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Abstract
We provide an exact analysis of a class of ran-
domized algorithms for solving overdetermined
least-squares problems. We consider first-order
methods, where the gradients are pre-conditioned
by an approximation of the Hessian, based on
a subspace embedding of the data matrix. This
class of algorithms encompasses several random-
ized methods among the fastest solvers for least-
squares problems. We focus on two classical
embeddings, namely, Gaussian projections and
subsampled randomized Hadamard transforms
(SRHT). Our key technical innovation is the
derivation of the limiting spectral density of
SRHT embeddings. Leveraging this novel result,
we derive the family of normalized orthogonal
polynomials of the SRHT density and we find
the optimal pre-conditioned first-order method
along with its rate of convergence. Our analysis
of Gaussian embeddings proceeds similarly, and
leverages classical random matrix theory results.
In particular, we show that for a given sketch
size, SRHT embeddings exhibits a faster rate of
convergence than Gaussian embeddings. Then,
we propose a new algorithm by optimizing the
computational complexity over the choice of the
sketching dimension. To our knowledge, our re-
sulting algorithm yields the best known complex-
ity for solving least-squares problems with no
condition number dependence.

1. Introduction
We study the performance of a randomized method, namely,
the Hessian sketch (Pilanci & Wainwright, 2016), in the
context of (overdetermined) least-squares problems,

x∗ : = argmin
x∈Rd

{
f(x) : =

1

2
‖Ax− b‖2

}
, (1)
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where A ∈ Rn×d is a given data matrix with n > d and b ∈
Rn is a vector of observations. For simplicity of notations,
we will assume throughout this work that rank(A) = d.

Many works have developed randomized algorithms (Avron
et al., 2010; Rokhlin & Tygert, 2008; Drineas et al., 2011; Pi-
lanci & Wainwright, 2015) for solving (1), based on sketch-
ing methods. The latter involve using a random matrix
S ∈ Rm×n to project the data A and/or b to a lower di-
mensional space (m� n), and then approximately solving
the least-squares problem using the sketch SA and/or Sb.
The most classical sketch is a matrix S ∈ Rm×n with in-
dependent and identically distributed (i.i.d.) Gaussian en-
tries N (0,m−1), for which forming SA requires in general
O(mnd) basic operations (using classical matrix multipli-
cation). This is larger than the cost O(nd2) of solving (1)
through standard matrix factorization methods, provided
that m > d. Another well-studied embedding is the (trun-
cated) m × n Haar matrix S, whose rows are orthonor-
mal and with range uniformly distributed among the sub-
spaces of Rn with dimension m. However, it requires time
O(nm2) to be formed, through a Gram-Schmidt procedure,
which is also larger thanO(nd2). An alternative embedding
which verifies orthogonality properties is the SRHT (Ailon
& Chazelle, 2006), which is based on the Walsh-Hadamard
transform. Due to the recursive structure of the latter, the
sketch SA can be formed in O(nd logm) time, so that the
SRHT is often viewed as a standard reference point for
comparing sketching algorithms.

Using the standard prediction (semi-)norm ‖A(x̃− x∗)‖2
as the evaluation criterion for an approximate solution x̃,
iterative methods (e.g., gradient descent or the conjugate
gradient algorithm) have time complexity which usually
scales proportionally to the condition number κ of the matrix
A – defined as the ratio between the largest and smallest
singular values of A –, and this becomes prohibitively large
when κ� 1. To address the latter issue, we introduce a pre-
conditioning method, namely, the Hessian sketch (Pilanci &
Wainwright, 2016), which approximates the Hessian H =
A>A of f(x) by HS = A>S>SA. This pre-conditioning
technique has become widespread in the sketching literature
for solving least-squares. For instance, it has been recently
shown by (Ozaslan et al., 2019; Lacotte & Pilanci, 2019)
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that the Heavy-ball update

xt+1 = xt − µtH−1
S ∇f(xt) + βt(xt−xt−1) (2)

yields a sequence of iterates whose convergence rate does
not depend on the spectrum of A, but only on the concentra-
tion around the identity of the matrix

CS : = U>S>SU , (3)

where U is the matrix of left singular vectors of A. Fur-
ther, they show that this convergence rate is equal to the
ratio d/m both for Gaussian and SRHT embeddings. No-
tably, this rate does not depend on the sample size n. For a
Gaussian embedding, this makes intuitively sense since the
limiting spectral distribution of CS is the Marchenko-Pastur
law (Marchenko & Pastur, 1967) with scale parameter ρ,
edge eigenvalues a = (1−√ρ)2 and b = (1+

√
ρ)2, and

density

µρ(x) =

√
(b− x)+(x− a)+

2πρx
, (4)

where y+ = max{y, 0}, and it does not depend on the sam-
ple size n but only on the limit ratio ρ : = lim d

m . However,
for a SRHT embedding, it is unclear if the dimension n
affects the best achievable convergence rate.

