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Abstract

Optimizing deep neural networks for inference
has recently become an extremely active area
of research. One of the go-to solutions in this
context is weight pruning, which aims to reduce
computational and memory footprint by remov-
ing large subsets of the connections in a neural
network. Surprisingly, much less attention has
been given to exploiting sparsity in the activation
maps, which tend to be naturally sparse in many
settings thanks to the structure of rectified linear
(ReLU) activation functions. In this paper, we
present an analysis of methods for maximizing
the sparsity of the activations in a trained neu-
ral network, and show that, when coupled with
an efficient sparse-input convolution algorithm,
we can leverage this sparsity for significant per-
formance gains. To induce highly sparse activa-
tion maps without accuracy loss, we introduce a
new regularization technique, coupled with a new
threshold-based sparsification method based on a
parameterized activation function called Forced-
Activation-Threshold Rectified Linear Unit (FA-
TReLU). We examine the impact of our methods
on popular image classification models, showing
that most architectures can adapt to significantly
sparser activation maps without any accuracy loss.
Our second contribution is showing that these
these compression gains can be translated into in-
ference speedups: we provide a new algorithm to
enable fast convolution operations over networks
with sparse activations, and show that it can en-
able significant speedups for end-to-end inference
on a range of popular models on the large-scale
ImageNet image classification task on modern
Intel CPUs, with relatively low retraining cost.
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1. Introduction

Deep neural networks (DNNs) are able to achieve state-of-
the-art performance in several application domains, such
as image classification, speech recognition, and automated
decision making, e.g. (Krizhevsky et al., 2012; Vaswani
et al., 2017; Silver et al., 2016). Along with this wide ar-
ray of applications comes the need to reduce the significant
computational and memory footprint of DNNs. To this end,
several techniques have been designed to obtain optimized,
resource-efficient variants of a given deep model. Prun-
ing and quantization are arguably the standard methods for
achieving resource-efficient models, which have received
considerable attention, e.g. (Liu et al., 2017; Luo et al., 2017;
Gray et al., 2017; Han et al., 2015; Li et al., 2016; Mishra
et al., 2017; Zhu et al., 2016). However, the vast majority
of existing work has focused on compressing the weights
(connections) in the neural network, for which several regu-
larization (Molchanov et al., 2017) and thresholding-based
methods (Han et al., 2015; Gale et al., 2019) are now known.

It is therefore perhaps surprising that sparsifying activation
maps has received relatively little attention. A non-trivial
fraction of the activations are sparse as a natural conse-
quence of the structure of Rectified Linear Unit (ReLU)
activation functions. This observation has been leveraged
by hardware accelerators, e.g. (Albericio et al., 2016; Han
et al., 2016; Parashar et al., 2017), and reference (Rhu et al.,
2018) performed an analysis of naturally-occurring acti-
vation sparsity. Recently, (Georgiadis, 2019) explored L/
regularization to increase the number of zeroes in the acti-
vation maps, showing that sparsity can be increased by up
to 60% for image classification models.

A second gap in the literature is the absence of software
support for sparsity, and in particular activation sparsity, on
common hardware. Currently, running models with higher
activation sparsity rates on common CPU or GPU platforms
will not result in computational speedups, and improvements
are only reported in relative sparsity percentage, or synthetic
memory compression rates (Georgiadis, 2019). It is not at
all clear how these compression rates will relate to speedup
in real-world implementations, and it is therefore difficult
to evaluate the practical impact of existing methods.

In this paper, we address both these gaps with respect to
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activation sparsity. We begin by performing an in-depth
analysis of regularization and thresholding methods as a
way to increase activation map sparsity in convolutional
neural networks. Specifically, we present a set of techniques
which can significantly boost naturally-occurring activation
sparsity in CNNs, without loss of accuracy. Our methods
can be both applied statically (requiring no retraining) and
dynamically (if fine-tuning is possible), and significantly
improve upon existing regularization-based methods (Geor-
giadis, 2019), often by more than 2X in terms of relative
improvement to baseline sparsity. We complement these
techniques with negative results, showing that activation
sparsification cannot smoothly recover accuracy through
re-training (as opposed to weight sparsification (Gale et al.,
2019)), and that applying thresholding independently per
each channel is possible but only yields limited gains. Our
second contribution is a general algorithm which can lever-
age activation sparsity for computational gains, and its effi-
cient CPU-based implementation. The resulting framework
can lead to inference speedups of more than 2x on a range of
popular CNNs for image classification, relative to industrial
CPU- and GPU-based inference frameworks, and to our
optimized dense baseline.

