
Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses

The Supplementary Material is organized as follows. Appendix A collects the technical proofs of the core article’s results.
Appendix B provides illustrations of the main loss functions considered (ε-insensitive Ridge and SVR, κ-Huber) in 1 and 2
dimensions. Appendix C gathers additional details about the experimental protocols and the code furnished.

A. Technical Proofs
A.1. Proof of Theorem 3

First, notice that the primal problem

min
hPHK

1

n

n
ÿ

i“1

`phpxiq, yiq `
Λ

2
}h}2HK

can be rewritten

min
hPHK

n
ÿ

i“1

`ipuiq `
Λn

2
}h}2HK

,

s.t. ui “ hpxiq @i ď n.

Therefore, with the notation u “ puiqiďn and α “ pαiqiďn, the Lagrangian writes

L ph,u,αq “
n
ÿ

i“1

`ipuiq `
Λn

2
}h}2HK

`

n
ÿ

i“1

xαi, ui ´ hpxiqyY ,

“

n
ÿ

i“1

`ipuiq `
Λn

2
}h}2HK

`

n
ÿ

i“1

xαi, uiyY ´
n
ÿ

i“1

xKp¨, xiqαi, hyHK
.

Differentiating with respect to h and using the definition of the Fenchel-Legendre transform, one gets

gpαq “ inf
hPHK,uPYn

L ph,u,αq,

“

n
ÿ

i“1

inf
uiPY

 

`ipuiq ` xαi, uiyY
(

` inf
hPHK

#

Λn

2
}h}2HK

´

n
ÿ

i“1

xKp¨, xiqαi, hyHK

+

,

“

n
ÿ

i“1

´`‹i p´αiq ´
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY ,

together with the equality ĥ “
1

Λn

n
ÿ

i“1

Kp¨, xiqαi. The conclusion follows immediately.

A.2. Proof of Theorem 4

As a reminder, our goal is to compute the solutions to the following problem:

ĥ P argmin
hPHK

1

n

n
ÿ

i“1

`phpxiq, yiq `
Λ

2
}h}2HK

.

Using Theorem 3, one gets that ĥ “ 1
Λn

řn
i“1Kp¨, xiqα̂i, with the pα̂iqiďn satisfying:

pα̂iq
n
i“1 P argmin

pαiqni“1PYn

n
ÿ

i“1

`‹i p´αiq `
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY .

However, this optimization problem cannot be solved in a straightforward manner, as Y is in general infinite dimensional.
Nevertheless, it is possible to bypass this difficulty by noticing that the optimal pα̂iqiďn actually lie in Yn. To show this, we
decompose each coefficient as α̂i “ αY

i ` α
K
i , with pαY

i qiďn, pα
K
i qiďn P Y

n
ˆYK

n
. Then, noticing that non-null pαKi qiďn

necessarily increase the objective, we can conclude that the optimal pα̂iqiďn have no components among YK, or equivalently
pertain to Y. Indeed, by virtue of Assumptions 1 and 3, it holds:
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n
ÿ

i“1

`‹i p´α
Y
i q `

1

2Λn

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j

D

Y ď
n
ÿ

i“1

`‹i p´α
Y
i ´ α

K
i q `

1

2Λn

n
ÿ

i,j“1

@

αY
i ` α

K
i ,Kpxi, xjqpαY

j ` α
K
j q
D

Y .

If the inequality about `‹i follows directly Assumption 1, that about Kpxi, xjq can be obtained by Assumption 3 as follows:

n
ÿ

i,j“1

@

αY
i ` α

K
i ,Kpxi, xjqpαY

j ` α
K
j q
D

Y

“

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j q
D

Y ` 2
n
ÿ

i,j“1

@

αKi ,Kpxi, xjqαY
j

D

Y `
n
ÿ

i,j“1

@

αKi ,Kpxi, xjqαKj
D

Y ,

“

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j q
D

Y `
n
ÿ

i,j“1

@

αKi ,Kpxi, xjqαKj
D

Y ,

ě

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j q
D

Y ,

where we have used successively Assumption 3 and the positiveness of K. So there exists Ω “ rωijs1ďi,jďn P Rnˆn such
that for all i ď n, α̂i “