In a related vein, Lacotte et al. (2020) considered the Heavy-
ball update (2) where at each iteration the sketching SRHT
matrix S=St is refreshed, i.e., re-sampled independently of
S0, . . . , St−1, so that HS=HSt is also re-computed. They
show that Haar and SRHT embeddings yield the same con-
vergence rate ρref

h : =ρ · ξ(1−ξ)
γ2+ξ−2γξ , which indeed depends

on the three relevant dimensions m, d, n through the aspect
ratios

ρ : = lim
d

m
, γ : = lim

d

n
, ξ : = lim

m

n
. (5)

Importantly, this convergence rate ρref
h is always strictly

smaller than ρ, which is the convergence rate one would ob-
tain with fixed or refreshed Gaussian embeddings (Ozaslan
et al., 2019; Lacotte & Pilanci, 2019).

Although using refreshed SRHT embeddings yields a better
convergence rate, it comes with two major shortcomings.
First, refreshing the sketch at each iteration incurs additional
computational costs compared to using the same sketch at
each iteration. Second, the analysis of Lacotte et al. (2020)
is specific to the Heavy-ball update (2), and it leaves an open
problem we aim to address in this work, that is, whether
there exists a first-order method with a fixed sketch that
provides better guarantees. Formally, we will consider the
following class of pre-conditioned first-order methods,

xt ∈ x0 +H−1
S · span {∇f(x0), . . . ,∇f(xt−1)} , (6)

and this includes in particular the Heavy-ball update (2)
with a fixed sketch.

Relatedly, the design of optimal first-order methods for
quadratic optimization problems has been recently consid-
ered by Pedregosa & Scieur (2019). In contrast to our
setting, they assume the data matrix A to be random. Then,
by leveraging the limiting spectral properties of the matrix
A, they are able to design a first-order method (without pre-
conditioning) which is optimal in the average-case. Remark-
ably, their first-order method improves on the worst-case
rates of convergence of standard first-order methods. How-
ever, their approach requires the limiting spectral distribu-
tion of the data matrix to be known beforehand, which might
be impractical. By considering instead the pre-conditioned
first-order methods (6), we will see that only the spectral
distribution of the matrix CS is required, and this is uni-
versal, i.e., independent of the spectrum of A. Therefore,
by characterizing the l.s.d. of CS for some classical em-
beddings, we will be able to optimize the exact error for
any data matrix A, without the requirement of knowing its
spectral properties beforehand.

We will focus exclusively on (pre-conditioned) first-order
methods of the form (6) with a fixed embedding S, and our
goal is to answer the following questions. What are the best
achievable convergence rates for, respectively, Gaussian and
SRHT embeddings? What are the corresponding optimal
algorithms? How do these rates compare to each other and
to that of state-of-the-art randomized iterative methods for
solving (1)?

1.1. Technical background, notations and assumptions

We will assume that limn→∞
d
n = γ ∈ (0, 1),

limn→∞
m
n = ξ ∈ (γ, 1) and ρ = γ

ξ ∈ (0, 1). We
denote ‖z‖ ≡ ‖z‖2 the Euclidean norm of a vector z,
‖M‖2 the operator norm of a matrix M , and ‖M‖F its
Frobenius norm. Given a sequence of iterates {xt}, we
denote the error at time t by ∆t = U>A(xt − x∗).
Note that ‖∆t‖2 = ‖A(xt − x∗)‖2. Our evaluation
criterion is the error limn→∞ E[‖∆t‖2]/E[‖∆0‖2], and
we call its (asymptotic) rate of convergence the quantity
lim supt→∞

(
limn→∞ E[‖∆t‖2]/E[‖∆0‖2]

)1/t
.

As we focus on infinite-dimensional regimes, our technical
analysis is based on asymptotic random matrix theory, and
we refer the reader to (Bai & Silverstein, 2010; Paul & Aue,
2014; Yao et al., 2015) for an extensive introduction to this
field. For a random Hermitian matrix Mn of size n× n, the
empirical spectral distribution (e.s.d.) of Mn is the (cumu-
lative) distribution function of its eigenvalues λ1, . . . , λn,
i.e., FMn

(x) : = 1
n

∑n
j=1 1 {λj 6 x} for x ∈ R, which has

density fMn
(x) = 1

n

∑n
j=1 δλj (x) with δλ the Dirac mea-

sure at λ. Due to the randomness of the eigenvalues, FMn is
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random. The relevant aspect of some classes of large n× n
symmetric random matrices Mn is that, almost surely, the
e.s.d. FMn converges weakly towards a non-random distri-
bution F , as n → ∞. This function F , if it exists, will
be called the limiting spectral distribution (l.s.d.) of Mn.
Key to our analysis is the notion of orthogonal polynomials,
which are fundamental both in optimization (Rutishauser,
1959) and in random matrix theory. We write Rt[X] the set
of real polynomials with degree less than t, and R0

t [X] the
set of polynomials P ∈ Rt[X] such that P (0) = 1. For a
complex number z ∈ C, we denote respectively by Re(z)
and Im(z) its real and imaginary parts, and we use C+ for
the complex numbers with positive imaginary parts, and
R+ for the positive real numbers. For two sequences of
real positive numbers {at} and {bt}, we write at � bt if
lim inf atbt > 0 and lim sup at

bt
<∞.

We will assume that the first iterate x0 is random such that
E[x0] = 0, and, that the condition number of the matrix
U>AE[x0x

>
0 ]A>U + U>bb>U remains bounded as the

dimensions grow. Essentially, this states that the condition
number of A does not degenerate to +∞ as the dimensions
grow.

