Appendix: Principled Learning Method for Wasserstein Distributionally
Robust Optimization with Local Perturbations

A. Proofs

When M = 0 and 3,, = 0 for all n, a 3,-locally perturbed data distribution is the empirical data distribution, i.e.,

PP}, = P,,. Therefore, Theorem 1 is a special case of Theorem 4. Also, in such cases, RE'P (P, h) = RE’C‘;Opﬁ y.p P 1)

and fzgﬁf’g = ﬁl(’;ip 8)p° and Theorems 2 and thus 3 are a special case of Theorems 5 and 6, respectively. In this respect, we

omit proofs for Theorems 1, 2, and 3.
A.1. Proof of Proposition 1
Proof of Proposition 1. Since P,, € M, ,(P,,), we have
R(Py, h) < Ry Py, h).

Let Q" be such that R(Q*,h) = supgeon,, (Bn) R(Q,h) = Ry°"SH(Py,h). Since h is Lipschitz continuous, the
Kantorovich-Rubinstein duality (Villani, 2008, Remark 6.5) gives

R(Q*,h) — R(P,,h) < Lip(h)W1(Q*,P,)

Here, the second inequality is due to Wy (Q*,P,,) < W, (Q*,P,,) for p € [1, 00) (Villani, 2008, Remark 6.6). Thus,

R(Py, h) = Ry (P, )| < Lip(h)a. ©)

Write P, = L3 6., for some {z1,...,2,} such that |2 = zi|| < Bn foralli € [n]. Then, we have 2} € Z + B(M)
and h(z})’s are well defined. By the Lipschitz continuity of & and the definition of IP,,, we have

n

> (h(z:) = h(=)

i=1

|R(]P)n7 h) - R(]P);m h)| =

1
n

1 n ' )
- ;Llp(h)HZi — zi|

< Lip(h)Bn.

IN

Therefore, we have

R(P,,, h) — Ry (P, h)| < (an + Bn)Lip(h).

This concludes the proof. O
A.2. Proof of Theorem 4
Proof of Theorem 4. Write P, = L 5™ 5., for some {2],..., 2]} such that||2} — z|| < B, forall i € [n]. Then, we

have z; € Conv(Z) 4+ B(M) and h(z])’s are well defined.
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[Step 1] In this step we first establish an upper bound for the local worst-case risk Rng;t (P,, h). Since h is well defined
and differentiable on Conv(Z) + B(M), we can apply the mean value theorem. Due to the (Cyy, k)-Holder continuity of
V.h, for any i € [n] and 2; € Z, we have

h(gl) = h(zé) =+ <vzh(cz) Z; — z:>
= h(z]) + (V.h(z)), 2z — i) + (V.h(c;) — V. h(z)), Zi — z1)
< h(z}) —|—HV h(z}) || ||Zz — 2 || —i—C’HHzZ — 2 ||1+k

where ¢; = 7;20 + (1 — 7;)%; for some 7; € [0,1]. By the triangle inequality and Jensen’s inequality, (a + b)!TF <
2F(a' % + b'**) for any a, b > 0, we have

+||V Az 5 = 2l + Cullz: — =1
)+ VR, (Ba +112 = zl) + Cu2® (12 — 2l + 81F5)
= fn (||v h=)|, +CH2k5k)+h ) VR NIZ = 2l + Cu2k)| 2 — 2]

To this end, we set Cy j, 1= Cu2* and t; :=||Z; — z||. By Gao et al. (2017, Lemma 2), for any 77 > 0 and A > 0, we have

HV h || t; +CH ktlJrk )\tf
k k
< (Hvzh(zg)H*—l-pp_CH w) <>\—p_1

By substituting 1 with o,

Crkn™ pﬁl) 7.

|Vah(z))|, ti + Crwty 5 — MY

k-1
< (Hth(Z:) LT pik T C’H,kOAﬁ) t; — ()\ —
p—

= D, (D)t — (A — C, ) 1. (10)

1 3 n 7

Since Z is bounded, there exists a constant Dz such that sup, ;¢ z[|z — Z|| < Dz. Then,

sup {ha, ()t — (A = Ca, )t} =

0<t<Dz

ha, (20)Dz — (A — Cy,, ) D% if0<A<C,,,
ha, (ZDt(A) — (A = Co, ) EE(N)  if Cp,, < A,

K2

/ 1/(p—1)
where ¢, (\) = min { (M) ,Dz } Here,

(A*Can)p
ha (Z’) 1/(p=1) he, (Z/)
((Acan>p> <Pz & Con ™ ppet <A
Thus,
/ ( )Dz - ()\ Can) if 0 < A < C + DZan(Zl)v
su ho (2t = (N=C., )P} = )
ogtngz{ ozn,( 1) ( O’n,) } p —p* ( )(/\ C 7”}7’(1" { HP lfc’orw + O(n(z) <\