ř

j ωij yj . This proof technique is very similar in spirit to that of the Representer Theorem, and
yields an analogous result, the reduction of the search space to a smaller vector space, as discussed at length in the main text.
The dual optimization problem thus rewrites:

min
ΩPRnˆn

n
ÿ

i“1

`‹i

˜

´

n
ÿ

j“1

ωij yj

¸

`
1

2Λn

n
ÿ

i,j“1

C

n
ÿ

k“1

ωik yk,Kpxi, xjq
n
ÿ

l“1

ωjl yl

G

Y

min
ΩPRnˆn

n
ÿ

i“1

Li
`

pωijqjďn,K
Y
˘

`
1

2Λn

n
ÿ

i,j,k,l“1

ωik ωjl

C

yk,
T
ÿ

t“1

ktpxi, xjqAtyl

G

Y
,

min
ΩPRnˆn

n
ÿ

i“1

Li
`

Ωi:,K
Y
˘

`
1

2Λn
Tr

´

M̃JpΩb Ωq
¯

, (12)

with M the n ˆ n ˆ n ˆ n tensor such that Mijkl “ xyk,Kpxi, xjqylyY , and M̃ its rewriting as a n2 ˆ n2 block matrix
such that its pi, jq block is the nˆ n matrix with elements M̃ pi,jq

st “ xyj ,Kpxi, xsqytyY .

The second term is quadratic in Ω, and consequently convex. As for the Li’s, they are basically rewritings of the Fenchel-
Legendre transforms `‹i ’s that ensure the computability of the problem (they only depend on KY , which is known).
Regarding their convexity, we know by definition that the `‹i ’s are convex. Composing by a linear function preserving the
convexity, we know that each Li is convex with respect to Ωi:, and therefore with respect to Ω.

Thus, we have first converted the infinite dimensional primal problem inHK into an infinite dimensional dual problem in
Yn, which in turn is reduced to a convex optimization procedure over Rnˆn, that only involves computable quantities.

If K satisfies Assumption 4, the tensor M simplifies to

Mijkl “ xyk,Kpxi, xjqylyY “
T
ÿ

t“1

ktpxi, xjq xyk, AtylyY “
T
ÿ

t“1

rKX
t sijrK

Y
t skl,

and the problem rewrites

min
ΩPRnˆn

n
ÿ

i“1

Li
`

Ωi:,K
Y
˘

`
1

2Λn

T
ÿ

t“1

Tr
`

KX
t ΩKY

t ΩJ
˘

.

Remark 7. The second term of Problem (12) can be easily optimized. Indeed, let M̃ be a block matrix such that
M̃
pi,jq
st “ M̃

ps,tq
ij for all i, j, s, t ď n. Notice that M̃ as defined earlier satisfies this condition as a direct consequence of the

OVK symmetry property. Then it holds:
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BTr
´

M̃JpΩb Ωq
¯

Bωst
“ 2Tr

´

M̃ ps,tqJΩ
¯

.

Indeed, notice that Tr
´

M̃JpΩb Ωq
¯

“
řn
i,j“1 ωijTr

´

M̃ pi,jqJΩ
¯

and use the symmetry assumption. In the particular

case of a decomposable kernel, it holds that M̃ pi,jq “ KX
i: K

Y
j:
J so that

BTr
´

M̃JpΩb Ωq
¯

Bωst
“ 2Tr

´

M̃ ps,tqJΩ
¯

“ 2
n
ÿ

i,j“1

”

KX
s: K

Y
t:

J
ı

ij
ωij “ 2

n
ÿ

ij“1

KX
siK

Y
tjωij “ 2

“

KXΩKY
‰

st
,

and one recovers the gradients established in Equation (15).

A.3. Proof of Proposition 1

The proof technique is the same for all losses: first explicit the FL transforms `‹i , then use simple arguments to verify
Assumptions 1 and 2. For instance, any increasing function of }α} automatically satisfy the assumptions.

• Assume that ` is such that there is f : R Ñ R convex, @i ď n, Dzi P Y, `ipyq “ fpxy, ziyq. Then `‹i : Y Ñ R
writes `‹i pαq “ supyPY xα, yy ´ fpxy, ziyq. If α is not collinear to zi, this quantity is obviously `8. Otherwise,
assume that α “ λzi. The FL transform rewrites: `‹i pαq “ supt λt ´ fptq “ f‹pλq “ f‹p˘}α}{}zi}q. Finally,

`‹i pαq “ χspanpziqpαq ` f
‹

´

˘
}α}
}zi}

¯

. If α R Y , then a fortiori α R spanpziq, so `‹i pα
Y ` αKq “ `8 ě `‹i pα

Y q for all

pαY , αKq P Y ˆY K. For all i ď n, `‹i satisfy Assumption 1. As for Assumption 2, if α “
řn
i“1 ciyi, then χspanpziqpαq

only depends on the pciqiďn Indeed, assume that zi P Y writes
ř

j bjyj . Then χspanpziqpαq is equal to 0 if there exists
λ P R such that cj “ λbj for all j ď n, and to `8 otherwise. The second term of `‹i depending only on }α}, it directly
satisfies Assumption 2. This concludes the proof.