In this work, we consider a definition of the SRHT slightly
different than its classical version (Ailon & Chazelle, 2006),
which has been introduced in (Dobriban & Liu, 2019; Liu
& Dobriban, 2019). For an integer n = 2p with p > 1,
the Walsh-Hadamard transform is defined recursively as

Hn = 1√
2

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
with H1 = 1. Our transform

A 7→ SA first randomly permutes the rows of A, before
applying the classical transform. This has negligible cost
O(n) compared to the cost O(nd logm) of the matrix mul-
tiplication A 7→ SA, and breaks the non-uniformity in the
data. That is, we define the n × n subsampled random-
ized Hadamard matrix as S = BHnDP , where B is an
n× n diagonal sampling matrix of i.i.d. Bernoulli random
variables with success probability m/n, Hn is the n × n
Walsh-Hadamard matrix, D is an n× n diagonal matrix of
i.i.d. sign random variables, equal to ±1 with equal prob-
ability, and P ∈ Rn×n is a uniformly distributed permu-
tation matrix. At the last step, we discard the zero rows
of S, so that it becomes an m̃× n orthogonal matrix with
m̃ ∼ Binomial(m/n, n), and the ratio m̃/n concentrates
fast around ξ while n→∞. Although the dimension m̃ is
random, we refer to S as an m× n SRHT matrix.

1.2. Overview of our results and contributions

We have the following contributions.

1. For Gaussian embeddings, we characterize the algo-
rithm (Algorithm 1) which attains the infimum of the
error limn→∞ E[‖∆2

t‖]/E[‖∆0‖2], and we show that

it corresponds to the Heavy-ball method with constant
step size µt = (1 − ρ)2 and momentum parameter
βt=ρ. Further, we show that the infimum of the error
is equal to ρt.

2. For SRHT embeddings, we perform a similar analysis,
and find the optimal first-order method (Algorithm 2).
Notably, it is a Heavy-ball update with non-constant
step sizes and momentum parameters. Further, we
show that its rate of convergence is ρh : = ρ · 1−ξ

1−γ ,
which is always strictly smaller than ρ and ρref

h , i.e.,
Algorithm 2 has uniformly better convergence rate than
that of Gaussian embeddings or the Heavy-ball method
with refreshed SRHT embeddings. Even though our
theoretical results hold asymptotically, we verify em-
pirically that our theoretical predictions hold, even for
sample sizes n & 1000, and that Algorithm 2 is faster
in practice than the other aforementioned algorithms.

3. We characterize explicitly the density fh,r of the
l.s.d of the matrix n

mCS , which is given by

fh,r(x) =

√
(Λh,r − x)+(x− λh,r)+

2πρx(1− ξx)
, (7)

where the edge (i.e., extreme) eigenvalues are λh,r =

(
√

1− γ −
√

(1− ξ)ρ)2 and Λh,r = (
√

1− γ +√
(1− ξ)ρ)2. This characterization of the limiting

density is of independent interest, as it might have sev-
eral implications beyond least-squares optimization.

4. Finally, we show that Algorithm 2 has the best known
complexity to solve (1) with no condition number de-
pendence.

Except for the time complexity results, all our results regard-
ing the SRHT hold exactly the same with Haar embeddings,
since they both yield the same limiting spectral distributions.

1.3. Other related work

Besides the Hessian sketch, there are many other efficient
pre-conditioned iterative methods which aim to address
the aforementioned conditioning issue, based on an SRHT
sketch of the data (or closely related sketches based on
the Fourier transform). Randomized right pre-conditioning
methods (Avron et al., 2010; Rokhlin & Tygert, 2008) com-
pute first a matrix P – which itself depends on SA – such
that the condition number of AP−1 is O(1), and then ap-
ply any standard iterative algorithm to the pre-conditioned
least-squares objective ‖AP−1y − b‖2. SRHT sketches are
also used for a wide range of applications across numeri-
cal linear algebra, statistics and convex optimization, such
as low-rank matrix factorization (Halko et al., 2011; Wit-
ten & Candes, 2015), kernel regression (Yang et al., 2017),
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random subspace optimization (Lacotte et al., 2019), or,
sketch and solve linear regression (Dobriban & Liu, 2019).
Hence, a refined analysis of the SRHT may also lead to
better algorithms in these fields.

Our work also substantiates the observation that, in a grow-
ing number of contexts, random projections with i.i.d. en-
tries degrade the performance of the approximate solution
compared to orthogonal projections (Mahoney, 2011; Ma-
honey & Drineas, 2016; Drineas & Mahoney, 2016; Do-
briban & Liu, 2019).

2. Optimal first-order method for classical
embeddings

Let S be an m× n Gaussian or SRHT embedding. Denote
by µ the l.s.d. of CS . We say that a family of polynomials
{Rk} is orthogonal with respect to µ if

∫
RkR` dµ=0 for

any k 6= `. The next result establishes the link between
polynomials and the pre-conditioned first-order methods (6)
we consider, and its proof is deferred to Appendix B.1.
Lemma 2.1. Let {xt} be generated by some first-order
method (6). Then, for any iteration t > 0, there exists a
polynomial pt ∈ R0

t [X] such that ∆t = pt
(
C−1
S

)
· ∆0.

