¢,0),
and the related problem is the natural extension of e-SVR.

Ife =13 then | - |3, . = max(]| - |y — €,0)% and the
related problem is called the e-insensitive Ridge regression.

The third framework that nicely falls into our resolution

methodology is the Huber loss regression (Huber, 1964).

Tailored to induce robustness, the Huber loss function does
not feature convolution with xs_ but rather between the first
two powers of the Hilbert norm (that used in Definition 4).

Definition 5. The Huber loss of parameter k is given by
Ur(y) = (6] - |y O3] - 13) (). or again:

sl flyly <=

Vye), lm, =
y k(YY) { /f(HyHy—%) otherwise

Due to its asymptotic behavior as | - |y, the Huber loss is
useful when the training data is heavy tailed or contains
outliers. Illustrations of Definitions 4 and 5’s loss functions
in one and two dimensions are available in Appendix B.
Interestingly, Problem (5) for these three losses — and an
identity decomposable kernel — admits a very nice writing,
allowing for an efficient resolution.

Theorem 6. If K = k Iy, the solutions to the e-Ridge
regression, k-Huber regression, and €-SVR primal problems

1S s Ao
(P1)  min %;Hh(ﬂci)—yz-Hy,eJrthHH,c,
(P2 min 2 Y by (he) — )+ D2
hrél?{lrllc n H.,k Z; Yi 2 Hico

@
Il
—_

A
[h(2:) = willy,e + S [Rl3ec

-

s
Il
—

1
(P3) min —
heH n

are given by Equation (4), with QO =WV~ and W the
solution to the respective finite dimensional dual problems

1 2
D1 i —||[AW — B W
( ) Wrerlkl?x” 2 H HFro +e H 2,15
min — —
WeRnxn 2 Fro»
5.1 w 2,00 S K,
(D3) : . |AW — B|  +€||W|
min — _ €
WeRnxn 2 Fro 2,1,
St W2, < 1,

with V, A, B such that: VVT = KY, ATA = K~ 11,
(or ATA = KX /(An) for the e-SVR), and ATB = V.

Theorem 6’s proof is detailed in Appendix A.5. If K is not
identity decomposable, but only satisfies Assumption 4, the

dual problems do not admit compact writings such as those
of Theorem 6. Nonetheless, they are still easily solvable,
and the standard Ridge regression is recovered for € = 0 or
K = +00. This is discussed at length in the Appendix.

Problem (D1) is a Multi-Task Lasso problem (Obozinski
et al., 2010). It can be solved by Projected Gradient Descent
(PGD), that involves the Block Soft Thresholding operator
such that BST(z,7) = (1 —7/|z[), x. Problem (D2)
is a constrained least square problem, that also admits a
resolution through PGD, but with the Projection operator
such that Proj(x, 7) = min (7/||z||, 1) «. Finally, Problem
(D3) combines both non-smooth terms and consequently
both projection steps. Given a stepsize 1), and 7' a number of
epoch, the algorithms are detailed in Algorithm 1. Note that
K’s Singular Value Decomposition is not necessary, since
the computations only involve ATA = K and ATB = V.

Algorithm 1 Projected Gradient Descents (PGDs)

input : Gram matrices KX, K, parameters A, ¢, &

init : K = LK¥ 41, (or K = L KX for e-SVR),
KY =VVT, W = Ognsn

for epoch from 1 to T do

// gradient step
W =W —nEW —V)
// projection step
for row i from 1 to n do
W;. = BST (W, €) // if Ridge or SVR
W;. = Proj (W;.,korl) // if Huber or SVR
return W

3.2. Approximate Dual Resolution with Huber Loss

In this section we solve Problem (6) for the Huber loss and
Y = L?[O, u], with © a compact set endowed with measure
w. A classical choice of OVK is then I = ky - Tk, kx being
a scalar kernel over the inputs, and T}, the integral operator
associated to a scalar kernel k: © x © — R defined for all
g€ L?[©,u] by Tig = §g k(-,0)g(0)ds(0). Continuity of
k grants compactness of T}, allowing for the methodology
presented in Section 2.2. In the following, (A;, ;)74
denotes the eigendecomposition of T}, which is dependent
both in k and p, and can be obtained by solving a differential
equation derived from the eigenvalue problem. However,
given that the optimal kernel k is unknown, one can choose a
Hilbertian basis {1/;}%2, of L*[©, u] and a non-increasing
summable sequence (\;)72; € RY to construct the kernel
k, which gives direct access to T},’s eigendecomposition.