Note that [|hq,, (2])]|, = ha, (2}). Let A, := Ca, + W Using the triangle inequality and the Holder

continuity of V_h, for any z € Z and some point zg € Z, we have
[V-h(2)|[, <[|Vah(z0)], +|[Vh(z) = Vah(z0)|).
<|[V=h(z0)l, + Cullz = zol*
<||V:h(z0)||, + CuD%.
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This implies || V. 2(2)||, is bounded for all z € Conv(Z) + B(M). We denote the upper bound by Ly, i.e.,

Ly < coforall z € Conv(Z) + B(M). Then, we have
max;cin{ha. (2 Ly + 5 0Oy pak
€l ]Eﬂn( i < T = (11
pDZ pD
At the same time, by the definition of ||, ||, ;. We have
0+ ZERCrpal ha, llp,
— < — 12)
pOln pa’ﬂ
and the left-hand side diverges to infinity as n increases due to p > 1+ k. Since [|hq,, [lp: 1 < [[ha,[lp ,~ and by the
inequalities (11) and (12) give for a large enough n,
e gy e
A < Co, + —fnl”
pon
Therefore, for a large enough n,
inf < Ao + — su ha, (20t — (A — Co, )t} 3 = Cy, a2 + apllha, |lpr -
0TS U (= O Co ) = ool bl
p—k-1 k
< Co,0b 4+ ay {Hvzh]p,mp* + p_lCH,k;an}
= || Vahllp e + Cuon ™. (13)

The inequality is due to the Minkowski inequality. By arranging all the results, for a large enough n, we have

RYSN(P,,, h) — R(P,, h)

@r/\mn{)\a?” Zsup {h —AllZ = z? }}

) zZeZ

< Bu([V=hllp, ; + CirB) + min { Xo, + Zsup{w RN = 2l + Capllzi = 2 = Az = 207} }

<B77(Hv h”IP’ 1+OH kﬂ )+m1n{)\ozp + - Zo<s;}ipD {Hv h || t+CH ktlJrk )\tp}}
=1

< Bn(IV:hllp, 4 + Ch, kBE) + mln {)\ap +— Z sup {h% (20t — (A = Ca,) tf} }

7 0<t;<Dz

a3 k 14k

< /BH(HVZh”P;I,l + CH7kﬁn) + O[7L“v2h||]1:”;1,p* + Cu ko,

=0(B, + 0‘111+k) + anIIVzth;wp* .
Thus, we have

Ry (P, h) — R(Py,, h) = anl|Vahllp . = OB + al™h. (14)

[Step 2] In this step, we establish a lower bound for the local worst-case risk Rng;t(]}”n, h). By the definition of the
Wasserstein ball M, , (P, ), we have

Rg‘jr;t (an h) - R(]P);w h)
1/p

> sup Z{h Z\lzz—z,np < an
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Again, the mean value theorem and the Holder continuity assumption on V ,h give

h(z) = h(z) + (Vah(ei), 5 — 20)
= h(z]) + (V.h(z)), 2 — zi) + (V.h(c;) — V. h(z)), Zi — z1)
> h(z}) + (V). 2 — ) — Cul|z — 21|
> h(=f) + (Vah(2]), (B — 20) + (2 — 2)) = C (I3 — 20l + 857)
> h(ef) + (Vah(z]), 5 = 22) = [ V(D] Ba = Cuk (17 — 5l + 834)),

where ¢; = tz; + (1 — t)2; for some ¢ € [0, 1]. Thus, we have
Ry (B, h) = R(P,, )
2= Bu(IVehllp, 1+ Cu )

1/p
~ k 1 - ~ p
+sup{ (Voh(2)), 2 — 2i) — Cugllzi — 2] — Zi— 2 gan}
wznz{ )= Cualle =l || 5 200
> = BullV:hllp o + CriBy)
n n 1/p
1 1
+ sup ¢ — Vaoh(2), 2 — 2 - Z — z|” < oy
sup 8 5 D SVanel) =) | | 5 2l - s
" n 1/p
1 - 14k 1 - »
—sup ¢ — Y Cugllzi — 2 - Zi — % < ap
sup 8 5 35 Coall =l { 1 3l - s
= = Bu (IV2hll, 1 + CusBE) + 1 = Sa,
As for the term S7, by the definition of the dual norm we have
n 1/p
1 -
S < sup Z||v h(2)||, 12 — 2l | - ;Hzi — P <apyp,
and by the Holder inequality,
1/p* 1/p
1 < 1y -
*ZHV h(z)|| 12 — zill < EZHV,JL(Z;) ’ ;ZH%—%HP
i=1 i=1
< @l Vahllps e s
where the inequalities hold with equalities when for all i € [n]
1/p
. VDI
1Z: = zill = an X >
F T [vhis)]
Here,
1/p

V012 [V-rGol "7 L (IV=RGDL
s 7 T UV, ‘%IWW«
Ezj=1HVzh(Zj) L Pl,.p P,1
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Since v, vanishes and Z is an open set, z; € Z if the term W is bounded. That is, the boundedness of ”HVhf
]P/

is a sufficient condition to achieve S = ||V, h||P, . It is noteworthy that the numerator HV h(z H is bounded by Lv,
and due to the local perturbation, we have

IV=hGDNL 2 [[V=RED]L = [[Vah(z) = VRG],

H1+k

> [[V-h(en)]], - Cull =
> (|Vah(z)]|, — CuBy™

Thus it is enough to show that the denominator ||V, A[[p , has a lower bound.