Further, it holds that

lim
n→∞

E[‖∆t‖2]

E[‖∆0‖2]
=

∫
R
p2
t

(
λ−1

)
dµ(λ) . (8)

Thus, the best achievable error is lower bounded by the
infimum of the following variational problem,

L∗µ,t : = min
p∈R0

t [X]
Fµ(p) , (9)

where Fµ(p) : =
∫
p2
(
λ−1

)
dµ(λ). Using the change of

variable x = 1/λ and setting dν(x) = x−1dµ
(
x−1

)
, we

have that Fµ(p)=Gν(p) where Gν(p) : =
∫
p2(x) 1

xdν(x).
The optimal polynomial can be constructed by leveraging
the following result.
Lemma 2.2. Let ν be some measure with bounded support
in (0,+∞), and suppose that {Πt} is a family of orthogonal
polynomials with respect to ν such that deg(Πt) = t and
Πt(0) = 1. Then, the polynomial Πt is the unique solution
of the optimization problem minGν(p) over p ∈ R0

t [X].

Proof. Let p ∈ R0
t [X]. Since Πt(0) = 1, the polynomial

(p−Πt) has a root at 0. Hence, (p−Πt)(x) = xQ(x) with
Q∈Rt−1[X]. Then,

Gν(p) =

∫
p2(x)x−1dν(x)

=

∫
Π2
t (x)x−1dν(x) + 2

∫
ΠtQ(x)dν(x)

+

∫
xQ2(x)dν(x) .

The cross-term is equal to 0 since Q in the span of
Π0, . . . ,Πt−1, which are orthogonal to Πt. The third term
is non-negative, and equal to 0 if and only if that Q = 0.
Therefore, the unique solution to (9) is Πt.

Based on such an orthogonal family {Πt}, we aim to derive
a first-order method which achieves the lower bound L∗µ,t.
We recall a standard result, that is, for such a family of
polynomials {Πt}, there exist sequences {at} and {bt} such
that Π0(x) = 1, Π1(x) = 1 + b1x and for any t > 2,

Πt(x) = (at + btx)Πt−1(x) + (1− at)Πt−2(x) . (10)

Then we can construct an optimal first-order method accord-
ing to the following result, which is inspired by the work
of Pedregosa & Scieur (2019) and whose proof is deferred
to Appendix A.1.

Theorem 1. Given x0 ∈ Rd, set x1 = x0 +b1H
−1
S ∇f(x0),

and for t > 2,

xt = xt−1 + btH
−1
S ∇f(xt−1) + (1− at)(xt−2 − xt−1) .

(11)

Then, the sequences of iterates {xt} is asymptotically opti-
mal, i.e.,

lim
n→∞

E‖∆t‖2

E‖∆0‖2
= L∗µ,t . (12)

Consequently, a strategy to find the optimal first-order
method proceeds as follows. First, we characterize the
l.s.d. µ of the matrix CS , and we find the polynomial
Πt ∈ R0

t [X] which achieves the lower bound L∗µ,t. Then,
according to Theorem 1, we build from the three-terms
recursion (10) of the orthogonal polynomials {Πt} a first-
order method which yields an asymptotically optimal se-
quence of iterates {xt}. Our analysis of the Gaussian case
is based on standard random matrix theory results, that we
recall in details as we leverage them for the analysis of
the SRHT case. For the latter, most technicalities actually
lie in characterizing the l.s.d. µ of CS , and in construct-
ing an orthogonal basis of polynomials for the distribution
dν(x)=x−1dµ

(
x−1

)
.

2.1. The Gaussian case

Consider an m× n matrix S with i.i.d. entries N
(
0,m−1

)
.

The l.s.d. of CS is the Marchenko-Pastur law with density
µρ given in (4). Denote by a=(1−√ρ)2 and b=(1+

√
ρ)2

the edge eigenvalues. Let {∆t} be the sequence of error
vectors generated by a first-order method as in (6). Accord-
ing to Lemma 2.1, there exists a sequence of polynomials
pt ∈ R0

t [X] such that ∆t = pt
(
C−1
S

)
∆0, and

lim
n→∞

E‖∆t‖2

E‖∆0‖2
=

∫ b

a

p2
t (λ
−1)µρ(λ)dλ , (13)
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Lemma 2.3. Under the above assumptions and notations,
and setting Pt(x)=pt

(
x

(1−ρ)2

)
, we have

lim
n→∞

E‖∆t‖2

E‖∆0‖2
= (1− ρ)

∫ b

a

P 2
t (x)

1

x
µρ(x) dx . (14)

Consequently, if {Πt} is an orthogonal basis of polynomials
with respect to µρ such that deg(Πt) = t and Πt(0) = 1
then Πt(x) : = Πt

(
(1− ρ)2x

)
achieves the lower bound

L∗µρ,t.

Proof. Using the change of variable x = (1 − ρ)2/λ, a
simple calculation yields that p2

t (λ
−1)µρ(λ)dλ = (1 −

ρ)P 2
t (x) 1

xµρ(x)dx. Applying Lemma 2.2 with ν = µρ, we
get that the optimal polynomial Pt is equal to Πt, and thus,
pt is exactly Πt(x).

The Marchenko-Pastur law µρ is well-studied, and such a
construction of polynomials is classical. In this section, we
provide a definition by recursion, which is enough to state
the optimal algorithm. However, for the proof of the next
results, we will consider an alternative construction, from
which we establish several intermediate properties useful to
the analysis. Define Π0(x) = 1, Π1(x) = 1 − x, and for
t > 2,

Πt(x) = (1 + ρ− x)Πt−1(x)− ρΠt−2(x) . (15)

Lemma 2.4. The family of polynomials {Πt} is orthogo-
nal with respect to µρ. Further, we have Πt(0) = 1 and
deg(Πt) = t for all t > 0.