Our sparsity-boosting methods combine a regularizer fol-
lowing the Hoyer sparsity metric (Hoyer, 2004), together
with a variant of the classic ReLLU activation, which we call
Forced Activation Threshold ReLU (FATReLU). Simply
put, FATReLU implements a variable threshold for the com-
mon ReLU activation function, below which all activations
are set to zero, based on the intuition is that a non-trivial
fraction of the positive activations can be eliminated without
significant impact on the output. We develop techniques to
determine and optimize FATReLU thresholds per layer, and
perform an analysis of the interplay between these methods
and the accuracy of the resulting model. In short, we find
that sparsity can be significantly boosted via Hoyer regular-
ization and thresholding, with no accuracy loss, beyond L1
regularization. The methods we propose induce negligible
(< 0.3%) accuracy loss on ImageNet-scale models, and can
even result in minor accuracy increase. However, contrary
to weight pruning methods, which can gradually trade off
accuracy for increased sparsity, we find that sharp thresh-
olds exist for activations, beyond which accuracy drops, and
cannot be recovered. This observation simplifies the fine-
tuning process, since, up to this threshold, we are usually
able to recover full accuracy, and there is little benefit in
fine-tuning beyond this threshold.

Our second contribution is a computational framework to
leverage activation sparsity for computational gains, tailored
to CPUs. This framework is based on an algorithm for fast
convolutions on sparse inputs, for which we present an effi-
cient vectorized implementation, and back by several non-
trivial optimizations. We implement our framework in C++,

and test it on a range of popular CNNs for image classifica-
tion on the classic ImageNet ILSVRC2012 dataset (Deng
et al., 2009). We find that 1) many popular models have
significant “natural” activation sparsity, without any specific
activation regularization; 2) the natural activation sparsity of
these networks can be consistently and significantly boosted
using our techniques. We show the resulting boosted models
can be executed with speedups of more than 2x compared
to state-of-the-art CPU and GPU inferencing solutions.

Related Work. The literature on model compression for
DNNs is extremely vast, so we restrict our attention to
work on analyzing and leveraging activation sparsity. The
fact that activation sparsity arises naturally is well-known,
and has been leveraged by several architecture proposals,
e.g. (Albericio et al., 2016; Han et al., 2016; Parashar et al.,
2017); in particular, reference (Rhu et al., 2018) performed
an in-depth analysis of activation sparsity on a range of
convolutional models. We extend this analysis here.

Another related line of work is that on compressing activa-
tion maps. A common technique for reducing the mem-
ory footprint of activation maps is quantization, which
has been employed successfully by several references, see
e.g. (Mishra et al., 2017) and references therein. We do not
investigate quantization here, and leave a thorough treatment
of the impact of our sparsification techniques in conjunction
with quantization for future work. Reference (Gudovskiy
et al., 2018) proposed a projection technique coupled with
non-linear dimensionality reduction, which required mod-
ifying the network structure, while (Alwani et al., 2016)
proposed to stochastically prune activations as an adversar-
ial defense. Both techniques cause significant accuracy loss,
and are therefore outside the scope of our study. Agostinelli
et al. (2014) propose learning piecewise linear activation
functions to improve the accuracy of given models. FA-
TReLU is piecewise linear, but the goals and methods we
investigate in this paper are different.