• Assume that ` is such that there is f : R` Ñ R convex increasing, with f 1ptq
t continuous over R`, `pyq “ fp}y}q.

Although this loss may seem useless at the first sight since ` does not depend on yi, it should not be forgotten that the
composition with y ÞÑ y ´ yi does not affect the validation of Assumptions 1 and 2 (see below). One has: `‹pαq “
supyPY xα, yy ´ fp}y}q. Differentiating w.r.t. y, one gets: α “ f 1p}y}q

}y} y, which is always well define as t ÞÑ f 1ptq
t is

continuous over R`. Reverting the equality, it holds: y “ f 1´1
p}α}q
}α} α, and `‹pαq “ }α}f 1´1

p}α}q´f ˝f 1
´1
p}α}q. This

expression depending only on }α}, Assumption 2 is automatically satisfied. Let us now investigate the monotonicity
of `‹ w.r.t. }α}. Let g : R` Ñ R such that gptq “ tf 1

´1
ptq ´ f ˝ f 1

´1
ptq. Then g1ptq “ f 1

´1
ptq ě 0. Indeed, as

f 1 : R` Ñ R` is always positive due to the monotonicity of f , so is f 1´1. This final remark guarantees that `‹ is
increasing with }α}. It is then direct that `‹ fulfills Assumption 1.

• Assume that `pyq “ λ}y}. It holds `‹pαq “ χBλpαq. So `‹ is increasing w.r.t. }α}: it fulfills Assumptions 1 and 2.

• Assume that `pyq “ χBλpyq. It holds `‹pαq “ λ}α}. The monotonicity argument also applies.

• Assume that `pyq “ λ}y} logp}y}q. It can be shown that `‹pαq “ λe
}α}
λ ´1. The same argument as above applies.

• Assume that `pyq “ λpexpp}y}q ´ 1q. It can be shown that `‹pαq “ It}α} ě λu ¨
´

}α} log
´

}α}
λe

¯

` λ
¯

. Again, the
FL transform is an increasing function of }α}: it satisfies Assumptions 1 and 2.

• Assume that `ipyq “ fpy ´ yiq, with f such that f‹ fulfills Assumptions 1 and 2. Then `‹i pαq “ supyPY xα, yy ´
fpy ´ yiq “ f‹pαq ` xα, yiy. If f‹ satisfies Assumptions 1 and 2, then so does `‹i . This remark is very important, as it
gives more sense to loss function based on }y} only, since they can be applied to y ´ yi now.

• Assume that there exists f, g satisfying Assumptions 1 and 2 such that `ipyq “ pf � gqpyq, where � denotes the
infimal convolution, i.e. pf � gqpyq “ infx fpxq ` gpy ´ xq. Standard arguments about FL transforms state that
pf � gq‹ “ f‹ ` g‹, so that if both f and g satisfy Assumptions 1 and 2, so does f � g. This last example allows to
deal with ε-insensitive losses for instance (convolution of a loss and χBε ), the Huber loss (convolution of }.} and }.}2),
or more generally all Moreau envelopes (convolution of a loss and 1

2}.}
2).
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A.4. Proof of Theorem 5

The proof of Theorem 5 is straightforward: since the dual space rYm is of finite dimension m, the dual variable can be
written as a linear combination of the tψjumj“1 to get Problem (7).

A.5. Proof of Theorem 6

A.5.1. ε-RIDGE – FROM PROBLEM pP1q TO pD1q

Applying Theorem 3 together with the Fenchel-Legendre transforms detailed in the proof of Proposition 1, a dual to the
ε-Ridge regression primal problem is:

min
pαiqni“1PYn

1

2

n
ÿ

i“1

}αi}
2
Y ´

n
ÿ

i“1

xαi, yiyY ` ε
n
ÿ

i“1

}αi}Y `
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY ,

min
pαiqni“1PYn

1

2

n
ÿ

i,j“1

B

αi,

ˆ

δijIY `
1

Λn
Kpxi, xjq

˙

αj

F

Y
´

n
ÿ

i“1

xαi, yiyY ` ε
n
ÿ

i“1

}αi}Y .

By virtue of Theorem 4, we known that the optimal pαiqni“1 P Yn are in Yn. After the reparametrization αi “
ř

j ωij yj ,
the problem rewrites:

min
ΩPRnˆn

1

2
Tr

´

K̃ΩKY ΩJ
¯

´Tr
`

KY Ω
˘

` ε
n
ÿ

i“1

b

rΩKY ΩJsii, (13)

with Ω, K̃, KY the nˆ n matrices such that rΩsij “ ωij , K̃ “ 1
ΛnK

X ` In, and rKY sij “ xyi, yjyY .