By the assumption Eqata(|V22[|,) > Cv and the fact||V.h(2)||, < Ly forall z € Conv(Z) + B(M), the McDiarmid
inequality (Devroye et al., 1996, pages 136-137) implies that for a fixed § > 0, the following holds with probability at least
1-46.

2 1
||vzh||]1ﬂ>n,1 > Eqata(|V:0|,) — Ly n IOg(g)- (15)

Therefore, for a large enough n, and this implies that

S1 = an||V:hp . with high probability. '

As for the term S, we note the fact (+ 7" [|Z; — Z| TR TE < (230 0z — ") P as p > 1+ k. Since the equality
holds when||Z; — z;|| = a, for all i € [n], we have

1/p

I N Iy
sup § =~ Cugllz =zl S Mg al” ) < onp < Cugagtt
nez NI nia

Thus, combining the terms .S; and S5 shows that for a large enough n and a fixed § > 0, the following holds with probability
at least 1 — 0.

RS (B, h) = R(Ph) = || Vahllg, e >

5n(||vzh||p;b,1 + CupBh) — Cpal™. (16)

[Step 3] By the inequalities (14) and (16), we have the following.
R(P,,h) + anHVzh||M7p* - RVQV:f;t(]P’n, h)| = Op(Bn + 04,1L+k).
This concludes the proof. O

Remark 6. The inequality (15) shows that||V .hl|p | has a lower bound with high probability. To appropriately use the
result of Theorem 4 to Theorems 5 and 6, we need a binifm’m bound result of ||Vzh||[Pn 1- Note that the inequality (15) does
not hold when the loss h depends on data. We use the same H as in Theorems 5 and 6 and give a uniform bound result in
the following proposition.

Proposition 2. Let Z be an open and bounded subset of R, For constants Cyy, Cv, L > 0, k € (0,1], and M > Sup,,en Sns
we let H be a uniformly bounded set of differentiable functions h : Conv(Z) + B(M) — R such that its gradient V ,h is
(Cu, k)-Holder continuous, Eqata(|V 1||,) > Cv, and Lip(h) < L. Then, for § > 0 and a large enough n, the following
holds with probability at least 1 — 0.

k ok 2 2
|\Vzh||Pm1 > Eqata(|V20,) — 2V/2 (LCHJCQ + dLCW> n_ %+ — [, - log(g),

for some constant Cy 1, 2 > 0.
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Proof. By the McDiarmid inequality (Devroye et al., 1996, pages 136-137) and symmetrization arguments (van der Vaart &
Wellner, 1996, Lemma 2.3.1), for § > 0, the following holds with probability at least 1 — 4.

~ 2 2
sup IV2hlp, 1 = Baata(IV2AIl,) | < 2R, (VH) + Ly [~ log (=),
heH N n 0
where VH = {|V.h||, | h € H}. By the assumption Eqai.(|V.2||,) > Cy and the fact that L 2 ]og(2) converges

to zero as n increases, ||V, h|p; is strictly greater than zero if MR, (VH) vanishes. Therefore, it is enough to show that
R, (VH) vanishes.

We denote a set of (Cly, k)-Holder continuous functions by Gy i, := {g : £ — R | g is (Cy, k)-Holder continuous and
191l € VH,

for all 2[1, 2j9) € Conv(Z) + B(M). Further, because of the differentiability and Lipschitz continuity of h € H, we have

For u > 0, let N, := N (u, G 1,||||..) be the u-covering number of Gy 5, with respect to||-|| . and let G,, := {g1, .-, Jn, }
be the correspondlng u-cover. For a set {o;}7"_; of independent Rademacher random variables, for some j € [IV,],

1 n

ﬁ|zoi9(2i)| < *\nga (zi)] + *|ZJZ —9;(z:))l
=1

ﬁ\zgiﬁj(ziﬂ + u.
=1

The second inequality is due to the Cauchy—Schwarz inequality. Then by the Massart’s lemma for a bounded and finite
function space, we have

2log N,
sup f|ZUlgzl|<sup f|Zazgzz|+u<L\/¢+u
9€9mr i gedn "t ot n

R, (Gurk) < inf {HL\/?logN(u Gl )}
u—d/k
< inf {U+L\/m }
Tta d ] d — .
(L\/M) <2k) + (%) =

for some constant C'y ;; 2 > 0. Here, the second inequality is due to Lorentz (1962, Theorem 2):

is (Cu, k)-Holder continuous because

) . S HVZB(Z[”) — VZB(Z[Q])

