
Appendix: Principled Learning Method for Wasserstein Distributionally
Robust Optimization with Local Perturbations

A. Proofs
When M = 0 and βn = 0 for all n, a βn-locally perturbed data distribution is the empirical data distribution, i.e.,
P′n = Pn. Therefore, Theorem 1 is a special case of Theorem 4. Also, in such cases, Rprop

αn,p(Pn, h) = Rprop
(αn,βn),p

(Pn, h)

and ĥpropαn,p = ĥprop(αn,βn),p
, and Theorems 2 and thus 3 are a special case of Theorems 5 and 6, respectively. In this respect, we

omit proofs for Theorems 1, 2, and 3.

A.1. Proof of Proposition 1

Proof of Proposition 1. Since Pn ∈Mαn,p(Pn), we have

R(Pn, h) ≤ Rworst
αn,p (Pn, h).

Let Q∗ be such that R(Q∗, h) = supQ∈Mαn,p(Pn)R(Q, h) = Rworst
αn,p (Pn, h). Since h is Lipschitz continuous, the

Kantorovich-Rubinstein duality (Villani, 2008, Remark 6.5) gives

R(Q∗, h)−R(Pn, h) ≤ Lip(h)W1(Q∗,Pn)

≤ Lip(h)Wp(Q∗,Pn)

≤ Lip(h)αn.

Here, the second inequality is due toW1(Q∗,Pn) ≤ Wp(Q∗,Pn) for p ∈ [1,∞) (Villani, 2008, Remark 6.6). Thus,∣∣∣R(Pn, h)−Rworst
αn,p (Pn, h)

∣∣∣ ≤ Lip(h)αn. (9)

Write P′n = 1
n

∑n
i=1 δz′i for some {z′1, . . . , z′n} such that

∥∥z′i − zi∥∥ ≤ βn for all i ∈ [n]. Then, we have z′i ∈ Z + B(M)
and h(z′i)’s are well defined. By the Lipschitz continuity of h and the definition of P′n, we have

∣∣R(Pn, h)−R(P′n, h)
∣∣ =

∣∣∣∣∣∣ 1n
n∑
i=1

(h(zi)− h(z′i))

∣∣∣∣∣∣
≤ 1

n

n∑
i=1

Lip(h)
∥∥z′i − zi∥∥

≤ Lip(h)βn.

Therefore, we have ∣∣∣R(P′n, h)−Rworst
αn,p (Pn, h)

∣∣∣ ≤ (αn + βn)Lip(h).

This concludes the proof.

A.2. Proof of Theorem 4

Proof of Theorem 4. Write P′n = 1
n

∑n
i=1 δz′i for some {z′1, . . . , z′n} such that

∥∥z′i − zi∥∥ ≤ βn for all i ∈ [n]. Then, we
have z′i ∈ Conv(Z) + B(M) and h(z′i)’s are well defined.
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[Step 1] In this step we first establish an upper bound for the local worst-case risk Rworst
αn,p (Pn, h). Since h is well defined

and differentiable on Conv(Z) + B(M), we can apply the mean value theorem. Due to the (CH, k)-Hölder continuity of
∇zh, for any i ∈ [n] and z̃i ∈ Z , we have

h(z̃i) = h(z′i) + 〈∇zh(ci), z̃i − z′i〉
= h(z′i) + 〈∇zh(z′i), z̃i − z′i〉+ 〈∇zh(ci)−∇zh(z′i), z̃i − z′i〉

≤ h(z′i) +
∥∥∇zh(z′i)

∥∥
∗

∥∥z̃i − z′i∥∥+ CH

∥∥z̃i − z′i∥∥1+k ,
where ci = τiz

′
i + (1 − τi)z̃i for some τi ∈ [0, 1]. By the triangle inequality and Jensen’s inequality, (a + b)1+k ≤

2k(a1+k + b1+k) for any a, b ≥ 0, we have

h(z′i) +
∥∥∇zh(z′i)

∥∥
∗

∥∥z̃i − z′i∥∥+ CH

∥∥z̃i − z′i∥∥1+k
≤ h(z′i) +

∥∥∇zh(z′i)
∥∥
∗ (βn +‖z̃i − zi‖) + CH2k(‖z̃i − zi‖1+k + β1+k

n )

= βn

(∥∥∇zh(z′i)
∥∥
∗ + CH2kβkn

)
+ h(z′i) +

∥∥∇zh(z′i)
∥∥
∗‖z̃i − zi‖+ CH2k‖z̃i − zi‖1+k .

To this end, we set CH,k := CH2k and ti :=‖z̃i − zi‖. By Gao et al. (2017, Lemma 2), for any η > 0 and λ ≥ 0, we have∥∥∇zh(z′i)
∥∥
∗ ti + CH,kt

1+k
i − λtpi

≤
(∥∥∇zh(z′i)

∥∥
∗ +

p− k − 1

p− 1
CH,kη

)
ti −

(
λ− k

p− 1
CH,kη

− p−k−1
k

)
tpi .

By substituting η with αkn,∥∥∇zh(z′i)
∥∥
∗ ti + CH,kt

1+k
i − λtpi

≤
(∥∥∇zh(z′i)

∥∥
∗ +

p− k − 1

p− 1
CH,kα

k
n

)
ti −

(
λ− k

p− 1
CH,kα

−(p−k−1)
n

)
tpi

=: hαn
(
z′i)ti − (λ− Cαn

)
tpi . (10)

Since Z is bounded, there exists a constant DZ such that supz,z̃∈Z‖z − z̃‖ ≤ DZ . Then,

sup
0≤t≤DZ

{hαn(z′i)t− (λ− Cαn)tp} =

{
hαn(z′i)DZ − (λ− Cαn)Dp

Z if 0 ≤ λ ≤ Cαn ,
hαn(z′i)t∗(λ)− (λ− Cαn)tp∗(λ) if Cαn < λ,

where t∗(λ) = min

{(
hαn (z

′
i)

(λ−Cαn )p

)1/(p−1)
, DZ

}
. Here,

(
hαn(z′i)

(λ− Cαn)p

)1/(p−1)

< DZ ⇔ Cαn +
hαn(z′i)

pDp−1
Z

< λ.