The work closest to ours is (Georgiadis, 2019), who pro-
posed and investigated the use of L1-regularization applied
to the activation maps, and showed that it can result in a sig-
nificant increase (up to 60% relative to naturally-occurring
activation sparsity) on a range of CNNs for image clas-
sification. The paper goes on to explore several efficient
encoding techniques for the activations, and evaluates them
synthetically in terms of their resulting compression fac-
tors, but provides no inference experiments. We show that
Hoyer regularization is superior to L1, in the sense that it
provides higher activation sparsity without accuracy loss
on all the models we investigated. The thresholding meth-
ods we propose are complementary to regularization in the
sense that they can be applied independently of whether the
base model has been regularized or not, or of the regular-
ization method. In addition, our paper provides a complete
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framework for leveraging activation sparsity for fast infer-
ence on CPUs, as well as end-to-end inference speedup for
activation-sparsified models.

To our knowledge, the only reference to explicitly leverage
input sparsity for performance gains is the recent prelimi-
nary publication of (Dong et al., 2019). By contrast, their
algorithm is more complex, and requires high input spar-
sity to be efficient: in particular, as stated in the reference,
the resulting algorithm can only be applied to certain types
of tasks and models, such as LiDAR-based detection, or
character recognition. For this reason, we do not directly
compare against it. Our technique is applicable and efficient
in a much wider range of scenarios.

Related algorithmic ideas have been investigated in (Park
et al., 2016b;a; Chen, 2018). The critical distinction is
that all these references explore leveraging sparsity in the
weights, rather than in the activations, leading to a differ-
ent algorithm structure and implementation. For example,
our procedure critically requires efficient on-the-fly input
compression, whereas weight sparsity techniques can pre-
compress the weights offline. Another key difference from
these approaches is that they require retraining, since kernel
sparsity is not naturally present in neural networks with-
out specific regularization or thresholding. Second, the
speedups achieved by these methods are bound to be lim-
ited by the fact that, even with thresholding, kernels cannot
usually be sparsified to the extremely large ratios which can
be naturally present in activations without loss, e.g > 90%.

Our work can also be examined in the broader context of
model compression methods, which is an extremely active
research area, e.g. (Wu et al., 2016; Zhu et al., 2016; Mishra
et al., 2017; Mellempudi et al., 2017; Zhang et al., 2017;
Park et al., 2016b; Han et al., 2016; Polino et al., 2018;
Frankle & Carbin, 2018). We develop the first thresholding-
based method specifically for activations, along with spe-
cific sensitivity analysis and tuning techniques.

2. Activation Sparsity in CNNs

2.1. Natural and Regularized Activation Sparsity

Naturally-Arising Sparse Activations. We begin by ex-
amining the natural sparsity of activation maps in CNNs.
For simplicity, we will focus on residual models trained
on the ImageNet (ILSVRC2012) task, although our find-
ings are generally valid across other datasets (in particular,
CIFAR-10 and 100 (Krizhevsky et al., 2014)) and architec-
tures (ResNet (He et al., 2016), Mobilenet (Howard et al.,
2017))—please see Section 5 for full results.

Activation sparsity is linked with the structure of the ReLU
non-linearity: if input data to this function were completely
random and zero-centered, then we would expect an output
activation sparsity concentrated around 50%. However, if

we examine the average activation map sparsity across sev-
eral batches, we notice that layers which are closer to the
input tend to have activation sparsity that is lower than this
threshold, whereas later layers tend to have higher activa-
tion sparsity. One intuitive (but imprecise) explanation for
this phenomenon could be that earlier layers adapt to extract
more numerous low-level features, whereas the later layers
would extract higher-level features. Please see Figure 4 for
an illustration. The standard deviation of the recorded spar-
sities is under 1% across batches, so we omit confidence in-
tervals for visibility, noting that this stable behaviour across
batches is somewhat surprising.

The Impact of Network Depth and Width. In this con-
text, it is natural to ask whether wider or deeper networks
will tend to have higher activation sparsity. We examined
this trend on pre-trained ImageNet models, in particular
comparing ResNet50 with its 2x wide variant (Zagoruyko
& Komodakis, 2016), as well as with the deeper ResNet101
and its 2x wide variant. We use the Torchvision pretrained
models as examples. The results are provided in Table 3.
(We observed similar results in a depth-width ablation study
on residual networks on CIFAR-10, which we omit for
brevity.) First, average activation sparsity does indeed in-
crease with network depth (e.g. 53% to 57% for ResNet50
vs ResNet101), corroborating the intuition that “higher level
features” develop deeper in the network. Second, wider
networks do have a higher fraction of zero activations (e.g.
53% to 58% for ResNet50 vs 2xWideResNet50), matching
the intuition that only a limited subset of the features are
necessary to classify a certain input, whose proportion does
not necessarily increase with layer width. Moreover, as can
be seen from the result for 2xWide ResNet101 (63%), these
trends compound.