Proof. We defer the proof to Section B.4.

Now, set Πt(x) = Πt

(
(1− ρ)2x

)
. From (15), we obtain

that Π0(x) = 1, Π1(x) = 1− (1− ρ)2x, and for t > 2,

Πt(x) = (1+ρ−(1−ρ)2x)Πt−1(x)− ρΠt−2(x) . (16)

According to Lemma 2.3, the polynomial Πt achieves the
lower bound L∗µρ,t. Further, we identify the recursion for-
mula (16) with the three-terms recursion (10) by setting
bt=−(1− ρ)2 for t > 1, and at=1 + ρ for t > 2. Using
Theorem 1, we immediately have the asymptotically opti-
mal first-order method, which we present in Algorithm 1 in
its finite-sample approximation.

Algorithm 1 Optimal First-Order Method for Gaussian em-
beddings.

Input: Data matrix A ∈ Rn×d, sketch size m > d + 1,
initial point x0 ∈ Rd and (finite-sample) ratio ρ : = d/m.
Sample S ∈ Rm×n with i.i.d. entries N (0, 1/m).
Compute the sketched matrix SA = S ·A.
Compute and cache a factorization of HS = S>ASA.
Set x1 = x0 − (1− ρ)2H−1

S ·A>(Ax0 − b).
for t = 2 to T do

Compute the gradient gt−1 = A>(Axt−1 − b).
Perform the update

xt = xt−1 + ρ(xt−1 − xt−2)− (1− ρ)2 ·H−1
S gt .

(17)

end for
Return the last iterate xT.

Surprisingly, up to the initialization of the first iterate x1, Al-
gorithm 1 corresponds exactly to the Heavy-ball method (2)
using the fixed step size µ = (1 − ρ)2 and the fixed mo-
mentum parameter β = ρ, which was obtained in (Ozaslan
et al., 2019; Lacotte & Pilanci, 2019) based on edge eigen-
values analysis. Hence, in the Gaussian case, leveraging the
whole shape of the limiting distribution, as opposed to using
only the edge eigenvalues, yields the same algorithm. We
complete the analysis of the Gaussian case by providing the
exact asymptotic error L∗µρ,t.
Theorem 2. The sequence of iterates {xt} given by Algo-
rithm 1 is asymptotically optimal within the class of first
order algorithms as in (6), and the optimal error is given by
L∗µρ,t = ρt.

Proof. We have already argued that {xt} is asymptotically
optimal. It remains to show that L∗µρ,t = ρt, whose proof is
deferred to Appendix A.2.

2.2. The SRHT case

Haar random projections have been shown to have a better
performance than Gaussian embeddings in several contexts.
However, they are slow to generate and apply, and we con-
sider instead the SRHT. We recall the definition of the Stielt-
jes transform mµ of a distribution µ supported on [0,+∞),
which, for z ∈ C\R+, is given bymµ(z) : =

∫
R

1
x−z dµ(x).

It has been recently shown that the SRHT behaves asymp-
totically as Haar embeddings, as formally stated by the next
result.

Lemma 2.5 (Theorem 4.1 in Lacotte et al. (2020)). Let S be
anm×n SRHT embedding and Sh be anm×nHaar embed-
ding. Then, the matricesCS andCSh have the same limiting
spectral distribution Fh, with support included within the
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interval (0, 1) and whose Stieltjes transform mh is given by

mh(z) =
1

2γ

(
2γ − 1

1− z +
ξ − γ
z(1− z) −

R(z)

z(1− z)

)
, (18)

where

R(z) =
√

(γ + ξ − 2 + z)2 + 4(z − 1)(1− γ)(1− ξ) ,

Remark 1. Due to the computational benefits of the SRHT
over Haar projections, we state all our next results for
the former, although all statements also apply to the latter
(except for the time complexity results).

In order to characterize the optimal first-method with SRHT
embeddings, we first derive the density of Fh.

Theorem 3. The distribution Fh admits the following den-
sity on R,

fh(x) =
1

2γπ

√
(Λh − x)+(x− λh)+

x(1− x)
, (19)

where λh : =
(√

(1− γ)ξ −
√

(1− ξ)γ
)2

,

Λh : =
(√

(1− γ)ξ +
√

(1− ξ)γ
)2

.

Proof. The proof is essentially based on the expression (18)
of the Stieltjes transform mh, and on the inversion formula,

fh(x) = lim
y→0+

1

π
Im (mh(x+ iy)) , where y ∈ R+ .

(20)

which holds for any x ∈ R provided that the above limit
exists (Silverstein & Choi, 1995). We defer the calculations
to Appendix A.3.

Using the change of variable y = x/ξ, we can also derive
the limiting density of the rescaled matrix n

mCS – whose
expectation is equal to the identity – which is given by

fh,r(y) = ξfh(ξy) =

√
(Λh,r − y)+(y − λh,r)+

2ρπy(1− ξy)
, (21)

whereλh,r = λh/ξ =
(√

1− γ −
√

(1− ξ)ρ
)2

,

Λh,r = Λh/ξ =
(√

1− γ +
√

(1− ξ)ρ
)2

.