Now, let KY “ UΣUJ “
`

UΣ1{2
˘ `

UΣ1{2
˘J
“ V V J be the SVD of KY , and let W “ ΩV . Notice that KY is positive

semi-definite, and can be made positive definite if necessary, so that V is full rank, and optimizing with respect to W is
strictly equivalent to minimizing with respect to Ω. With this change of variable, Problem (13) rewrites:

min
WPRnˆn

1

2
Tr

´

K̃WWJ
¯

´Tr
`

V JW
˘

` ε}W }2,1, (14)

with }W }2,1 “
ř

i }Wi:}2 the row-wise `2,1 mixed norm of matrix W . With K̃ “ AJA the SVD of K̃, and B such
that AJB “ V , one can add the constant term 1

2TrpA
J´1

V V JA´1q “ 1
2TrpBB

Jq to the objective without changing
Problem (14). One finally gets the Multi-Task Lasso problem:

min
WPRnˆn

1

2
}AW ´B}2Fro ` ε}W }2,1.

We also emphasize that we recover the solution to the standard Ridge regression when ε “ 0. Indeed, coming back to
Problem (13) and differentiating with respect to Ω, one gets:

K̃Ω̂KY ´KY “ 0 ðñ Ω̂ “ K̃´1,

which is exactly the standard kernel Ridge regression solution, see e.g. Brouard et al. (2016b).

Furthermore, notice that when K is not identity decomposable, but only satisfies Assumption 4, then Problem (14) cannot
be factorized that easily. Nonetheless, it admits a simple resolution, as detailed in the following lines. After the Ω
reparametrization, the problem writes

min
ΩPRnˆn

1

2
TrpΩKY ΩJq ´Tr

`

KY Ω
˘

` ε
n
ÿ

i“1

b

rΩKY ΩJsi,i `
1

2Λn

T
ÿ

t“1

TrpKX
t ΩKY

t ΩJq,

min
WPRnˆn

1

2
TrpWWJq `

1

2Λn

T
ÿ

t“1

TrpKX
t WK̃Y

t W
Jq ´Tr

`

V JW
˘

` ε}W }2,1,
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with KY “ V V J, W “ ΩV , K̃Y
t “ V ´1KY

t pV
Jq´1. Due to the different quadratic terms, this problem cannot be

summed up as a Multi-Task Lasso like before. However, it may still be solved, e.g. by proximal gradient descent. Indeed,
the gradient of the smooth term (i.e. all but the `2,1 mixed norm) reads

W `
1

Λn

T
ÿ

t“1

KX
t WK̃Y

t ´ V, (15)

while the proximal operator of the `2,1 mixed norm is

proxε } ¨ }2,1pW q “

¨

˝

|

proxε } ¨ }2pWi:q

|

˛

‚“

¨

˚

˝

|
´

1´ ε
}Wi:}2

¯

`
Wi:

|

˛

‹

‚

“

¨

˝

|

BSTpWi:, εq
|

˛

‚.

Hence, even in the more involved case of an OVK satisfying only Assumption 4, we have designed an efficient algorithm to
compute the solutions to the dual problem.

A.5.2. κ-HUBER – FROM PROBLEM pP2q TO pD2q

Basic manipulations give the Fenchel-Legendre transforms of the Huber loss:

´

y ÞÑ `H,κpy ´ yiq
¯‹

pαq “

ˆ

κ} ¨ }Y �
1

2
} ¨ }2Y

˙‹

pαq ` xα, yiyY ,

“ pκ} ¨ }Yq
‹
pαq `

ˆ

1

2
} ¨ }2Y

˙‹

pαq ` xα, yiyY ,

“ χBκpαq `
1

2
}α}2Y ` xα, yiyY .

Following the same lines as for as for the ε-Ridge regression, the dual problem writes

min
pαiqni“1PYn

1

2

n
ÿ

i,j“1

B

αi,

ˆ

δijIY `
1

Λn
Kpxi, xjq

˙

αj

F

Y
´

n
ÿ

i“1

xαi, yiyY `
n
ÿ

i“1

χκp}αi}Yq,

or again after the reparametrization in Ω

min
ΩPRnˆn

1

2
Tr

´

K̃ΩKY ΩJ
¯

´Tr
`

KY Ω
˘

s.t.
b

rΩKY ΩJsii ď κ @i ď n

The same change of variable permits to conclude.