*

k
= CHHZU] - Zm”

< L. Thus VH C Guy 1., which implies R%,,(VH) < R, (Gir.x)-

o0

IN

Therefore,

1 .
i < i NGl )
u—0 u
for some constant Cy ;1 > 0.! Therefore, R, (Gm,%) vanishes with high probability. O

"Lorentz (1962, Theorem 2) considers the uniform norm |- ||, on Z, but any norm gives the same conclusion because any two norms
are equivalent on the finite dimensional space R?.
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A.3. Proof of Theorem 5
Proof. Let h‘gi’r;tﬂ = argminheHRg:f;t (Pdata, 7). Since Z is bounded and H is uniformly bounded, there exist constants

Dz and C3 o such thatsup,, . cz|l21 — 22|l < Dz and supj, ¢4 Sup, ¢ z |(2)| < Cy 00, respectively. As for the outline,
we decompose an excess risk as follows.

Rworst (]Pdatay }Alprop ) _ Rworst (]P)dataa hworstH) — R:;vorst (Pdata, h}(ﬁor:ltjﬁn)m) _ Rworst (]P)na iLPrOP )

Qn,p (Oény/jn)yp Qn,P Qn D, {n P Qn,p (an,ﬁn),p
(T1)
worst 7 prop _ pworst 7 worst
+ Ran sP (Pn’ h(an,ﬁn),p) Ranap (]P)T“ han sP )
(T2)
worst 7 worst worst worst
+ Ran,p (IP)ru han,p ) - Ran,p (]P)n’ han,p,’H)
(T3)
worst worst worst worst
+ Ry (P, hampy?-l) —Rep (Paata, hampﬁ’-l) :
(T4)

As for the term (T3), by the definition of A¥st

Qn,p°

(T3) = B3 (P, ) = RS (B hi'50) < 0.
[Step 1] In this step, we obtain an upper bound of the term (T2). By Theorem 4, for any fixed § > 0, there exists finite
constants My > 0, Ny € N such that the following holds with probability at least 1 — §/2.2
worst 7 prop __ pbrop 7 pProp
|Ro‘n7p (]P}TH h(Otn,ﬁn)J?) R(anvﬁn)vp(]?n, h(an,ﬁn)#’ | < M
< My, a7
Bn + Oé}z+k

for any n > Ny Similarly, there exists finite constants Ms > 0, Ny € N such that the following holds with probability at
least 1 — §/2.
(RS (B, BYOT3) = REP, (B, )|
ﬁn + 04711+k

< My, (18)

for any n > Ns. Choose &, > 050 that £, = O(log(n)(B, + o;,7*)).? Then there exists N > max{N;, Ny} such that for
allm > N, we have e, — (M + M) (58, + Oz,lfk) > 0. Fix such n. Under the product of the above two events (17) and
(18), assume that RY5 (P, AU, ) > ROV (P, by ) + €p. Then

Rl()cl;c:f‘ﬂn)wp(ﬂbn’ hi);éi}?ﬁn)vp) Z Rg:f;t (]Pn’ h?;?fjﬁn)rp) - Ml (5774 + a’}LJrk)

> R\&vorst(P ]Alworst) +en — Ml (ﬁn +a711+k)

n,P sy P ,p

> Rprop (]P; ;Lworst) +e, — (Ml + M2)(ﬁn + a}l—&-k)

(atn,Bn),p\~ ™ an,p

> RProP (]P) iLworst)7

(an,Bn),p\" ™ an,p

which contradicts the definition of ﬁf’;‘)p ) Thus, with probability at least 1 — &, we have

(T2) = BRI (Po, h3Ps ) ) = R (P, ) < en = ©(10g(n) (B + 0y, ™).

for sufficiently large n, or

7 7 1+k
(T2) = Ry (B, hy s ) ) = Rty (B, hiylyt) = O(log(n) (Bn + 0, ™)). (19)
>We refer Remark 6 and Proposition 2.
3For positive sequences (a,,) and (by,), b, = ©(a,,) indicates that there exist C; > 0, Cs > 0,0 € Nsuch that Cya, < b, < Caan
for all n > no.
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[Step 2] This step is based on proof of Lee & Raginsky (2018, Theorem 3). As for the term (T1), by the inequality (C.4)
and Lemma 5 of Lee & Raginsky (2018), we have

A8¢(H)  4SLDP,
Vn Vnah !

2 2
+ Onoop| ~log(3).  20)

worst 7 pr worst 7pr
(Tl) = Ranap (]P)da‘ta’7 h?a(jlrjﬂn)»p) - R (]P)n’ hlé)azrjﬁn)m) S 5

Qn,P

with probability at least 1 — 6/2.
As for the term (T4), by the inequality (C.5) of Lee & Raginsky (2018), the following holds with probability at least 1 — §/2.