The density fh,r resembles the Marchenko-Pastur density
µρ, up to the factor (1 − ξy) and corrections in the edge
eigenvalues λh,r and Λh,r. When ξ, γ ≈ 0, then λh,r ≈
(1 −√ρ)2, Λh,r≈ (1 +

√
ρ)2, and fh,r(x) ≈ µρ(x). This

is consistent with the fact that provided m, d = o(n) so
that ξ, γ = 0, then the l.s.d. of n

mCS is the Marchenko-
Pastur law with parameter ρ (see (Jiang, 2009) for a formal
statement). In Figure 1, we compare the empirical spectral
density of the matrix n

mCS with S an m× n SRHT to fh,r,
for fixed d and n, and several values of m. We observe
that these two densities match very closely, and so does the
empirical spectral density using a Haar projection with fh,r.
Further, as m increases, the limiting density fh,r departs
from µρ, and then concentrates more and more around 1.
Note in particular that the support of fh,r is always within
that of µρ. This can be formally verified by comparing their
respective edge eigenvalues.
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Figure 1. We use n = 8192, γ ≈ d
n

= 0.2 and ξ ≈ m
n
∈

{0.21, 0.4, 0.6}.

2.2.1. ORTHOGONAL POLYNOMIALS AND OPTIMAL
FIRST-ORDER METHOD

Given a first-order method as in (6), we know from
Lemma 2.1 that for a given iteration t, there exists a polyno-
mial p ∈ R0

t [X] such that ∆t=p
(
C−1
S

)
∆0, and

lim
n→∞

E‖∆t‖2

E‖∆0‖2
=

∫ Λh

λh

p2
(
λ−1

)
fh(λ) dλ . (22)

Introducing the scaling parameters τ=
(√

Λh−
√
λh√

Λh+
√
λh

)2

, c=
4(√

1/Λh+
√

1/λh

)2 , α = (1 − √τ)2, β = (1 +
√
τ)2, the

rescaled polynomial P (x) = p(x/c), and using the change
of variable x=c/λ, we find that

lim
n→∞

E‖∆t‖2

E‖∆0‖2
(23)

=
cτ

(1− τ)γ

∫ β

α

P 2(x)

√
(x− α)(β − x)

2πτx(x− c) dx (24)

=
cτ

(1− τ)γ

∫ β

α

P 2(x)
µτ (x)

x− c dx (25)

Thus, according to Lemma 2.2, it suffices to find a family
of polynomials {Rt} orthogonal with respect to the density
xµτ (x)
x−c such that deg(Rt) = t and Rt(0) = 1, in which

case the minimizer over P ∈ R0
t [X] of the integral in (25)

is equal to Rt, and the minimizer of (22) is then Rt(x) =
Rt(cx).
Theorem 4. Define the parameters ω = 4

(
√
β−c+

√
α−c)

2

and κ =
(√

β−c−
√
α−c√

β−c+
√
α−c

)2

. Let {Πt} be the orthogonal
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family of polynomials with respect to µκ, that is, Π0(x) = 1,
Π1(x) = 1− x, and for t > 2,

Πt(x) = (1 + κ− x)Πt−1(x)− κΠt−2(x) . (26)

Define the polynomials Rt(x) = Πt(ω(x − c))/Πt(−ωc).
Then, it holds that Rt(0) = 1, deg(Rt) = t, and the family
{Rt} is orthogonal with respect to the density xµτ (x)

x−c .

Proof. For k 6=`, we have that
∫
RRk(x)R`(x)xµτ (x)

x−c dx ∝∫ β
α

Πk (ω(x− c)) Π` ((ω(x− c))
√

(β−x)(x−α)

2πρ(x−c) dx. Using
the change of variable y = ω(x−c), we find that the latter in-
tegral is (up to a constant) equal to

∫
R Πk(y)Π`(y)µκ(y) dy,

which is itself equal to 0 due to the orthogonality of the Πt

with respect to µκ.

In order to derive the optimal first-order method, we need to
find the three-terms recursion relationship satisfied by the
polynomials {Rt}. First, let us compute the normalization
factor ut : = Πt(−ωc). Evaluating (26) at x = −ωc and
denoting η : = 1+κ+ωc, we find that ut+1 = ηut−κut−1,
with the initial conditions u0 = 1 and u1 = Π1(−ωc) =
1 +ωc = η−κ. Thus, after solving this second-order linear
system, we obtain that

ut =
x1 − κ
x1 − x2

xt1 +
κ− x2

x1 − x2
xt2 , (27)

where x1 = η
2 +
√

η2

4 − κ and x2 = η
2 −
√

η2

4 − κ. It is
easy to check that η2/4 > κ, so that x1 and x2 are indeed
distinct and real. Then, using the change of variable y =
ω(x−c) in (26), we get the following three-terms recurrence
relationship, that is, R0(x) = 1, R1(x) = 1 + bh,1x and for
k > 2,

Rt(x) = (ah,t + xbh,t)Rt−1(x) + (1− ah,t)Rt−2(x) ,
(28)

where ah,t = η ut−1

ut
for t > 1, and bh,t = −ωc ut−1

ut
for

t > 2. Using Theorem 1, we obtain the optimal first-order
method, which we present in Algorithm 2 in its finite-sample
approximation.