Theorem 7. For an OVK K = kx Ty, an approximate
solution to the Huber loss regression problem

' 1 n A 9
hrél71-[n,c E izzlgH,m(h(xz) - yz) + 5”}7’”7{;@
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is given by Equation (8), with Q) the solution to the following
constrained quadratic problem (with R as in Assumption 6),
that can be tackled by PGD in the spirit of Algorithm 1:

min
QeRnxm

s.t. 19|

} T L X T _ T
’I‘r(2QQ + o KT0seT —QRT ),

2,00 S K.

)
Remark 5. When & is large, one recovers the unconstrained
Ridge regression problem, whose solution enjoys a closed
form expression, and for which a resolution method based
on an approximation of the inverse of the integral operator
Ty was presented in Kadri et al. (2016).

3.3. Stability Analysis

Algorithm stability is a notion introduced by Bousquet and
Elisseeff (2002). It links the stability of an algorithm, i.e.
how removing a training observation impacts the algorithm
output, to the algorithm generalization capacity, i.e. how
far the empirical risk of the algorithm output is to its true
risk. The rationale behind this approach is that standard
analyses of Empirical Risk Minimization rely on a crude
approximation consisting in bounding the empirical process
supjey [Rn(h) — R(h)]. Indeed, considering a supremum
over the whole hypothesis set seems very pessimistic, as
decision functions with high discrepancy | R, (h) — R(h)|
would hopefully not be selected by the algorithm. However,
the limitation of stability approaches lies in that algorithms
performances are never compared to an optimal solution h*.
Nevertheless, their capacity to deal with OVK machines
without making the trace-class assumption (as opposed to
Rademacher-based strategies, see e.g. Maurer and Pontil
(2016)) make them particularly well suited to our setting. In
the footsteps of Audiffren and Kadri (2013), we now derive
stability bounds for our algorithms, which are all the more
relevant as they make explicit the role of hyperparameters.
For any algorithm A, /1 4(s) and h 4(s\iy denote the decision
functions output by the algorithm, respectively trained on
samples S and S\' = S\{(z;,:)}. Notice that symmetry
among observations in Problem (1) cancels the impact of <.
Formally, algorithm stability states as follows.

Definition 6. (Bousquet and Elisseeff, 2002) Algorithm A
has stability (3 if for any sample S, and any i@ < #S8, it holds:
SUP (g y)ex xy |€(hA(S) (‘r)a y) - g(hA(S\i)(x)v y)| < ﬁ
Assumption 7. There exists M > 0 such that for any
sample S and any realization (z,y) € X x Y of (X,Y)
it holds: é(hA(s) (I), y) < M.

Theorem 8. (Bousquet and Elisseeff, 2002) Let A be an
algorithm with stability 8 and loss function satisfying
Assumption 7. Then, for any n = 1 and § €]0, 1 it holds
with probability at least 1 — §:

Stability for OVK machines such as in Problem (1) may be
derived from the following two assumptions.

Assumption 8. There exists v > 0 such that for any input
observation x € X it holds: |K(x,x)||,, < %

Assumption 9. There exists C > 0 such that for any point
(z,y) € X x Y, any sample S, and any i < #S, it holds:
[£(hs(z),y) = Lhsi(z),y)| < Clhs(x) — hsvi(z)|y.

Theorem 9. (Audiffren and Kadri, 2013) If Assumptions 8
and 9 hold, then the algorithm returning the solution to

Problem (1) has 3 stability with 3 < C?~%/(An).

In order to get generalization bounds, we shall now derive
constants M and C' of Assumptions 7 and 9 respectively.
This is usually done under the following assumption.

Assumption 10. There exists My > 0 such that for any
realization y € Y of Y it holds: |y|y < My.

Remark 6. It should be noticed that in structured prediction
or structured data representation this assumption is directly
Sulfilled with My = 1. Indeed, outputs (and potentially
inputs) are actually some y; = ¢(z;), with ¢ the canonical
feature map associated to a scalar kernel, so that it suffices
to choose a normalized kernel to satisfy Assumption 10.

Theorem 10. Under Assumption 10, algorithms previously
described satisfy Assumptions 7 and 9 with constants M
and C as detailed in Figure 1.

4. Applications and Numerical Experiments

In this section, we discuss some applications unlocked by
vv-RKHSs with infinite dimensional outputs. In particular,
structured prediction, structured representation learning, and
functional regression are formally described, and numerical
experiments highlight the benefits of the losses introduced.