When K is not identity decomposable, but only satisfies Assumption 4, the problem rewrites

min
WPRnˆn

1

2
TrpWWJq `

1

2Λn

T
ÿ

t“1

TrpKX
t WK̃Y

t W
Jq ´Tr

`

V JW
˘

,

s.t. }Wi:}2 ď κ @i ď n,

Again, the gradient term is given by Equation (15), while the projection is similar to the identity decomposable case. The
only change thus occurs in the gradient step of Algorithm 1, with a replacement by the above formula.

Notice that if κ tends to infinity, the problem is unconstrained, and one also recovers the standard Ridge regression solution.

A.5.3. ε-SVR – FROM PROBLEM pP3q TO pD3q

The proof is similar to the above derivations except that the term
ř

i }αi}
2
Y does not appear in the dual, hence the change of

matrix K̃. Instead, the dual problem features both the `2,1 penalization and the `2,8 constraint.
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A.6. Proof of Theorem 7

The proof is similar to Appendix A.5.2, with the finite representation coming from Theorem 5.

A.7. Proof of Theorem 10

In this section, we detail the derivation of constants in Figure 1.

A.7.1. ε-SVR

Using that the null function is part of the vv-RKHS, it holds

Λ

2
}hApSq}

2
HK

ď R̂nphApSqq ď R̂np0HKq ďMY ´ ε, or again }hApSq}HK ď

c

2

Λ
pMY ´ εq.

Furthermore, the reproducing property and Assumption 8 give that for any x P X and any h P HK it holds

}hpxq}2 “
@

Kp¨, xqKp¨, xq#h, h
D

HK
ď
›

›Kp¨, xqKp¨, xq#
›

›

op }h}
2
HK

ď }Kpx, xq}op }h}
2
HK

ď γ2}h}2HK
.

Therefore, one gets that for any realization px, yq P X ˆ Y of pX,Y q it holds

`phApSqpxq, yq “ maxp}y ´ hApSqpxq}Y ´ ε, 0q ďMy ´ ε` }hApSqpxq}Y ď
a

MY ´ ε

˜

γ

c

2

Λ
`
a

MY ´ ε

¸

.

This gives M . As for C, one has

`phApSqpxq, yq ´ `phApSziqpxq, yq “ maxp}y ´ hApSqpxq}Y ´ ε, 0q ´maxp}y ´ hApSziqpxq}Y ´ ε, 0q.

If both norms are smaller than ε, then any value of C fits. If both norms are greater than ε, the difference reads

}y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y ď }hApSqpxq ´ hApSziqpxq}Y .

If only one norm is greater than ε (we write it only for hApSq as it is symmetrical), the difference may be rewritten

}y ´ hApSqpxq}Y ´ ε ď }y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y ď }hApSqpxq ´ hApSziqpxq}Y .

Hence we get C “ 1.

A.7.2. ε-RIDGE

Using the same reasoning as for the ε-SVR, one has

}hApSq}HK ď

c

2

Λ
pMY ´ εq and }hApSziq}HK ď

c

2

Λ
pMY ´ εq. (16)

Therefore, for any realization px, yq P X ˆ Y of pX,Y q it holds

`phApSqpxq, yq “ maxp}y ´ hApSqpxq} ´ ε, 0q
2 ď p}y}Y ´ ε` }hApSqpxq}Yq

2 ď pMY ´ εq
2

ˆ

1`
2
?

2γ
?

Λ
`

2γ2

Λ

˙

.

As for C, one has

`phApSqpxq, yq ´ `phApSziqpxq, yq “ maxp}y ´ hApSqpxq}Y ´ ε, 0q
2 ´maxp}y ´ hApSziqpxq}Y ´ ε, 0q

2.

If both norms are smaller than ε, any C fits. If both are larger than ε, using Equation (16) the difference becomes
`

}y ´ hApSqpxq}Y ` }y ´ hApSziqpxq}Y ´ 2ε
˘ `

}y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y
˘

,

ď 2pMY ´ εq

ˆ

1`
γ
?

2
?

Λ

˙

}hApSqpxq ´ hApSziqpxq}Y .
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If only one norm is greater than ε (again, the analysis is symmetrical), the difference may be rewritten

`

}y ´ hApSqpxq}Y ´ ε
˘2
ď
`

}y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y
˘2
ď }hApSqpxq ´ hApSziqpxq}

2
Y ,

ď
`

}hApSqpxq}Y ` }hApSziqpxq}Y
˘

}hApSqpxq ´ hApSziqpxq}Y ,

ď 2pMY ´ εq
γ
?

2
?

Λ
}hApSqpxq ´ hApSziqpxq}Y .