Thus,

sup
0≤t≤DZ

{hαn(z′i)t− (λ− Cαn)tp} =


hαn(z′i)DZ − (λ− Cαn)Dp

Z , if 0 ≤ λ ≤ Cαn +
hαn (z

′
i)

pDp−1
Z

,

p−p
∗
(p− 1)(λ− Cαn)−

1
p−1

∥∥hαn(z′i)
∥∥p∗
∗ , if Cαn +

hαn (z
′
i)

pDp−1
Z

< λ.

Note that
∥∥hαn(z′i)

∥∥
∗ = hαn(z′i). Let λ∗ := Cαn +

maxi∈[n]{hαn (z
′
i)}

pDp−1
Z

. Using the triangle inequality and the Hölder

continuity of∇zh, for any z ∈ Z and some point z0 ∈ Z , we have∥∥∇zh(z)
∥∥
∗ ≤

∥∥∇zh(z0)
∥∥
∗ +
∥∥∇zh(z)−∇zh(z0)

∥∥
∗

≤
∥∥∇zh(z0)

∥∥
∗ + CH‖z − z0‖k

≤
∥∥∇zh(z0)

∥∥
∗ + CHD

k
Z .
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This implies
∥∥∇zh(z)

∥∥
∗ is bounded for all z ∈ Conv(Z) + B(M). We denote the upper bound by L∇, i.e.,

∥∥∇zh(z)
∥∥
∗ ≤

L∇ <∞ for all z ∈ Conv(Z) + B(M). Then, we have

maxi∈[n]{hαn(z′i)}
pDp−1
Z

≤
L∇ + p−k−1

p−1 CH,kα
k
n

pDp−1
Z

<∞. (11)

At the same time, by the definition of‖hαn‖P′n,1, we have

0 + p−k−1
p−1 CH,kα

k
n

pαp−1n

≤
‖hαn‖P′n,1
pαp−1n

, (12)

and the left-hand side diverges to infinity as n increases due to p > 1 + k. Since‖hαn‖P′n,1 ≤ ‖hαn‖P′n,p∗ and by the
inequalities (11) and (12) give for a large enough n,

λ∗ < Cαn +
‖hαn‖P′n,p∗
pαp−1n

.

Therefore, for a large enough n,

inf
λ∗<λ

λαpn +
1

n

n∑
i=1

sup
0≤t≤DZ

{hαn(z′i)t− (λ− Cαn)tp}

 = Cαnα
p
n + αn‖hαn‖P′n,p∗

≤ Cαnαpn + αn

{
‖∇zh‖P′n,p∗ +

p− k − 1

p− 1
CH,kα

k
n

}
= αn‖∇zh‖P′n,p∗ + CH,kα

1+k
n . (13)

The inequality is due to the Minkowski inequality. By arranging all the results, for a large enough n, we have

Rworst
αn,p (Pn, h)−R(P′n, h)

(4)
= min

λ≥0

{
λαpn +

1

n

n∑
i=1

sup
z̃∈Z

{
h(z̃)− h(z′i)− λ‖z̃ − zi‖

p}}
≤ βn(‖∇zh‖P′n,1 + CH,kβ

k
n) + min

λ≥0

{
λαpn +

1

n

n∑
i=1

sup
z̃∈Z

{∥∥∇zh(z′i)
∥∥
∗‖z̃i − zi‖+ CH,k‖z̃i − zi‖1+k − λ‖z̃ − zi‖p

}}
≤ βn(‖∇zh‖P′n,1 + CH,kβ

k
n) + min

λ≥0

{
λαpn +

1

n

n∑
i=1

sup
0≤t≤DZ

{∥∥∇zh(z′i)
∥∥
∗ t+ CH,kt

1+k − λtp
}}

(10)
≤ βn(‖∇zh‖P′n,1 + CH,kβ

k
n) + min

λ≥λ∗

{
λαpn +

1

n

n∑
i=1

sup
0≤ti≤DZ

{
hαn

(
z′i)ti − (λ− Cαn

)
tpi

}}
(13)
≤ βn(‖∇zh‖P′n,1 + CH,kβ

k
n) + αn‖∇zh‖P′n,p∗ + CH,kα

1+k
n

= O(βn + α1+k
n ) + αn‖∇zh‖P′n,p∗ .

Thus, we have

Rworst
αn,p (Pn, h)−R(P′n, h)− αn‖∇zh‖P′n,p∗ = O(βn + α1+k

n ). (14)

[Step 2] In this step, we establish a lower bound for the local worst-case risk Rworst
αn,p (Pn, h). By the definition of the

Wasserstein ball Mαn,p(Pn), we have

Rworst
αn,p (Pn, h)−R(P′n, h)

≥ sup
z̃i∈Z

 1

n

n∑
i=1

{h(z̃i)− h(z′i)} |

 1

n

n∑
i=1

‖z̃i − zi‖p
1/p

≤ αn

 .
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Again, the mean value theorem and the Hölder continuity assumption on∇zh give

h(z̃i) = h(z′i) + 〈∇zh(ci), z̃i − z′i〉
= h(z′i) + 〈∇zh(z′i), z̃i − z′i〉+ 〈∇zh(ci)−∇zh(z′i), z̃i − z′i〉

≥ h(z′i) + 〈∇zh(z′i), z̃i − z′i〉 − CH

∥∥z̃i − z′i∥∥1+k
≥ h(z′i) + 〈∇zh(z′i), (z̃i − zi) + (zi − z′i)〉 − CH,k

(
‖z̃i − zi‖1+k + β1+k

n

)
≥ h(z′i) + 〈∇zh(z′i), z̃i − zi〉 −

∥∥∇zh(z′i)
∥∥
∗ βn − CH,k

(
‖z̃i − zi‖1+k + β1+k

n

)
,

where ci = tzi + (1− t)z̃i for some t ∈ [0, 1]. Thus, we have

Rworst
αn,p (Pn, h)−R(P′n, h)

≥− βn(‖∇zh‖P′n,1 + CH,kβ
k
n)

+ sup
z̃i∈Z

{ 1

n

n∑
i=1

{〈∇zh(z′i), z̃i − zi〉 − CH,k‖z̃i − zi‖1+k} |

 1

n

n∑
i=1

‖z̃i − zi‖p
1/p

≤ αn
}

≥− βn(‖∇zh‖P′n,1 + CH,kβ
k
n)

+ sup
z̃i∈Z

 1

n

n∑
i=1

〈∇zh(z′i), z̃i − zi〉 |

 1

n

n∑
i=1

‖z̃i − zi‖p
1/p

≤ αn


− sup
z̃i∈Z

 1

n

n∑
i=1

CH,k‖z̃i − zi‖1+k |

 1

n

n∑
i=1

‖z̃i − zi‖p
1/p

≤ αn


=:− βn

(
‖∇zh‖P′n,1 + CH,kβ

k
n

)
+ S1 − S2.