WOTS WOors WOTS WOors 2 2
(T4) = ‘Roz,,,,pt (]P)n, han,pt,’}-t) - ‘Roz,,,,pt (Pdatav han,pt,'}-[) S CH,OO ﬁ IOg(g) (21)
Therefore, by combining all the inequalities (19), (20), and (21), the following holds with probability at least 1 — 24,
RIS B, BT, ) = B (Banen HE20)
43¢ (H) 48LDY, 2 2 1
< 20 00t/ = log(=) + O(1 n +k
< +\/ﬁa£_1 + 203,00/ - log(5) + O(log(n) (Bn + ;™))
=O0(n (€M) + oy, ") +log(n) (Bn + o, TF)).
This concludes the proof. O

A.4. Proof of Theorem 6

Proof of Theorem 6. Let hy, = argming, ¢4, R(Pdata, h). Since H is uniformly bounded, there exists a constant C'y; o such
that supj, ¢y, Sup,c z |h(2)| < Cy,00. Now decompose the excess risk as follows.

R(]P)dataa hl(;)rop ),p) - R(Pdataa h?—[) = R(Pdatav Bl()éil?ﬂn)vp) - R(Pna B?;c:fﬁn),p)

an,Bn
(T1)
7 prop prop 7 prop
+ R(Pn’ h(an,7ﬁn)7p) - R(anvﬂn)»p(ﬂp"’ h(an,,ﬁn),p)
(T2)

prop 7, prop worst 7,prop

R 50 B Ml 5, ) = By (B B g, )
(T3)

worst 7 pro worst 7 worst

+ Rozn 57 (an hl()anl?ﬁn),p) B Ran,p (Pn’ han D )
(T4)

worst 7 worst 7 ERM

+ R(Xn,p (]P)’rw han,p ) - R(]P)’VH hn )
(T5)
+ R(]P)na HERM) - R(Pdatav h?—l) .
(T6)

[Step 1] In this step, we obtain an upper bound of the term (T5). For all & € H and small enough «,,, we have
worst .
Ry (P, h) < R(Py, h) + Lip(h)ay, < R(Py, h) + Lay,. (22)

The first inequality is due to the inequality (9), the second inequality is due to the assumption. Applying the infimum
operator to the inequality (22) gives

Rworst (Pna il:;vgl:;t) < R(Pn, EERM) + Lo, = R(me EERM) + O(Oén)

Qn,p

Therefore,

(T5) = RO (Py,, AYO™SY) — R(P,, hE™™M) = O(a,). (23)

"y o ,p
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[Step 2] In this step, we obtain an upper bound for the terms (T2), (T3), and (T4). For any fixed § > 0, the following holds
with probability at least 1 — 4.

R(Pp, h) < RYOS (P, h) < RUP 5 ) (Pryh) + O(Bn + o ™™).

The first inequality is due to P,, € M, ,(P,,) and the second inequality is due to Theorem 4. Thus,

— 7, pr r i pr _ 1+k
(TQ) - R(Pn, h}(’)a(jlrv)ﬂn)vp) o R?a(:fﬁn)vp(]}pn’ h?‘;:fﬁn)vp) - Op(ﬁn + Qn )

As for the term (T3), by Theorem 4, we have

o TO 7 pro worst 7 pro _ 1+k
(Tg) - R?O‘npjﬁn)vp(]PTU h(panrjﬁn)sp) o Ra"*p (Pn, h?o‘nliﬁn)vp) - Op(ﬂn + Oln )

As for the term (T4), the inequality (19) gives

(T4) = Ry (o, BEEP, ) = RIS (o, BE2T) = Oplog(n) (B + a1 74)).

(ansBn),p Qn,P Qn,p

Therefore,

(T2) + (T3) + (T4) = O, (log(n)(Bn + apt)). (24)

[Step 3] In this step, we obtain an upper bound for the terms (T1) and (T6). Note that the term (T1) is bounded by
suppey |[R(Pr, h) — R(Pdata, 1)|. As for the term (T6), we have

R(P,,, hERM) — R(Pyata, hay) = R(Pp, hEEM) — R(P,,, hyy) + R(Po, hyy) — R(Paasa, b

S 0 + R(Pn; h’H) - R(Pdataa h’H)
< sup ‘R(Pn» h) - R(]P)dataa h)‘
heH

The first inequality is due to the definition of 2ERM. Thus, the sum of the terms (T1) and (T6) is bounded by
2supycy |R(Pr, h) — R(Pgata, h)|. The McDiarmid inequality (Devroye et al., 1996, pages 136-137) and symmetrization
arguments (van der Vaart & Wellner, 1996, Lemma 2.3.1) provide

2 2
sup |R(Pp, h) — R(Pdata, )| < 2R, (H) + Cp,001/ — log(=), (25)
heH n 4]
with probability at least 1 — 4.