In every case C “ 2pMY ´ εq
`

1` γ
?

2{
?

Λ
˘

works, hence the conclusion.

A.7.3. κ-HUBER

Using the same techniques, one gets

}hApSq}HK ď

c

2κ

Λ

´

MY ´
κ

2

¯

and }hApSziq}HK ď

c

2κ

Λ

´

MY ´
κ

2

¯

,

and for any realization px, yq P X ˆ Y of pX,Y q

`phApSqpxq, yq ď κ

c

MY ´
κ

2

ˆ

γ
?

2κ
?

Λ
`

c

MY ´
κ

2

˙

.

If both norms are greater than κ, the difference `phApSqpxq, yq ´ `phApSziqpxq, yq writes

κ
´

}hApSqpxq ´ y}Y ´
κ

2

¯

´ κ
´

}hApSziqpxq ´ y}Y ´
κ

2

¯

ď κ}hApSqpxq ´ hApSziqpxq}Y .

If only one norm is greater than κ, one may upperbound the difference using the previous writing

κ
´

}hApSqpxq ´ y}Y ´
κ

2

¯

´
1

2
}hApSziqpxq ´ y}

2
Y ď κ

´

}hApSqpxq ´ y}Y ´
κ

2

¯

´ κ
´

}hApSziqpxq ´ y}Y ´
κ

2

¯

.

If both are smaller than κ, the difference becomes

1

2
}hApSqpxq ´ y}

2
Y ´

1

2
}hApSziqpxq ´ y}

2
Y ,

“
1

2

`

}hApSqpxq ´ y}Y ` }hApSziqpxq ´ y}Y
˘ `

}hApSqpxq ´ y}Y ´ }hApSziqpxq ´ y}Y
˘

,

ď κ}hApSqpxq ´ hApSziqpxq}Y ,

so that C “ κ.

A.8. Further Admissible Kernels for Assumption 3

In the continuation of Remark 1, we now exhibit several types of OVK that satisfy Assumption 3.

Proposition 2. The following Operator-Valued Kernels satisfy Assumption 3:

(i) @s, t P X 2, Kps, tq “ ř

i kips, tq yi b yi, with ki positive semi-definite (p.s.d.) scalar kernels for all i ď n.

(ii) @s, t P X 2, Kps, tq “ ř

i µi kps, tq yi b yi, with k a p.s.d. scalar kernel and µi ě 0 for all i ď n.

(iii) @s, t P X 2, Kps, tq “ ř

i kps, xiqkpt, xiq yi b yi,

(iv) @s, t P X 2, Kps, tq “ ř

i,j kijps, tq pyi ` yjq b pyi ` yjq, with kij p.s.d. scalar kernels for all i, j ď n.

(v) @s, t P X 2, Kps, tq “ ř

i,j µij kps, tq pyi ` yjq b pyi ` yjq, with k a p.s.d. scalar kernel and µij ě 0.

(vi) @s, t P X 2, Kps, tq “ ř

i,j kps, xi, xjqkpt, xi, xjq pyi ` yjq b pyi ` yjq.
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Proof.

piq For all psk, zkqkďn P pX ˆ Yqn, it holds:
ř

k,l xzk,Kpsk, slqzkyY “
ř

i

ř

k,l kips, tq xzk, yiyY xzl, yiyY , which is

positive by the positiveness of the scalar kernels ki’s. Notice that piiq and piiiq are then particular cases of piq.

piiq is an application of piq, as a kernel remains p.s.d. through positive multiplication. Observe that this kernel is separable.

piiiq is also a direct application of piq, kernel k1 : s, t ÞÑ kps, xiqkpt, xiq being indeed p.s.d. for all function k and point xi.

pivq is proved similarly to piq. The arguments used for piiq and piiiq also makes pvq and pviq direct applications of pivq.

Finally, notice that for pivq, pvq and pviq, any linear combination pνiyi ` νjyjq b pνiyi ` νjyjq, with 0 ď νi ď 1 for all
i ď n, could have been used instead of pyi ` yjq b pyi ` yjq.