As for the term S1, by the definition of the dual norm we have

S1 ≤ sup
z̃i∈Z

 1

n

n∑
i=1

∥∥∇zh(z′i)
∥∥
∗‖z̃i − zi‖ |

 1

n

n∑
i=1

‖z̃i − zi‖p
1/p

≤ αn

 ,

and by the Hölder inequality,

1

n

n∑
i=1

∥∥∇zh(z′i)
∥∥
∗‖z̃i − zi‖ ≤

 1

n

n∑
i=1

∥∥∇zh(z′i)
∥∥p∗
∗

1/p∗  1

n

n∑
i=1

‖z̃i − zi‖p
1/p

≤ αn‖∇zh‖P′n,p∗ ,

where the inequalities hold with equalities when for all i ∈ [n]

‖z̃i − zi‖ = αn


∥∥∇zh(z′i)

∥∥p∗
∗

1
n

∑n
j=1

∥∥∥∇zh(z′j)
∥∥∥p∗
∗


1/p

.

Here,

αn


∥∥∇zh(z′i)

∥∥p∗
∗

1
n

∑n
j=1

∥∥∥∇zh(z′j)
∥∥∥p∗
∗


1/p

= αn

(∥∥∇zh(z′i)
∥∥
∗

‖∇zh‖P′n,p∗

)p∗/p
≤ αn

(∥∥∇zh(z′i)
∥∥
∗

‖∇zh‖P′n,1

)p∗/p
.
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Since αn vanishes and Z is an open set, z̃i ∈ Z if the term
‖∇zh(z′i)‖∗
‖∇zh‖P′n,1

is bounded. That is, the boundedness of
‖∇zh(z′i)‖∗
‖∇zh‖P′n,1

is a sufficient condition to achieve S1 = αn‖∇zh‖P′n,p∗ . It is noteworthy that the numerator
∥∥∇zh(z′i)

∥∥
∗ is bounded by L∇,

and due to the local perturbation, we have∥∥∇zh(z′i)
∥∥
∗ ≥

∥∥∇zh(z′i)
∥∥
∗ −
∥∥∇zh(zi)−∇zh(z′i)

∥∥
∗

≥
∥∥∇zh(zi)

∥∥
∗ − CH

∥∥z′i − zi∥∥1+k
≥
∥∥∇zh(zi)

∥∥
∗ − CHβ

1+k
n .

Thus it is enough to show that the denominator‖∇zh‖Pn,1 has a lower bound.

By the assumption Edata(‖∇zh‖∗) ≥ C∇ and the fact
∥∥∇zh(z)

∥∥
∗ ≤ L∇ for all z ∈ Conv(Z) + B(M), the McDiarmid

inequality (Devroye et al., 1996, pages 136-137) implies that for a fixed δ > 0, the following holds with probability at least
1− δ.

‖∇zh‖Pn,1 ≥ Edata(‖∇zh‖∗)− L∇

√
2

n
log(

1

δ
). (15)

Therefore, for a large enough n, ‖∇zh‖Pn,1 is strictly greater than zero with high probability, and this implies that
S1 = αn‖∇zh‖P′n,p∗ with high probability.

As for the term S2, we note the fact ( 1
n

∑n
i=1‖z̃i − zi‖

1+k
)

1
1+k ≤

(
1
n

∑n
i=1‖z̃i − zi‖

p)1/p as p > 1+k. Since the equality
holds when‖z̃i − zi‖ = αn for all i ∈ [n], we have

sup
z̃i∈Z

 1

n

n∑
i=1

CH,k‖z̃i − zi‖1+k |

 1

n

n∑
i=1

‖z̃i − zi‖p
1/p

≤ αn

 ≤ CH,kα
1+k
n .

Thus, combining the terms S1 and S2 shows that for a large enough n and a fixed δ > 0, the following holds with probability
at least 1− δ.

Rworst
αn,p (Pn, h)−R(P′n, h)− αn‖∇zh‖P′n,p∗ ≥ −βn(‖∇zh‖P′n,1 + CH,kβ

k
n)− CH,kα

1+k
n . (16)

[Step 3] By the inequalities (14) and (16), we have the following.∣∣∣R(P′n, h) + αn‖∇zh‖P′n,p∗ −R
worst
αn,p (Pn, h)

∣∣∣ = Op(βn + α1+k
n ).

This concludes the proof.

Remark 6. The inequality (15) shows that‖∇zh‖Pn,1 has a lower bound with high probability. To appropriately use the
result of Theorem 4 to Theorems 5 and 6, we need a uniform bound result of‖∇zh‖Pn,1. Note that the inequality (15) does
not hold when the loss h depends on data. We use the sameH as in Theorems 5 and 6 and give a uniform bound result in
the following proposition.

Proposition 2. LetZ be an open and bounded subset of Rd. For constantsCH, C∇, L > 0, k ∈ (0, 1], andM ≥ supn∈N βn,
we letH be a uniformly bounded set of differentiable functions h : Conv(Z) + B(M)→ R such that its gradient ∇zh is
(CH, k)-Hölder continuous, Edata(‖∇zh‖∗) ≥ C∇, and Lip(h) ≤ L. Then, for δ > 0 and a large enough n, the following
holds with probability at least 1− δ.

‖∇zh‖Pn,1 ≥ Edata(‖∇zh‖∗)− 2
√

2

(
LCH,k,2 +

k

dLCH,k,2

)
n−

k
2k+d − L

√
2

n
log(

2

δ
),

for some constant CH,k,2 > 0.
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Proof. By the McDiarmid inequality (Devroye et al., 1996, pages 136-137) and symmetrization arguments (van der Vaart &
Wellner, 1996, Lemma 2.3.1), for δ > 0, the following holds with probability at least 1− δ.

sup
h∈H

∣∣∣‖∇zh‖Pn,1 − Edata(‖∇zh‖∗)
∣∣∣ ≤ 2Rn(∇H̃) + L

√
2

n
log(

2

δ
),

where ∇H̃ := {‖∇zh‖∗ | h ∈ H}. By the assumption Edata(‖∇zh‖∗) ≥ C∇ and the fact that L
√

2
n log( 2

δ ) converges

to zero as n increases,‖∇zh‖Pn,1 is strictly greater than zero if Rn(∇H̃) vanishes. Therefore, it is enough to show that
Rn(∇H̃) vanishes.