Algorithm 2 Optimal First-Order Method for SRHT (or
Haar) embeddings.

Input: Data matrix A ∈ Rn×d, sketch size m > d + 1,
initial point x0 ∈ Rd.
Sample an m× n SRHT S.
Compute the sketched matrix SA = S ·A.
Compute and cache a factorization of HS = S>ASA.
Set x1 = x0 + bh,1H

−1
S A>(Ax0 − b).

for t = 2 to T do
Compute the gradient gt−1 = A>(Axt−1 − b).
Perform the update

xt = xt−1 + bh,tH
−1
S gt + (1− ah,t)(xt−2 − xt−1) .

(29)

where ah,t and bh,t are as described in Section 2.2.1.
end for
Return the last iterate xT.

Differently from the Gaussian case, Algorithm 2 does not
correspond to the Heavy-ball method (2) using the fixed
step size µ=(1− ρ)2 and the fixed momentum parameter
β = ρ, which was obtained by (Lacotte & Pilanci, 2019)
based on edge eigenvalues analysis and standard finite-
sample concentration bounds on the spectrum of SRHT
matrices (Tropp, 2011).

Using the new asymptotically exact extreme eigenvalues we
derived in Theorem 3 – which are different from the bounds
obtained by (Tropp, 2011) – and following the same extreme
eigenvalues analysis proposed by (Lacotte & Pilanci, 2019),
we can derive an optimal Heavy-ball method for which the
step size µh and momentum parameter βh are given by

µh = 4(
1√
Λh

+ 1√
λh

)2 and βh =
(√

Λh−
√
λh√

Λh+
√
λh

)2

.

Hence, leveraging the whole shape of the limiting distribu-
tion, as opposed to using only the edge eigenvalues, yields
an optimal first-order method which is different, and has
non-constant step sizes and momentum parameters. But
interestingly, it holds that as the iteration number t grows
to +∞, then the update coefficients ah,t and bh,t have re-
spective limits 1 + βh and −µh, which yields exactly this
Heavy-ball method. Thus, we expect the latter and Algo-
rithm 2 to have a similar performance as t grows large.

We complete our analysis of the SRHT case by characteriz-
ing the asymptotic error L∗fh,t.
Theorem 5. The sequence of iterates {xt} given by Algo-
rithm 2 is asymptotically optimal, and the optimal error
satisfies L∗fh,t �

(1−ξ)t
(1−γ)t ρ

t.

Proof. We have already argued that {xt} is asymptotically
optimal. It remains to show that L∗fh,t �

(1−ξ)t
(1−γ)t ρ

t, whose
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proof is deferred to Appendix A.4.

Of natural interest is to compare the rate of convergence
ρh : = (1−ξ)

(1−γ)ρ of Algorithm 2 to the rate ρ of Algorithm 1.

We have ρh
ρ = (1−ξ)

(1−γ) , which is always smaller than 1 since
ξ > γ. Hence, these rotation matrices yield an optimal
first-order method which is uniformly better than that with
Gaussian embeddings, by a factor which can be made ar-
bitrarily large by increasing the sketch size m relatively to
the other dimensions. Further, if we do not reduce the size
of the original matrix, so that m = n and ξ = 1, then the
algorithm converges in one iteration. This means that we do
not lose any information by sketching. In contrast, Gaussian
projections introduce more distortions than rotations, even
though the rows of a Gaussian matrix are almost orthogonal
to each other in the high-dimensional setting.

Further, we compare the rate of Algorithm 2 to the rate of the
best Heavy-ball method with refreshed SRHT embeddings
which is equal to ρref

h = ρ · ξ(1−ξ)
γ2+ξ−2ξγ . We have ρh < ρref

h

if and only if 1−ξ
1−γ < ξ(1−ξ)

γ2+ξ−2ξγ , which is equivalent to
γ2 + ξ − 2γξ < ξ − γξ, again equivalent to γ2 < γξ, i.e.,
γ < ξ, which holds by assumption. Thus, a fixed embedding
yields a first-order method which is uniformly faster than the
best Heavy-ball method with refreshed sketches. However,
it remains an open problem whether one can find a first-
order method with refreshed sketches which yields a rate
better than ρref

h . We recapitulate the different convergence
rates in Table 1.

Table 1. Asymptotic rates of convergence for the best first-order
method (6) and the best Heavy-ball method (2), with fixed or
refreshed Gaussian or SRHT embeddings. For the best Heavy-ball
method rates, we use previously derived results from (Ozaslan
et al., 2019; Lacotte & Pilanci, 2019; Lacotte et al., 2020).