B. Loss Functions Illustrations
In this section, we provide illustrations of the loss functions we used to promote sparsity and robustness. This includes
ε-insensitive losses (Definitions 3 and 4, Figures 9 and 10) and the κ-Huber loss (Definition 5, Figure 11). First introduced
for real outputs, their formulations as infimal convolutions allows for a generalization to any Hilbert space, either of finite
dimension (as in Sangnier et al. (2017)) or not, which is the general case addressed in the present paper. The ε-insensitive
loss functions promote sparsity, as reflected in the corresponding dual problems (see Theorem 6, Problems pD1q and pD3q
therein) and the empirical results (Figures 12 and 13). On the other hand, losses whose slopes asymptotically behave as
|| ¨ ||Y instead of || ¨ ||2Y (such as the κ-Huber or the ε-SVR loss) encourage robustness through a resistance to outliers. Indeed,
under such a setting, residuals of high norm contribute less to the gradient and have a minor influence on the model output.
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Figure 9. Standard and ε-insensitive versions of the SVR loss in 1 and 2 dimensions (ε “ 2).
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Figure 10. Standard and ε-insensitive versions of the square loss in 1 and 2 dimensions (ε “ 1.5).
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Figure 11. Standard square loss and Huber loss in 1 and 2 dimensions (κ “ 0.8).

C. Numerical Experiments and Code
C.1. Provided Code

The Python code used to generate the plots and tables of the article is provided. The README file in the code folder contains
instructions for quickly reproducing (part of) the plots. All implemented methods may be run on other datasets/problems.

C.2. Detailed Protocols

C.2.1. STRUCTURED PREDICTION

YEAST Dataset Description. YEAST1 is a publicly available multi-label classification dataset used as a benchmark in
several structured prediction articles. We compared our approach, with the same train/test decomposition, to those presented
in Elisseeff and Weston (2002), Finley and Joachims (2008) and Belanger and McCallum (2016). The size of the training
set is 1500, the test set is of size 917. The problem consists in predicting the functional classes of a gene. The inputs are
micro-array expression data (representing the genes) of dimension p “ 103. The outputs are multi-label vectors of size
d “ 14 representing the possible functional classes of the genes. The average number of labels is 4.2. These 14 functional
classes correspond to the first level of a tree that structures a much bigger set of possible functional classes.

Experimental protocol: Comparison with other methods. In Figure 6, we reported the Hamming error on the test set
obtained by each method. The results obtained by SSVM and SPENS are extracted from Finley and Joachims (2008) and
Belanger and McCallum (2016). For our approach and its three variants (ε-KRR, κ-Huber, ε-SVR), each hyper-parameter
(Λ, ε, or κ) has been selected by estimating the Mean Squared Error (MSE) through a 5-fold cross-validation computed on
the training set. We used an input Gaussian kernel with a fixed bandwidth equal to 1.

Experimental protocol: Cross-Effect of ε and Λ on sparsity and MSE. In order to measure the effect of the different
hyperparameters and study their interrelations, we have computed the 5-fold cross-validation MSE and sparsity/saturation
for several values of Λ and ε/κ. The input kernel is still Gaussian with bandwidth 1. The results are plotted in Figures 3
and 4 for the ε-KRR, and in Figures 13 and 14 for the ε-SVR and κ-Huber. In Figure 4, we have measured sparsity through
the number of training data which are discarded, i.e. not used in the finite representation of the ε-KRR model. The κ-Huber
saturation is assessed in a similar fashion: it corresponds to the number of training data whose associated coefficient saturates
the norm constraint (see Theorem 6, Problem pD2q therein). Simplified versions of these graphs may be quickly reproduced
using the code attached (see README file).

Metabolite identification dataset description. We next tested our method on a harder problem: that of metabolite
identification (Brouard et al., 2016a). The goal is to predict a metabolite (small molecule) thanks to its mass spectrum.
The difficulty comes from the reduced size of the training set (n “ 6974) compared to the high dimension of the outputs
(d “ 7593). Input Output Kernel Regression (IOKR, see Brouard et al. (2016a;b)) with a Tanimoto-Gaussian kernel is state
of the art on this problem.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses

Experimental protocol. We investigate the advantages of substituting the Ridge Regression for the ε-KRR, κ-Huber, and
ε-SVR. Outputs are embedded in an infinite dimensional space through the use of the Tanimoto-Gaussian kernel (with
bandwidth γ “ 0.72). We compare the different algorithms’ performances on a set of 6974 mass spectra through the top-k
accuracies for k P t1, 10, 20u. We give the average 5-fold top-k accuracies (Table 1). The 5 folds have been chosen such
that a metabolite does not appear in two different folds (zero-shot learning setting).

C.2.2. STRUCTURED REPRESENTATION LEARNING

Dataset Description. Robust structured representation learning was tested on a drug dataset, introduced in Su et al. (2010),
and extracted from the NCI-Cancer database. This dataset features a set of molecules that are represented through a Gram
matrix of size 2303ˆ 2303 obtained with a Tanimoto kernel. Tanimoto kernels (see Ralaivola et al. (2005) for details) are a
common way to compare labeled graphs by means of a bag-of-sequences approach.