We denote a set of (CH, k)-Hölder continuous functions by GH,k := {g : Z → R | g is (CH, k)-Hölder continuous and

‖g‖∞ ≤ L.}. Then for all
∥∥∥∇zh̃∥∥∥

∗
∈ ∇H̃,

∥∥∥∇zh̃∥∥∥
∗

is (CH, k)-Hölder continuous because∣∣∣∣∥∥∥∇zh̃(z[1])
∥∥∥
∗
−
∥∥∥∇zh̃(z[2])

∥∥∥
∗

∣∣∣∣ ≤∥∥∥∇zh̃(z[1])−∇zh̃(z[2])
∥∥∥
∗

≤ CH

∥∥∥z[1] − z[2]∥∥∥k ,
for all z[1], z[2] ∈ Conv(Z) + B(M). Further, because of the differentiability and Lipschitz continuity of h̃ ∈ H, we have∥∥∥∥∥∥∥∇zh̃∥∥∥∗

∥∥∥∥
∞
≤ L. Thus ∇H̃ ⊆ GH,k, which implies Rn(∇H̃) ≤ Rn(GH,k).

For u > 0, letNu := N (u,GH,k,‖·‖∞) be the u-covering number of GH,k with respect to‖·‖∞ and let G̃u := {g̃1, . . . , g̃Nu}
be the corresponding u-cover. For a set {σi}ni=1 of independent Rademacher random variables, for some j ∈ [Nu],

1

n
|
n∑
i=1

σig(zi)| ≤
1

n
|
n∑
i=1

σig̃j(zi)|+
1

n
|
n∑
i=1

σi(g(zi)− g̃j(zi))|

≤ 1

n
|
n∑
i=1

σig̃j(zi)|+ u.

The second inequality is due to the Cauchy–Schwarz inequality. Then by the Massart’s lemma for a bounded and finite
function space, we have

sup
g∈GH,k

1

n
|
n∑
i=1

σig(zi)| ≤ sup
g̃∈G̃u

1

n
|
n∑
i=1

σig̃(zi)|+ u ≤ L
√

2 logNu
n

+ u.

Therefore,

Rn(GH,k) ≤ inf
u>0

{
u+ L

√
2 logN (u,GH,k,‖·‖∞)

n

}

≤ inf
u>0

{
u+ L

√
2(1 + CH,k,2)

√
u−d/k

n

}

=

(
L
√

2(1 + CH,k,2)

) 2k
2k+d

( d

2k

) 2k
2k+d

+

(
d

2k

)− d
2k+d

n−
k

2k+d ,

for some constant CH,k,2 > 0. Here, the second inequality is due to Lorentz (1962, Theorem 2):

CH,k,1 ≤ lim
u→0

logN (u,GH,k,‖·‖∞)

u−d/k
≤ CH,k,2,

for some constant CH,k,1 > 0.1 Therefore, Rn(GH,k) vanishes with high probability.
1Lorentz (1962, Theorem 2) considers the uniform norm‖·‖∞ on Z , but any norm gives the same conclusion because any two norms

are equivalent on the finite dimensional space Rd.
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A.3. Proof of Theorem 5

Proof. Let hworst
αn,p,H = argminh∈HR

worst
αn,p (Pdata, h). Since Z is bounded andH is uniformly bounded, there exist constants

DZ and CH,∞ such that supz1,z2∈Z‖z1 − z2‖ ≤ DZ and suph∈H supz∈Z |h(z)| ≤ CH,∞, respectively. As for the outline,
we decompose an excess risk as follows.

Rworst
αn,p (Pdata, ĥ

prop
(αn,βn),p

)−Rworst
αn,p (Pdata, h

worst
αn,p,H) = Rworst

αn,p (Pdata, ĥ
prop
(αn,βn),p

)−Rworst
αn,p (Pn, ĥprop(αn,βn),p

)︸ ︷︷ ︸
(T1)

+Rworst
αn,p (Pn, ĥprop(αn,βn),p

)−Rworst
αn,p (Pn, ĥworst

αn,p )︸ ︷︷ ︸
(T2)

+Rworst
αn,p (Pn, ĥworst

αn,p )−Rworst
αn,p (Pn, hworst

αn,p,H)︸ ︷︷ ︸
(T3)

+Rworst
αn,p (Pn, hworst

αn,p,H)−Rworst
αn,p (Pdata, h

worst
αn,p,H)︸ ︷︷ ︸

(T4)

.

As for the term (T3), by the definition of ĥworst
αn,p ,

(T3) = Rworst
αn,p (Pn, ĥworst

αn,p )−Rworst
αn,p (Pn, hworst

αn,p,H) ≤ 0.

[Step 1] In this step, we obtain an upper bound of the term (T2). By Theorem 4, for any fixed δ > 0, there exists finite
constants M̃1 > 0, Ñ1 ∈ N such that the following holds with probability at least 1− δ/2.2

|Rworst
αn,p (Pn, ĥprop(αn,βn),p

)−Rprop
(αn,βn),p

(Pn, ĥprop(αn,βn),p
)|

βn + α1+k
n

≤ M̃1, (17)

for any n ≥ Ñ1. Similarly, there exists finite constants M̃2 > 0, Ñ2 ∈ N such that the following holds with probability at
least 1− δ/2.

|Rworst
αn,p (Pn, ĥworst

αn,p )−Rprop
(αn,βn),p

(Pn, ĥworst
αn,p )|

βn + α1+k
n

≤ M̃2, (18)

for any n ≥ Ñ2. Choose εn > 0 so that εn = Θ(log(n)(βn + α1+k
n )).3 Then there exists Ñ ≥ max{Ñ1, Ñ2} such that for

all n ≥ Ñ , we have εn − (M̃1 + M̃2)(βn + α1+k
n ) > 0. Fix such n. Under the product of the above two events (17) and

(18), assume that Rworst
αn,p (Pn, ĥprop(αn,βn),p

) > Rworst
αn,p (Pn, ĥworst

αn,p ) + εn. Then

Rprop
(αn,βn),p

(Pn, ĥprop(αn,βn),p
) ≥ Rworst

αn,p (Pn, ĥprop(αn,βn),p
)− M̃1(βn + α1+k

n )