Algorithm Fixed Refreshed Fixed Refreshed
Gaussian Gaussian SRHT SRHT

Best first-order ρ unknown 1−ξ
1−γ ρ unknown

method (6)

Best Heavy-ball ρ ρ ρ
ξ(1−ξ)

γ2+ξ−2ξγ

method (2)

3. Numerical simulations
First, we generate a synthetic dataset with n = 8192,
d = 1600 and m ∈ {1700, 3500, 5700}. Although our
results are universal in the sense that it does not depend
on the spectral decay of the matrix A, we still consider
a challenging setting for first-order methods, that is, we
generate an n× d matrix A with an exponential spectral de-
cay. In Figure 2, we verify numerically that Algorithm 2 is
faster than the best Heavy-ball method with refreshed SRHT

sketches (”SRHT (refreshed)”), and than Algorithm 1. Fur-
ther, we compare Algorithm 2 to the Heavy-ball method
with fixed SRHT embedding whose parameters are found
based on edge eigenvalues analysis, using either our new
density fh (”SRHT (edge eig.)”) – as described previously
in Section 2.2.1 –, or, the previous bounds derived by (Tropp,
2011) (”SRHT (baseline)”). As predicted, Algorithm 2 per-
forms very similarly to the former, and better than the latter.
We mention that we use small perturbations of the algo-
rithmic parameters derived from our asymptotic analysis.
Following the notations introduced in Theorem 1, instead of
at and bt, we use aδt = (1 + δ)at and bδt = (1− δ)bt with
δ = 0.01. These conservative perturbations are necessary
in practice due to the finite-sample approximations. We
defer a detailed description of the experimental setup to Ap-
pendix C. Second, we verify that our predicted convergence
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Figure 2. Error E‖∆t‖2/E‖∆0‖2 versus number of iterations. We
use n = 8192, d/n ≈ γ = 0.2 and m/n ≈ ξ ∈ {0.22, 0.4, 0.7}.

rates for Algorithms 1 and 2 are matched empirically, on Fig-
ure 3. For this purpose, we generate a synthetic dataset with
n = 8192, d ∈ {500, 1250, 2000} and varying sketching
size, with a data matrix having an exponential spectral decay.
Lastly, we verify our results on standard machine learning
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Figure 3. Empirical and theoretical convergence rates versus sketch
size m. We use n = 8192 and d ∈ {500, 1250, 2000}.

benchmarks, that is, we consider the MNIST and CIFAR10
datasets, for which results are respectively reported on Fig-
ures 4 and 5. Our observations for these datasets are qualita-
tively similar to those made on the aforementioned synthetic
dataset. This confirms the universality of our methods, i.e.,
they do not depend on the data considered.

4. Complexity Analysis
We turn to a complexity analysis of Algorithm 2 and com-
pare it to the currently best known algorithmic complexities
for solving (1).
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Figure 4. Error E‖∆t‖2/E‖∆0‖2 versus number of iterations, for
the MNIST dataset. We have n = 50000, d/n ≈ γ = 0.015 and
we use m/n ≈ ξ ∈ {0.047, 0.141, 0.423}.
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Figure 5. Error E‖∆t‖2/E‖∆0‖2 versus number of iterations, for
the CIFAR10 dataset. We have n = 50000, d/n ≈ γ = 0.047
and we use m/n ≈ ξ ∈ {0.141, 0.282, 0.423}.

Given a fixed (and independent of the dimensions) error
ε>0, we aim to find x̃ such that ‖A(x̃−x∗)‖2 6 ε. Among
the best complexity algorithms is the pre-conditioned con-
jugate gradient algorithm (Rokhlin & Tygert, 2008). As
described in Section 1, it is decomposed into three parts:
sketching the data matrix, factoring the pre-conditioned
matrix, and then the iterations of the conjugate gradient
method. This algorithm prescribes at least the sketch size
m � d log d in order to converge with high-probability
guarantees. This theoretical prescription is based on the
finite-sample bounds on the extremal eigenvalues of the
matrix CS derived by (Tropp, 2011). Then, the resulting
complexity scales as

Ccg � nd log d+ d3 log d+ nd log(1/ε) , (30)

where nd log d is the sketching cost, d3 log d the pre-
conditioning cost, and nd log(1/ε) is the per-iteration cost
nd times the number of iterations log 1/ε.

Our analysis shows that for m � d, Algorithm 2 yields a
complexity no larger than

Cfhs � nd log d+ d3 + nd log(1/ε) , (31)

Note that in the above complexity, we omit the rate of con-
vergence – which would yield an even smaller complexity –
to simplify the comparison. Since ε is independent of the
dimensions, it follows that

Cfhs

Ccg
� 1

log d
, d→∞ . (32)

Hence, with a smaller sketch size, the resulting complexity
improves by a factor log d over the current state-of-the-art

in randomized preconditioning for dense problems (e.g., see
(Boutsidis & Gittens, 2013; Nelson & Nguyên, 2013)). We
also note that the O(d3) term can be improved to O(dω),
where ω is the exponent of matrix multiplication.

It has also been shown by Lacotte et al. (2020) that the
Heavy-ball update (2) with refreshed SRHT embeddings
yields a complexity Cihs such that Cihs/Ccg � 1

log d , pro-
vided that m � d. In order to compare more finely Algo-
rithm 2 with this algorithm, we consider an arbitrary sketch
size m. Then, the complexity of Algorithm 2 is

Cfhs � nd logm+md2 + nd
log(1/ε)

log ρh
, (33)

whereas the former algorithm yields

Cihs �
(
nd logm+md2 + nd

) log(1/ε)

log ρref
h

. (34)

Since, in particular, ρh is uniformly smaller than ρref
h , it

always holds that

Cfhs 6 Cihs . (35)

It should be noted that we translate our asymptotic results to
finite-sample versions. Although it is beyond our scope, we
believe that our results could be extended to finite-sample
versions with high-probability guarantees and with similar
rates of convergence.
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