Experimental protocol: Robust KAE. We computed the mean 5-fold cross-validation Mean Squared Error. The first layer
uses a linear kernel. But since inputs (and outputs) are kernelized – only the 2303 ˆ 2303 Gram matrix is provided for
learning –, the first layer may also be seen as a function from the associated Tanimoto-RKHS, applied to the molecules. The
second layer uses a Gaussian kernel. The regularization parameters for the two layers have been fixed to Λ “ 1e´ 6, and
the inner dimension has been set to p “ 200. In Figure 7 is plotted the MSE and the sparsity (discarded training data) for
several values of ε in order to assess the effect of the regularization. We used an existing source code from Laforgue et al.
(2019)2, that has been adapted to our needs. The IOKR resolution part, materialized by the compute N L function therein,
has been replaced by the compute Omega function of the IOKR plus class in the attached code.

C.2.3. ROBUST FUNCTION-TO-FUNCTION REGRESSION

Dataset Description. The task at hand consists in predicting lip acceleration from electromyography (EMG) signals of the
corresponding muscle (Ramsay and Silverman, 2007). The dataset3 includes 32 samples of time series obtained by recording
a subject saying “say bob again”, that are noted pxi, yiq32

i“1. Each time series is of length 64. To assess the performance of
our method in presence of outliers, we created 4 outliers by picking randomly some pxiq4i“1 and adding to the dataset the
samples pxi,´1.2 ˚ yiq

4
i“1.

Experimental protocol. As the number of samples is small, one can use the Leave One Out (LOO) generalization
error as a measure of the model performance. We first used it with plain Ridge Regression (Kadri et al., 2016) to
select the best hyperparameter Λ. Then, we tested robustness by computing the LOO generalization error of a model
output by solving Problem (9) for various κ (see Figure 8, that may also be reproduced from the attached code). For
the tψjumj“1 we used the sine and cosine basis of L2pr0, 1sq, i.e. @l ď m

2 and θ P r0, 1s, ψ2lpθq “
?

2 cosp2πlθq and
ψ2l`1pθq “

?
2 sinp2πlθq. The number of basis function was set to m “ 16, so that we get the first 8 cosines and sines of

the basis. The chosen associated eigenvalues are λ2l “ λ2l`1 “
1

p1`jq2 . We used as an input kernel the integral Laplacian

kX px1, x2q “
ş1

0
exp p´7|x1pθq ´ x2pθq|qdθ.

C.3. Additional Figures

We now provide analogues to Figures 3 and 4 for the ε-SVR and κ-Huber. The ε-Ridge graphs are first recalled. Notice that
simplified versions of these plots may be easily reproduced from the attached code.

The ε-KRR (Figure 12) appears as a natural regularized version of the plain KRR. For small values of Λ, the regularization
effect of the ε induces a smaller MSE. This phenomenon is achieved for a wide range of Λ and ε, and coincides with an
important sparsity. The counterpart is that no value of ε clearly allows to outperform the standard KRR for its optimal Λ.
The ε-KRR may rather be used as an implicit regularization preventing from a cross-validation on Λ.

The ε-SVR (Figure 13) shares analogous characteristics for the small Λ regime. However, it further produces predictors with
smaller MSE than the best KRR one. This furthermore coincides with a peak in the sparsity.

The κ-Huber (Figure 14) has a quite different behavior. When Λ tends to 0, the constraint (see Problem pD2q) is vacuous
for all κ, and one asymptotically recovers the standard KRR. The optimal Λ now changes with κ, and better performances
than the KRR for the best Λ are regularly attained.

2github.com/plaforgue/kae
3http://www.stats.ox.ac.uk/ silverma/fdacasebook/lipemg.html

https://github.com/plaforgue/kae
http://www.stats.ox.ac.uk/~silverma/fdacasebook/lipemg.html
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Figure 12. MSE and Sparsity w.r.t. Λ for different ε for the ε-KRR on the YEAST dataset.
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Figure 13. MSE and Sparsity w.r.t. Λ for different ε for the ε-SVR on the YEAST dataset.
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Figure 14. MSE and Saturation w.r.t. Λ for different κ for the κ-Huber on the YEAST dataset.
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Laforgue, P., Clémençon, S., and d’Alché-Buc, F. (2019). Autoencoding any data through kernel autoencoders. In Artificial
Intelligence and Statistics, pages 1061–1069.

Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005). Graph kernels for chemical informatics. Neural networks,
18(8):1093–1110.

Ramsay, J. O. and Silverman, B. W. (2007). Applied functional data analysis: methods and case studies. Springer.
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