4.1. Application to Structured Output Prediction

Assume one is interested in learning a predictive decision
rule f from a set X’ to a complex structured space Z. To
bypass the absence of norm on Z, one may design a (scalar)
kernel £ on Z, whose canonical feature map ¢ : z — k(-, 2)
transforms any element of Z into an element of the (scalar)
RKHS associated to k, denoted ) (= Hj). Learning a
predictive model f from X to Z boils down to learning
a surrogate vector-valued model i from X to ), which is
searched for in the vv-RKHS H - associated to an OVK C
by solving the following regularized empirical problem.

1 & A
h = argmin — Y £(h(z;), ¢(2)) + g\muiﬁc. (10)

heHi N i=1

Once h is learned, the predictions in Z are produced through
a pre-image problem f(x) = argmin , .z ¢(¢(2), h(x)).
This approach called Input Output Kernel Regression has
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Figure 1. Algorithms Constants

been studied in several works (Brouard et al., 2011; Kadri
et al., 2013). As an instance of the general Output Kernel
Regression scheme of Figure 2, it belongs to the family
of Surrogate Approaches for structured prediction (see e.g.
Ciliberto et al. (2016)). While previous works have focused
on identity decomposable kernels only, with the squared loss
or hinge loss (Brouard et al., 2016b), our general framework
allows for many more losses. The use of an e-insensitive
loss in Problem (10), in particular, seems adequate as it is
a surrogate task, and inducing small mistakes that do not
harm the inverse problem, while improving generalization,
sounds as a suitable compromise. We thus advocate to solve
structured prediction in vv-RKHSs by using losses more
sophisticated than the squared norm. In the following, the
variants of IOKR are called accordingly to the loss they
minimize: e-SV-IOKR, e-Ridge-IOKR, and Huber-IOKR.

YEAST dataset. Although our approach’s main strength
of is to predict infinite dimensional outputs, we start with
a simpler standard structured prediction dataset composed
of 14-dimensional outputs (the so-called YEAST dataset
Finley and Joachims (2008)) described in the Supplements,
on which comparisons and interpretations are easier. We
have collected results from Finley and Joachims (2008) and
Belanger and McCallum (2016), and benchmarked our three
algorithms. Hyperparameters A, €, x have been selected
among geometrical grids by cross-validation on the train
dataset solely, and performances evaluated on the same test
set as the above publications. Results in terms of Hamming
error are reported in Figure 6, with significant improvements
for the e-Ridge-IOKR and Huber-IOKR. Furthermore, in
order to highlight the interactions between our two ways
of regularizing, i.e. the RKHS norm and the e-insensitivity,
we have plotted the e-Ridge-IOKR Mean Square Errors
(the Hamming before clamping) and solution sparsity with
respect to A for € varying from le-5 to 1.5 (Figures 3 and 4):
A and e seem to act as competitive regularizations. When
A is small, the regularization in € is efficient, as solution
with the best MSE is obtained for € around 0.6. Conversely,
when A is big, no sparsity is induced, and having a high
€ induces too much regularization. Similar graphs for the
e-SVR and k-Huber are available in the Supplements, that
highlight the superiority of the approaches for a wide range
of hyperparameters. A linear output kernel was used, such
that solving the inverse problem boils down to clamping.

Figure 2. Output Kernel Regression

Metabolite dataset. Regarding the infinite dimensional
outputs, we have considered the metabolite identification
problem (Schymanski et al., 2017), in which one aims at
predicting molecules from their mass spectra. For this task,
Ridge-IOKR is the state-of-the-art approach, corresponding
to our e-Ridge-IOKR with € = 0. Given the high number of
constraints, Structured SVMs are not tractable as confirmed
by our tests using the Pystruct lib implementation (Miiller
and Behnke, 2014). This was already noticed in Belanger
and McCallum (2016) (14 is the maximum output dimension
on which SSVMs were tested), and the implementation we
tried indeed yielded very poor results despite prolonged
training (5%, 31%, 45% top-k errors). We thus investigated
the advantages of substituting the standard Ridge Regression
for its e-insensitive version or a Huber regression. Outputs
(i.e. metabolites) are embedded in an infinite dimensional
Hilbert space through a Tanimoto-Gaussian kernel with 0.72
bandwidth. The dataset, presented in the Supplements and
described at length in Brouard et al. (2016a), is composed of
6974 mass spectra, while algorithms are compared through
the top-k accuracies, £ = 1,10,20. Two A’s have been
picked for their interesting behavior: one that yields the best
performance for Ridge-IOKR, and the second that gives the
best overall scores (hyperparameters € and s being chosen
to produce the best scores each time). Again, results of
Table 1 show improvements due to robust losses that are all
the more important as the norm regularization is low, with
an improvement on the best overall score.