> Rworst
αn,p (Pn, ĥworst

αn,p ) + εn − M̃1(βn + α1+k
n )

≥ Rprop
(αn,βn),p

(Pn, ĥworst
αn,p ) + εn − (M̃1 + M̃2)(βn + α1+k

n )

> Rprop
(αn,βn),p

(Pn, ĥworst
αn,p ),

which contradicts the definition of ĥprop(αn,βn),p
. Thus, with probability at least 1− δ, we have

(T2) = Rworst
αn,p (Pn, ĥprop(αn,βn),p

)−Rworst
αn,p (Pn, ĥworst

αn,p ) ≤ εn = Θ(log(n)(βn + α1+k
n )).

for sufficiently large n, or

(T2) = Rworst
αn,p (Pn, ĥprop(αn,βn),p

)−Rworst
αn,p (Pn, ĥworst

αn,p ) = O(log(n)(βn + α1+k
n )). (19)

2We refer Remark 6 and Proposition 2.
3For positive sequences (an) and (bn), bn = Θ(an) indicates that there existC1 > 0, C2 > 0, n0 ∈ N such thatC1an ≤ bn ≤ C2an

for all n ≥ n0.
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[Step 2] This step is based on proof of Lee & Raginsky (2018, Theorem 3). As for the term (T1), by the inequality (C.4)
and Lemma 5 of Lee & Raginsky (2018), we have

(T1) = Rworst
αn,p (Pdata, ĥ

prop
(αn,βn),p

)−Rworst
αn,p (Pn, ĥprop(αn,βn),p

) ≤ 48C(H)√
n

+
48LDp

Z√
nαp−1n

+ CH,∞

√
2

n
log(

2

δ
), (20)

with probability at least 1− δ/2.

As for the term (T4), by the inequality (C.5) of Lee & Raginsky (2018), the following holds with probability at least 1− δ/2.

(T4) = Rworst
αn,p (Pn, hworst

αn,p,H)−Rworst
αn,p (Pdata, h

worst
αn,p,H) ≤ CH,∞

√
2

n
log(

2

δ
). (21)

Therefore, by combining all the inequalities (19), (20), and (21), the following holds with probability at least 1− 2δ,

Rworst
αn,p (Pdata, ĥ

prop
(αn,βn),p

)−Rworst
αn,p (Pdata, h

worst
αn,p,H)

≤ 48C(H)√
n

+
48LDp

Z√
nαp−1n

+ 2CH,∞

√
2

n
log(

2

δ
) +O(log(n)(βn + α1+k

n ))

= O(n−1/2(C(H) + α1−p
n ) + log(n)(βn + α1+k

n )).

This concludes the proof.

A.4. Proof of Theorem 6

Proof of Theorem 6. Let hH = argminh∈HR(Pdata, h). SinceH is uniformly bounded, there exists a constant CH,∞ such
that suph∈H supz∈Z |h(z)| ≤ CH,∞. Now decompose the excess risk as follows.

R(Pdata, ĥ
prop
(αn,βn),p

)−R(Pdata, hH) = R(Pdata, ĥ
prop
(αn,βn),p

)−R(Pn, ĥprop(αn,βn),p
)︸ ︷︷ ︸

(T1)

+R(Pn, ĥprop(αn,βn),p
)−Rprop

(αn,βn),p
(Pn, ĥprop(αn,βn),p

)︸ ︷︷ ︸
(T2)

+Rprop
(αn,βn),p

(Pn, ĥprop(αn,βn),p
)−Rworst

αn,p (Pn, ĥprop(αn,βn),p
)︸ ︷︷ ︸

(T3)

+Rworst
αn,p (Pn, ĥprop(αn,βn),p

)−Rworst
αn,p (Pn, ĥworst

αn,p )︸ ︷︷ ︸
(T4)

+Rworst
αn,p (Pn, ĥworst

αn,p )−R(Pn, ĥERM
n )︸ ︷︷ ︸

(T5)

+R(Pn, ĥERM
n )−R(Pdata, hH)︸ ︷︷ ︸

(T6)

.

[Step 1] In this step, we obtain an upper bound of the term (T5). For all h ∈ H and small enough αn, we have

Rworst
αn,p (Pn, h) ≤ R(Pn, h) + Lip(h)αn ≤ R(Pn, h) + Lαn. (22)

The first inequality is due to the inequality (9), the second inequality is due to the assumption. Applying the infimum
operator to the inequality (22) gives

Rworst
αn,p (Pn, ĥworst

αn,p ) ≤ R(Pn, ĥERM
n ) + Lαn = R(Pn, ĥERM

n ) +O(αn).

Therefore,

(T5) = Rworst
αn,p (Pn, ĥworst

αn,p )−R(Pn, ĥERM
n ) = O(αn). (23)
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[Step 2] In this step, we obtain an upper bound for the terms (T2), (T3), and (T4). For any fixed δ > 0, the following holds
with probability at least 1− δ.

R(Pn, h) ≤ Rworst
αn,p (Pn, h) ≤ Rprop

(αn,βn),p
(Pn, h) +O(βn + α1+k

n ).

The first inequality is due to Pn ∈Mαn,p(Pn) and the second inequality is due to Theorem 4. Thus,

(T2) = R(Pn, ĥprop(αn,βn),p
)−Rprop

(αn,βn),p
(Pn, ĥprop(αn,βn),p

) = Op(βn + α1+k
n ).

As for the term (T3), by Theorem 4, we have

(T3) = Rprop
(αn,βn),p

(Pn, ĥprop(αn,βn),p
)−Rworst

αn,p (Pn, ĥprop(αn,βn),p
) = Op(βn + α1+k

n ).

As for the term (T4), the inequality (19) gives

(T4) = Rworst
αn,p (Pn, ĥprop(αn,βn),p

)−Rworst
αn,p (Pn, ĥworst

αn,p ) = Op(log(n)(βn + α1+k
n )).