Lastly, by aggregating the inequalities (23), (24) and (25),

R(]P)dataa h?rop ) - fzgg—( R(Pdatav h)

anﬁﬁn)fp
= 0p(Rn(H) + 172 + a, +log(n) (B, + ap™)).

This concludes the proof. O

A.5. Details for Section 3.3

We first define some notations. Let X C [—1,1]971 and ) = {1} be open sets with respect to the /o-norm and the discrete
norm I(- # 0), respectively. We set Z = X x Y and ||(z,y)|| =|=||, + 4I(y # 0). Note that X x Y is clearly open and

bounded with respect to H (z,9) H For a matrix A € R% %92 _jts Frobenius norm is defined as HAH = \/2?11 2?1:1 Afj
F

and the matrix £,-norm HA‘ = supy :1‘
P P

an integer J and a set of integers d := {dp,...,ds} suchthatdy =d —1andd; = 1, welet A = {A;,...,A;} be J
weight matrices such that A; € R%*4i-1_ For a constant v > 0 and a set of positive constants M := {M, ..., M}, define

AuH for p € [1, oo]. Now we define the space of deep neural networks. For
P

Fixi = A{vf(@) = yds(Asds1(As 1. d1(Arz)..)) [[Aillp < Miyi e [T),y < [T 1AL}
1€[J]
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Famy = {f(@) = ¢s(Asps1(As 1. o1(Arz) .. ) [|Aillp < My i€ [J),v < [T I1All,}
i€[J]

where ¢; : R% — R% is a 1-Lipschitz activation function and satisfies ¢;(04,) = 04, for all i € [J], and 0y, is the vector

of d; zeros. Note that we omit intercepts here for notational simplicity. For ¢1, ..., ¢;_1, we employ the hyperbolic tangent
function and ¢ is the identity function.* Lastly, for a positive constants s, we define
X FX
Fanihs = {0f @) € FER | 1Al < s}
1€[J]
Famas = {f(z) € Famn | Y 1Al < s}, (26)
i€[J]

where|| A ||, is the number of non-zero entries of a matrix A.. To this ends, we will set M = 1, the vector of J ones.
Corollary 2 (A formal statement of Corollary 1). Let Fq 1, s be a set of sparse deep neural networks, defined in (26).
For some constant Cy > 0, let H = {h(z,y) | h(z,y) = log(l + exp(—yf(x))) and Eqata (HV f(z H ) > Cy for

[ € Fa1,.4.s}. Then the excess worst-case risks of h2'° and hEEM gre

5worst(izprop)20p( 1/2 1— p\/log( ) 1+k))

Qn,P

5w0rst(hERM) Op(n—l/Q vV an).

Qn,p

Furthermore, the excess risks of hi'°Y and hERM gre

E(inmp) = Op(n_l/2 Voay, V 1og(n)(a}fk))7

Qn,p

E(hFM) = Op(n™"/2).

Proof. [Step 1] Clearly, X x ) is open and bounded. In addition, the domain X" is bounded and weights || A, || are
bounded for all i € [J], forall f € Fq1,,,s, we have sup,c |f(2)] < Cr,,, ., for some constant Cr,, . > 0.In
short, 74,1, ,s is uniformly bounded, and # is uniformly bounded as well. In addition, for all f € Fq 1, s, due to the
differentiability of the hyperbolic tangent function, f is twice continuously differentiable, and this implies that for all h € H,
h is twice continuously differentiable. Uniformly boundedness of .A and the boundedness of Z implies that uniformly
boundedness of ||V, k||, and the Frobenius norm of the Hessian matrix of . This provides existence of constants Cy and L
such that VA is (Cy, 1/2)-Holder continuous for all h € H and Lip(h) < L.

Lastly, by the definition of the dual norm and the discrete norm,

IV2hll, = sup (Voh,u) = sup (Vih,s) =|Vihl,. 27)

llul<1 lIsll;<1

Since V h = %(—y)vgﬂx), we have

1 1
————|IIVaflly >
1+ exp(yf(z ‘I I > 1+exp(Cry, )

IV hll, = ] 19271,

Therefore, all the conditions in Theorems 2 and 3 are satisfied.

[Step 2] Since {105 (2) := log(1+exp(—=z)) is continuously differentiable on (—2Bx, 2B ), {105 (%) is Lipschitz continuous
n [—Br, Br]. It implies that there exists a finite Lipschitz constant. Let Lo, be a Lipschitz constant on [— Bz, Br]. Due
to Talagrand’s lemma (Mohri et al., 2018, Lemma 5.7), we have

R (H) = R (liog © Fi 1Y ) < LiogRu(FLTY ).

“We may employ other differentiable activation functions with Lipschitz constant less than or equal to one. The differentiability of
activation functions is required to satisfy the conditions of Theorem 1. However, it can be easily shown that this condition can be relaxed
to hold only Pga¢a-almost surely, so that the ReLU function can be employed, by re-stating Theorem 1 with Py,¢,-almost sure conditions.
Here, for the sake of simplicity, we simply use the hyperbolic tangent function, which is differentiable.