Table 1. Top 1/10/ 20 test accuracies (%)

A le-6 le-4
RIDGE-IOKR  35.7]79.9|86.6 38.1|82.0]88.9
e-RIDGE-IOKR  37.1|81.7|88.3 36.3|81.2|87.9
HUBER-IOKR  38.3[82.2[89.1 37.7|81.988.8

4.2. Structured Representation Learning

Extracting vectorial representations from structured inputs
is another task that can be tackled in vv-RKHSs (Laforgue
et al., 2019). This is a relevant approach in many cases:
when complex data are uniquely available under the form
of a similarity matrix for instance, for preserving privacy, or
when deep neural networks fail to tackle structured objects
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as raw data. Embedding data into a Hilbert space makes
sense. Then, composing functions in vv-RKHSs results in
a Kernel Autoencoder (KAE, Figure 5) that outputs finite
codes by minimizing the (regularized) discrepancy:

n

i 2 1960) ~ f20 FGGIE + A Reg(, o) (1)
Again, this reconstruction loss is not the real goal, but rather
a proxy to make the internal representation meaningful.
Therefore, all incentives to use e-insensitive losses or the
Huber loss still apply. The inferred e-KAE and Huber-KAE,
obtained by changing the loss function in Problem (11),
are optimized as follows: the first layer coefficients are
updated by Gradient Descent, while the second ones are
reparametrized into W and updated through PGD (instead
of KRR closed form for standard KAEs). This has been
applied to a drug dataset, introduced in Su et al. (2010)
as an extract from the NCI-Cancer database. As shown
in Figure 7, the e-insensitivity improves the generalization
while inducing sparsity. The e-insensitive framework is thus
particularly promising in the context of Autoencoders.

4.3. Function-to-Function Regression

Regression with both inputs and outputs of functional nature
is a challenging problem at the crossroads of Functional
Data Analysis (Ramsay and Silverman, 2007) and Machine
Learning (Kadri et al., 2016). While Functional Linear

Figure 7. Reconstruction error w.r.t. €

e e 0.0 0.5 1.0 L5

Figure 8. LOO error w.r.t. K

Modeling is the most common approach to address function-
to-function regression, nonparametric approaches based on
vv-RKHSs have emerged, that rely on the minimization of
a squared loss. However, robustness to abnormal functions
is particularly meaningful in a field where data come from
sensors and are used to monitor physical assets. To the best
of our knowledge, robust regression has only been tackled
in the context of Functional Linear Models (Kalogridis and
Van Aelst, 2019). We propose here to highlight the relevance
of OVK machines learned with a Huber loss by solving
Problem (9) for various levels «.

Lip acceleration from EMG dataset. We consider the
problem of predicting lip acceleration among time from
electromyography (EMG) signals (Ramsay and Silverman,
2007). The dataset consists of 32 records of the lower lip
trajectory over 641 timestamps, and the associated EMG
records, augmented with 4 outliers to assess the robustness
of our approach. Usefulness of minimizing the Huber loss
is illustrated in Figure 8 by computing the Leave-One-Out
(LOO) error associated to each model for various values
of m. For each m, as x grows larger than a threshold,
the constraint on |€2[|2 o, becomes void and we recover the
Ridge Regression solution. The kernel chosen is given by
ha(rn,ma) = §oexp (j21(6) = z2(0))d6. with ()7,
being the harmonic basis in sine and cosine of L?[0, 1], and
Ay = (/G + D)7,
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4.4. Related Work

Another application of the presented results, both theoretical
and computational, is the generalization of the loss trick, see
e.g. Ciliberto et al. (2016). In the context of Output Kernel
Regression, the latter stipulates that for suitable losses, the
decoding expresses in terms of loss evaluations. The work
by Luise et al. (2019) has extended this trick to penalization
schemes different from the natural vv-RKHS norm. Our
findings, and the double expansion in particular, suggest
that the loss trick can still be used with other surrogate loss
functions than the squared norm, opening the door to a wide
range of applications.

5. Conclusion

This work presents a versatile framework based on duality
to learn OVK machines with infinite dimensional outputs.
The case of convolved losses (e.g. e-insensitive, Huber) is
thoroughly tackled, from algorithmic procedures to stability
analysis. This offers novel ways to enforce sparsity and
robustness when learning within vv-RKHSs, opening an
avenue for new applications on structured and functional
data (e.g. anomaly detection, robust prediction). Future
research directions could feature a calibration study of these
novel surrogate approaches, or the introduction of kernel
approximations such as random Fourier features, that would
benefit our framework twice: both in input and in output.
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