Therefore,

(T2) + (T3) + (T4) = Op(log(n)(βn + α1+k
n )). (24)

[Step 3] In this step, we obtain an upper bound for the terms (T1) and (T6). Note that the term (T1) is bounded by
suph∈H |R(Pn, h)−R(Pdata, h)|. As for the term (T6), we have

R(Pn, ĥERM
n )−R(Pdata, hH) = R(Pn, ĥERM

n )−R(Pn, hH) +R(Pn, hH)−R(Pdata, hH)

≤ 0 +R(Pn, hH)−R(Pdata, hH)

≤ sup
h∈H
|R(Pn, h)−R(Pdata, h)|.

The first inequality is due to the definition of ĥERM
n . Thus, the sum of the terms (T1) and (T6) is bounded by

2 suph∈H |R(Pn, h)−R(Pdata, h)|. The McDiarmid inequality (Devroye et al., 1996, pages 136-137) and symmetrization
arguments (van der Vaart & Wellner, 1996, Lemma 2.3.1) provide

sup
h∈H
|R(Pn, h)−R(Pdata, h)| ≤ 2Rn(H) + CH,∞

√
2

n
log(

2

δ
), (25)

with probability at least 1− δ.

Lastly, by aggregating the inequalities (23), (24) and (25),

R(Pdata, ĥ
prop
(αn,βn),p

)− inf
h∈H

R(Pdata, h)

= Op(Rn(H) + n−1/2 + αn + log(n)(βn + α1+k
n )).

This concludes the proof.

A.5. Details for Section 3.3

We first define some notations. Let X ⊆ [−1, 1]d−1 and Y = {±1} be open sets with respect to the `2-norm and the discrete
norm I(· 6= 0), respectively. We set Z = X × Y and

∥∥(x, y)
∥∥ =‖x‖2 + 4I(y 6= 0). Note that X × Y is clearly open and

bounded with respect to
∥∥(x, y)

∥∥. For a matrix Ã ∈ Rd̃1×d̃2 , its Frobenius norm is defined as
∥∥∥Ã∥∥∥

F
=

√∑d̃2
i=1

∑d̃1
j=1 Ã

2
ij

and the matrix `p-norm
∥∥∥Ã∥∥∥

p
:= sup‖u‖p=1

∥∥∥Ãu∥∥∥
p

for p ∈ [1,∞]. Now we define the space of deep neural networks. For

an integer J and a set of integers d := {d0, . . . , dJ} such that d0 = d − 1 and dJ = 1, we let A = {A1, . . . ,AJ} be J
weight matrices such that Ai ∈ Rdi×di−1 . For a constant γ > 0 and a set of positive constants M := {M1, . . . ,MJ}, define

FX×Yd,M,γ := {yf(x) = yφJ(AJφJ−1(AJ−1 . . . φ1(A1x) . . . )) |‖Ai‖F ≤Mi, i ∈ [J ], γ ≤
∏
i∈[J]

‖Ai‖2}
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Fd,M,γ := {f(x) = φJ(AJφJ−1(AJ−1 . . . φ1(A1x) . . . )) |‖Ai‖F ≤Mi, i ∈ [J ], γ ≤
∏
i∈[J]

‖Ai‖2},

where φi : Rdi → Rdi is a 1-Lipschitz activation function and satisfies φi(0di) = 0di for all i ∈ [J ], and 0di is the vector
of di zeros. Note that we omit intercepts here for notational simplicity. For φ1, . . . , φJ−1, we employ the hyperbolic tangent
function and φJ is the identity function.4 Lastly, for a positive constants s, we define

FX×Yd,M,γ,s := {yf(x) ∈ FX×Yd,M,γ |
∑
i∈[J]

‖Ai‖0 ≤ s}

Fd,M,γ,s := {f(x) ∈ Fd,M,γ |
∑
i∈[J]

‖Ai‖0 ≤ s}, (26)

where‖A‖0 is the number of non-zero entries of a matrix A. To this ends, we will set M = 1J , the vector of J ones.
Corollary 2 (A formal statement of Corollary 1). Let Fd,1J ,γ,s be a set of sparse deep neural networks, defined in (26).

For some constant C∇ > 0, let H = {h(x, y) | h(x, y) = log(1 + exp(−yf(x))) and Edata

(∥∥∇xf(x)
∥∥
2

)
> C∇ for

f ∈ Fd,1J ,γ,s}.5 Then the excess worst-case risks of ĥpropαn,p and ĥERM
n are

Eworst
αn,p (ĥpropαn,p) = Op(n

−1/2α1−p
n ∨ log(n)α1+k

n ),

Eworst
αn,p (ĥERM

n ) = Op(n
−1/2 ∨ αn).

Furthermore, the excess risks of ĥpropαn,p and ĥERM
n are

E(ĥpropαn,p) = Op(n
−1/2 ∨ αn ∨ log(n)(α1+k

n )),

E(ĥERM
n ) = Op(n

−1/2).

Proof. [Step 1] Clearly, X × Y is open and bounded. In addition, the domain X is bounded and weights ‖Ai‖F are
bounded for all i ∈ [J ], for all f ∈ Fd,1J ,γ,s, we have supx∈X |f(x)| ≤ CFd,1J ,γ,s

for some constant CFd,1J ,γ,s
> 0. In

short, Fd,1J ,γ,s is uniformly bounded, andH is uniformly bounded as well. In addition, for all f ∈ Fd,1J ,γ,s, due to the
differentiability of the hyperbolic tangent function, f is twice continuously differentiable, and this implies that for all h ∈ H,
h is twice continuously differentiable. Uniformly boundedness of A and the boundedness of Z implies that uniformly
boundedness of‖∇zh‖∗ and the Frobenius norm of the Hessian matrix of h. This provides existence of constants CH and L
such that ∇zh is (CH, 1/2)-Hölder continuous for all h ∈ H and Lip(h) ≤ L.

Lastly, by the definition of the dual norm and the discrete norm,

‖∇zh‖∗ = sup
‖u‖≤1

〈∇zh, u〉 = sup
‖s‖2≤1

〈∇xh, s〉 =‖∇xh‖2 . (27)

Since ∇xh = exp(−yf(x))
1+exp(−yf(x)) (−y)∇xf(x), we have

‖∇xh‖2 =

∣∣∣∣ 1

1 + exp(yf(x))

∣∣∣∣‖∇xf‖2 ≥ 1

1 + exp(CFd,1J ,γ,s
)
‖∇xf‖2 .

Therefore, all the conditions in Theorems 2 and 3 are satisfied.