3The sufficient condition for Eqata ( ||V Sz || > C'y may not be obvious, but it is assumed to be held based on Figures 2 and 3.
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Due to Lemma 7 below, we have

R (Fi10, ) S Ru(Fi1Y) =Ru(Far, ) <On™?).

d,1;,v,s

The equality is due to for all i € [J], 0; = atyl for the Rademacher random variables o;. Therefore, by Mohri et al. (2018,
Theorem 11.3) and Theorem 3, £(AERM) = O,,(n1/2) and E(AEP) = O,(n~ /2 V ay, V log(n)(alt*)) are obtained.

[Step 3] Here we prove the excess worst-case risk bound for hERM. An essentially the same argument as (22) yields that for
allh € H,

RWOI"St (Pdataa h) S R(Pdata7 h) + Llp(h)Oén S R(Pdatav h) + Lan7 (28)
Applying the infimum operator on R(Pgata, h) < RWOrSt (Pgata, h) gives
. < i worst .
,3161% R(Pdatm h) > fiIEl?f-L Ran,p (Pdataa h) (29)
Therefore, the inequalities (28) and (29) give
ENOSt(h) = Ry (Pqata, h) — hlgf RSN (Paatas h)
S R(Pdataa h) + Lan — inf R(]Pdataa h)
heH
=E&(h) + Lay,.
By Theorem 3 we conclude that £3°'5 (hERM) — O,(n~12 Vv ay,).

[Step 4] We now prove that EYS8 (AP ) = O,,(n~/2al~? V log(n)a**). By Theorem 2, it is enough to show that

= [ V9og N(u, H,[|-[ .o )du is finite.
Forall (z,y) € Z and f1, fo € Fa,1,,~,s, We have
[log (yf1(2)) = biog (yf2(2))| < Lioglyf1(x) — yfa(@)| = Liog| f1(2) — fa()].
Therefore, N'(u, 1, |-[| ) < N(g= = Ja 1,785/l )» and thus by Lemma 8 below we have

O

2JV?2L,
logN( Farsmellle) < (s+1)log <Ulg> .

Therefore, an integration by substitution gives

o0 oo U
L os Nt A < [ NG Fan )
0 0 log
0o 2
Ny %Og (2L,
0 (3

2JV2Liog 2
~VeED [ %Og (220
0 u
=+ (s+1) / (4JV2L10g)y2 exp(—y?)dy.
0

Since

/ y? exp(—y*)dy = —5/ y(—2y exp(—y°))dy = 5/ exp(—y°)dy =
0 0 0

b

VT
1

we have [~ \/log N'(u, H,[[[|,) < oo and this concludes the proof. O
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Remark 7 (Different hypothesis spaces). In essence, the results of Corollary 2 hold if for a hypothesis space F, the
Rademacher complexity R, (F) is O(n~'/?) and the entropy integral [~ \/log N'(u, F.||-|| o) is bounded. It is well known
that these conditions hold for a reproducing kernel Hilbert space and a linear hypothesis space under mild conditions.

Remark 8 (When o, vanishes fast). Consider the logistic regression setting, i.e., P(Y =1 | X = z) = exp(slx)/(1 +
exp(BLx)) for some 3. € RY. Blanchet & Murthy (2019, Theorem 1) showed that Wy (Paata, Prn) < % holds with

7=

high probability, under mild conditions on Pyas.. In this case, we choose o, = (n'/? log(n))_p%’c. Then the proposed
A _ 14k p—1 o

excess worst-case risk bound is EY5*(hR°P) = O,(n~ 2+H log(n) = ). By setting p = % Exorst(hBropr) =

Op(nfé(l’k) log(n)*). We can choose arbitrary small k > 0, and thus the convergence rate is near O(n="/2).° Similar
results hold for the excess risk bound.

Remark 9 (Regression). For a constant B > 0, we let X x Y C [~1,1]971 x [~ B, B be an open set with respect to the

ly-norm. We set Z = X xyandH(a:,y)H = \/||x||§ +y2 Welet H = {h(z,y) | h(z,y) = |y— f(x)|for f € Fa1, s}’

Then similar results hold.

With the notations defined in the front of this section, we quote the following two lemmas: the Rademacher complexity
bound of Fq m,, by Golowich et al. (2018, Corollary 1) and the covering number bound of Fg 1, ~,s by Schmidt-Hieber
(2017, Lemma 5).

Lemma 7 (Rademacher complexity bound). Assume that||z||, < Cx. Then

J = J
- log(y "' [[i=, Mi) |J
< M, 10g>/* i=1 <
R (Fam~) < Cy 11;[1 ; | min | log (n)\/ Tn Ao

where log(z) := 1V log(z).
Lemma 8 (Covering number bound). Let V := H;']:O(di + 1), then for any u > 0,

2JV?
10gN<u’]:d,1J,’Y>S’H'Hoo) < (S + 1) log ( “ ) .

°For h : Z — R, V.his (Cu, k1)-Hélder continuous, sup, ¢, sup, ¢ z || V-h(z)||, < L and any ks < k1,

|[V-h(z1) = V.h(z2)]|, - |V-h(z1) = V.h(z2)]|, N |V2h(z1) = Voh(z2)]|,
szez llz1 — zo||* T le—zli<1 llz1 — 22|l le—zl>1 llz1 — 22|
|V-h(z1) = Voh(z2)]|, | V-h(z1) = Voh(z2)]|,
< sup T =
ll=—zl<1 llz1 — 2|l ll=—2>1 llz1 — 2|l
< Cu +2L.

Thus V. his (Cu + 2L, k2)-Holder continuous.
"Since V. h(z) = Sign(y — f(2))[V.f(z),1]%, Edata(HVzh(z)||2) >1=:Cyv.
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B. Implementation Details

In this section, we provide implementation details including the used algorithm and hyper-parameters. Our algorithm
is presented in Algorithm 1. Tensorflow implementation for experiments is available at https://github.com/
ykwon0407/wdro_local_perturbation.

Algorithm 1 Principled learning method for WDRO when data are perturbed in classification settings

1: Input: training dataset Z,, = {(z1,¥1), .- -, (Zn, Yn)}, a (deep neural network) model fy parametrized by 6, batch size
B, hyper-parameters 1, 72, Agrad > 0, optimization algorithm .

2: Initialize parameters 6 in fy

3: while until a convergent condition is met do

4: Sample {(.%‘[1],];[1])7 ey (:L‘[B], y[B])} from Z,,

5. forb=1to Bdo

6: if WDRO+MIX then

7: Sample ~ from Beta(91, 42)

8: zy =2 + (1 = 7)@(B11-9)

9: Y = + (L= NYpyi—p > Mixup
10: end if
11: hg(a:{b], yfb]) = Cross-entropy loss [y[b],fg (a:[b])} > calculate loss per observation
12:  end for 9
13 L=B"! Zszl he (sz]v yfb]) + Agrad ’Vxhg(xfb] , yEb])H2 > calculate the objective function
14: 6+ 2A(L,0) > update parameters

15: end while

B.1. Objective function

The sample space of the CIFAR-10 and CIFAR-100 datasets can be written as X x ) where X C [—1,1]3072
and Y = {1,...,k} C R. In this space, we define the norm by ||(z,y)|| = ||lzll, + 4 - I(y # 0). This gives
V(' )|, =||Vah(z', )], forany (a/,y) € X x V. as in (27). Therefore, when p = p* = 2, the penalty term in
®)is an[[Vih|p - = Ozn\/vr1 S || Vah(al, y;)”i Instead of this term, we use Agraq (n’l S || Vah(a, y{)”i)
for computational convenience.

B.2. Hyper-parameter settings

We set the penalty parameter Agraq = 0.004 and the batch size B = 64. For MIXUP and WDRO+MIX, the interpolation
with hyper-parameters 41 = 75 = 0.5 is applied.

For the model architecture, we use the Wide ResNet model with depth 28 and width 2 including the batch normalization
and the leaky ReLLU activation as in Oliver et al. (2018) and Berthelot et al. (2019). Our implementation of the model and
training hyper-parameters closely matches that of Berthelot et al. (2019).

For the optimization algorithm 2(, we choose Adam optimizer with the learning rate fixed as 0.002. Instead of decaying the
learning rate, we use an exponential moving average of the parameters with a decay of 0.999, and apply a weight decay of
0.02 at each update for the model as in Berthelot et al. (2019). We train the model with 100 x 2'6 images.
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C. Additional experiment: selection of the penalty parameter

In this section, we compare the accuracy of WDRO and WDRO+MIX with various penalty parameters Agraq using the
contaminated CIFAR-10 and CIFAR-100 datasets. The penalty parameters vary as 0.004, 0.016, and 0.064. The training
sample size is 50000 and we apply the salt and pepper noise to 1% pixels of 10000 test images for the contaminated datasets.
We train the model five times.

Table 4 compares accuracy as the penalty parameter changes. In all cases, a significantly higher accuracy is attained when
Agrad = 0.016 than other Agraq values. With this result, we anticipate that our proposed methods can achieve higher
accuracy than the one in Section 5, by carefully selecting the penalty parameter Agraq.

Table 4. Accuracy comparison WDRO and WDRO+MIX with various penalty parameter Agraq. Other details are given in Table 2.

METHODS Agrad

0.004 0.016 0.064
CIFAR-10
WDRO 87.4+04 87.9+02 862402
WDRO+MIX 87.3+04 88.2+0.3 86.8+0.2
CIFAR-100
WDRO 62.14+04 64.1+03 62.6+04

WDRO+MIX 60.6£0.7 62.2+0.2 61.3+0.2
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