[Step 2] Since `log(z) := log(1+exp(−z)) is continuously differentiable on (−2BF , 2BF ), `log(z) is Lipschitz continuous
on [−BF , BF ]. It implies that there exists a finite Lipschitz constant. Let Llog be a Lipschitz constant on [−BF , BF ]. Due
to Talagrand’s lemma (Mohri et al., 2018, Lemma 5.7), we have

Rn(H) = Rn(`log ◦ FX×Yd,1J ,γ,s
) ≤ LlogRn(FX×Yd,1J ,γ,s

).

4We may employ other differentiable activation functions with Lipschitz constant less than or equal to one. The differentiability of
activation functions is required to satisfy the conditions of Theorem 1. However, it can be easily shown that this condition can be relaxed
to hold only Pdata-almost surely, so that the ReLU function can be employed, by re-stating Theorem 1 with Pdata-almost sure conditions.
Here, for the sake of simplicity, we simply use the hyperbolic tangent function, which is differentiable.

5The sufficient condition for Edata(
∥∥∇xf(x)

∥∥
2
) > C∇ may not be obvious, but it is assumed to be held based on Figures 2 and 3.
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Due to Lemma 7 below, we have

Rn(FX×Yd,1J ,γ,s
) ≤ Rn(FX×Yd,1J ,γ

) = Rn(Fd,1J ,γ) ≤ O(n−1/2).

The equality is due to for all i ∈ [J ], σi
d
= σiyi for the Rademacher random variables σi. Therefore, by Mohri et al. (2018,

Theorem 11.3) and Theorem 3, E(ĥERM
n ) = Op(n

−1/2) and E(ĥpropαn,p) = Op(n
−1/2 ∨ αn ∨ log(n)(α1+k

n )) are obtained.

[Step 3] Here we prove the excess worst-case risk bound for ĥERM
n . An essentially the same argument as (22) yields that for

all h ∈ H,

Rworst
αn,p (Pdata, h) ≤ R(Pdata, h) + Lip(h)αn ≤ R(Pdata, h) + Lαn, (28)

Applying the infimum operator on R(Pdata, h) ≤ Rworst
αn,p (Pdata, h) gives

inf
h∈H

R(Pdata, h) ≤ inf
h∈H

Rworst
αn,p (Pdata, h). (29)

Therefore, the inequalities (28) and (29) give

Eworst
αn,p (h) = Rworst

αn,p (Pdata, h)− inf
h∈H

Rworst
αn,p (Pdata, h)

≤ R(Pdata, h) + Lαn − inf
h∈H

R(Pdata, h)

= E(h) + Lαn.

By Theorem 3 we conclude that Eworst
αn,p (ĥERM

n ) = Op(n
−1/2 ∨ αn).

[Step 4] We now prove that Eworst
αn,p (ĥpropαn,p) = Op(n

−1/2α1−p
n ∨ log(n)α1+k

n ). By Theorem 2, it is enough to show that
C(H) :=

∫∞
0

√
logN (u,H,‖·‖∞)du is finite.

For all (x, y) ∈ Z and f1, f2 ∈ Fd,1J ,γ,s, we have

|`log(yf1(x))− `log(yf2(x))| ≤ Llog|yf1(x)− yf2(x)| = Llog|f1(x)− f2(x)|.

Therefore, N (u,H,‖·‖∞) ≤ N ( u
Llog

,Fd,1J ,γ,s,‖·‖∞), and thus by Lemma 8 below we have

logN (
u

Llog
,Fd,1J ,γ,s,‖·‖∞) ≤ (s+ 1) log

(
2JV 2Llog

u

)
.

Therefore, an integration by substitution gives∫ ∞
0

√
logN (u,H,‖·‖∞)du ≤

∫ ∞
0

√
N (

u

Llog
,Fd,1J ,γ,s,‖·‖∞)du

=
√

(s+ 1)

∫ ∞
0

√
log

(
2JV 2Llog

u

)
du

=
√

(s+ 1)

∫ 2JV 2Llog

0

√
log

(
2JV 2Llog

u

)
du

=
√

(s+ 1)

∫ ∞
0

(4JV 2Llog)y2 exp(−y2)dy.

Since ∫ ∞
0

y2 exp(−y2)dy = −1

2

∫ ∞
0

y(−2y exp(−y2))dy =
1

2

∫ ∞
0

exp(−y2)dy =

√
π

4
,

we have
∫∞
0

√
logN (u,H,‖·‖∞) <∞ and this concludes the proof.
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Remark 7 (Different hypothesis spaces). In essence, the results of Corollary 2 hold if for a hypothesis space F , the
Rademacher complexity Rn(F) is O(n−1/2) and the entropy integral

∫∞
0

√
logN (u,F ,‖·‖∞) is bounded. It is well known

that these conditions hold for a reproducing kernel Hilbert space and a linear hypothesis space under mild conditions.

Remark 8 (When αn vanishes fast). Consider the logistic regression setting, i.e., P (Y = 1 | X = x) = exp(βT∗ x)/(1 +
exp(βT∗ x)) for some β∗ ∈ Rd. Blanchet & Murthy (2019, Theorem 1) showed that Wp(Pdata,Pn) ≤ 1√

n
holds with

high probability, under mild conditions on Pdata. In this case, we choose αn = (n1/2 log(n))−
1

p+k . Then the proposed
excess worst-case risk bound is Eworst

αn,p (ĥpropαn,p) = Op(n
− 1+k

2(p+k) log(n)
p−1
p+k ). By setting p = 1+k2

1−k , Eworst
αn,p (ĥpropαn,p) =

Op(n
− 1

2 (1−k) log(n)k). We can choose arbitrary small k > 0, and thus the convergence rate is near O(n−1/2).6 Similar
results hold for the excess risk bound.

Remark 9 (Regression). For a constant B > 0, we let X × Y ⊆ [−1, 1]d−1 × [−B,B] be an open set with respect to the

`2-norm. We setZ = X ×Y and
∥∥(x, y)

∥∥ =
√
‖x‖22 + y2. We letH = {h(x, y) | h(x, y) = |y−f(x)| for f ∈ Fd,1J ,γ,s}.7

Then similar results hold.

With the notations defined in the front of this section, we quote the following two lemmas: the Rademacher complexity
bound of Fd,M,γ by Golowich et al. (2018, Corollary 1) and the covering number bound of Fd,1J ,γ,s by Schmidt-Hieber
(2017, Lemma 5).

Lemma 7 (Rademacher complexity bound). Assume that‖x‖2 ≤ CX . Then

Rn(Fd,M,γ) ≤ CX

 J∏
i=1

Mi

min

 ¯log
3/4

(n)

√
¯log(γ−1

∏J
i=1Mi)√
n

,

√
J

n

 ,

where ¯log(z) := 1 ∨ log(z).

Lemma 8 (Covering number bound). Let V :=
∏J
i=0(di + 1), then for any u > 0,

logN (u,Fd,1J ,γ,s,‖·‖∞) ≤ (s+ 1) log

(
2JV 2

u

)
.

6For h : Z → R,∇zh is (CH, k1)-Hölder continuous, suph∈H supz∈Z
∥∥∇zh(z)

∥∥
∗ ≤ L and any k2 ≤ k1,

sup
z,z̃∈Z

∥∥∇zh(z1)−∇zh(z2)
∥∥
∗

‖z1 − z2‖k2
≤ sup
‖z−z̃‖≤1

∥∥∇zh(z1)−∇zh(z2)
∥∥
∗

‖z1 − z2‖k2
+ sup
‖z−z̃‖>1

∥∥∇zh(z1)−∇zh(z2)
∥∥
∗

‖z1 − z2‖k2

≤ sup
‖z−z̃‖≤1

∥∥∇zh(z1)−∇zh(z2)
∥∥
∗

‖z1 − z2‖k1
+ sup
‖z−z̃‖>1

∥∥∇zh(z1)−∇zh(z2)
∥∥
∗

‖z1 − z2‖k2

≤ CH + 2L.

Thus∇zh is (CH + 2L, k2)-Hölder continuous.
7Since∇zh(z) = Sign(y − f(x))[∇xf(x), 1]T , Edata(

∥∥∇zh(z)
∥∥
2
) ≥ 1 =: C∇.
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B. Implementation Details
In this section, we provide implementation details including the used algorithm and hyper-parameters. Our algorithm
is presented in Algorithm 1. Tensorflow implementation for experiments is available at https://github.com/
ykwon0407/wdro_local_perturbation.

Algorithm 1 Principled learning method for WDRO when data are perturbed in classification settings
1: Input: training dataset Zn = {(x1, y1), . . . , (xn, yn)}, a (deep neural network) model fθ parametrized by θ, batch size
B, hyper-parameters γ̃1, γ̃2, λgrad > 0, optimization algorithm A.

2: Initialize parameters θ in fθ
3: while until a convergent condition is met do
4: Sample {(x[1], y[1]), . . . , (x[B], y[B])} from Zn
5: for b = 1 to B do
6: if WDRO+MIX then
7: Sample γ from Beta(γ̃1, γ̃2)
8: x′[b] = γx[b] + (1− γ)x[B+1−b]
9: y′[b] = γy[b] + (1− γ)y[B+1−b] B Mixup

10: end if
11: hθ(x

′
[b], y

′
[b]) = Cross-entropy loss

[
y[b], fθ(x[b])

]
B calculate loss per observation

12: end for
13: L = B−1

∑B
b=1 hθ(x

′
[b], y

′
[b]) + λgrad

∥∥∥∇xhθ(x′[b], y′[b])∥∥∥2
2

B calculate the objective function

14: θ ← A(L, θ) B update parameters
15: end while

B.1. Objective function

The sample space of the CIFAR-10 and CIFAR-100 datasets can be written as X × Y where X ⊆ [−1, 1]3072

and Y = {1, . . . , k} ⊆ R. In this space, we define the norm by
∥∥(x, y)

∥∥ = ‖x‖2 + 4 · I(y 6= 0). This gives∥∥∇zh(x′, y′)
∥∥
∗ =

∥∥∇xh(x′, y′)
∥∥
2

for any (x′, y′) ∈ X × Y , as in (27). Therefore, when p = p∗ = 2, the penalty term in

(8) is αn‖∇zh‖P′n,p∗ = αn

√
n−1

∑n
i=1

∥∥∇xh(x′i, y
′
i)
∥∥2
2
. Instead of this term, we use λgrad

(
n−1

∑n
i=1

∥∥∇xh(x′i, y
′
i)
∥∥2
2

)
for computational convenience.

B.2. Hyper-parameter settings

We set the penalty parameter λgrad = 0.004 and the batch size B = 64. For MIXUP and WDRO+MIX, the interpolation
with hyper-parameters γ̃1 = γ̃2 = 0.5 is applied.

For the model architecture, we use the Wide ResNet model with depth 28 and width 2 including the batch normalization
and the leaky ReLU activation as in Oliver et al. (2018) and Berthelot et al. (2019). Our implementation of the model and
training hyper-parameters closely matches that of Berthelot et al. (2019).

For the optimization algorithm A, we choose Adam optimizer with the learning rate fixed as 0.002. Instead of decaying the
learning rate, we use an exponential moving average of the parameters with a decay of 0.999, and apply a weight decay of
0.02 at each update for the model as in Berthelot et al. (2019). We train the model with 100× 216 images.

https://github.com/ykwon0407/wdro_local_perturbation
https://github.com/ykwon0407/wdro_local_perturbation
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C. Additional experiment: selection of the penalty parameter
In this section, we compare the accuracy of WDRO and WDRO+MIX with various penalty parameters λgrad using the
contaminated CIFAR-10 and CIFAR-100 datasets. The penalty parameters vary as 0.004, 0.016, and 0.064. The training
sample size is 50000 and we apply the salt and pepper noise to 1% pixels of 10000 test images for the contaminated datasets.
We train the model five times.

Table 4 compares accuracy as the penalty parameter changes. In all cases, a significantly higher accuracy is attained when
λgrad = 0.016 than other λgrad values. With this result, we anticipate that our proposed methods can achieve higher
accuracy than the one in Section 5, by carefully selecting the penalty parameter λgrad.

Table 4. Accuracy comparison WDRO and WDRO+MIX with various penalty parameter λgrad. Other details are given in Table 2.

METHODS λgrad

0.004 0.016 0.064

CIFAR-10
WDRO 87.4± 0.4 87.9± 0.2 86.2± 0.2
WDRO+MIX 87.3± 0.4 88.2± 0.3 86.8± 0.2

CIFAR-100
WDRO 62.1± 0.4 64.1± 0.3 62.6± 0.4
WDRO+MIX 60.6± 0.7 62.2± 0.2 61.3± 0.2
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