L1 Regularization. In Figure 4(a), we also examine the
impact of L1 regularization applied to the activations on
the sparsity. We follow the proposal of (Georgiadis, 2019),
which consists of fine-tuning an accurate pre-trained model
with L1 regularization for a number of epochs, as well
as the carefully optimized regularization parameter values
provided, which ensure no accuracy loss. We notice that this
method can boost the sparsity of activations by an extra 1%
and 4% on average on ResNet50 and Mobilenet, respectively.
(See Table 1 for values across models.)

Hoyer Regularization. We go beyond the L1 sparsity-
inducing regularization, and consider the square Hoyer reg-

d 12
ularizer, defined for a vector ¥ as H(¥) = M

i=1Yi

This regularizer has a range of desirable properties as a
measure of sparsity (Hoyer, 2004), such as scale-invariance
and differentiability almost-everywhere. It is popular for
compressed sensing, and has only recently been applied for
weight sparsification (Yang et al., 2019); to our knowledge,
we are the first to investigate it for activation sparsity.
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Figure 1. Illustration of the impact of regularization and boosting on the output distribution of a convolutional layer (ResNet18, layer 5).
The Y axis is log-scale. Notice that all methods significantly narrow the set of non-zero activations; however, Hoyer and boosted Hoyer
allow for more “diversity” in the activations, which explains their better performance.

Figure 4(a) presents the output activation sparsities for each
layer of ResNetl8, when regularized with square Hoyer
such that there is no accuracy loss. Specifically, for each
ReLU’s output we apply the square Hoyer regularization
multiplied by a hyperparameter determined experimentally
to the cost function. We found values between 10~2 (conser-
vative) to 10~7 (more aggressive) to work for this parameter,
for all the models we considered. Our initial learning rate
for retraining is 5 x 10~3, and we maintain standard momen-
tum and weight decay values. With these parameters, we
retrain for 10 epochs to stabilize weights and recover accu-
racy. We note that this recalibration process is significantly
less expensive than for L1 regularization (Georgiadis, 2019),
which required 90 epochs of training for recovery. The im-
provements relative to the additional sparsity induced by
L1 are of 2.4x and 8x, for Mobilenet and ResNet50, respec-
tively. Our experimental results in Section 5 clearly suggest
that square Hoyer is superior to classic L1 regularization.

2.2. The Distribution of Activations

We now focus our attention to the distribution of activa-
tions in the layers of a neural network. We performed a
basic histogram analysis for layers of ResNet18, from the
original pre-trained model, as well as from the L1, Hoyer-
regularized, and boosted variants of the same model. We
notice that, for all instances, a non-trivial fraction of the ac-
tivations are clustered around zero. Next, we implement an
activation sensitivity analysis procedure: independently for
each layer, we fix a threshold 7" below which all of the acti-
vations will be set to zero. We then increase this threshold
and examine the loss of accuracy. The resulting graph for a
set of layers of pretrained ResNet18 is presented in Figure 2.
Results suggest that a non-trivial fraction of the activations
can be set to zero without affecting the loss. The results
presented are averaged over a set of 128 mini-batches. We
found these results to be extremely consistent, and therefore
omit error bars for visibility.

Further, Figure 2 (center, right), shows that regularization
may serve to stabilize activations, in the sense that a larger
fraction can be thresholded on regularized models, with-
out accuracy loss. Moreover, we found the benefits from
regularization to be approximately independent from, and
additive with, the benefits from thresholding. Layers other
than the one depicted exhibited a similar pattern, with some
variance in the particular sparsity values.

3. Boosting Activation Sparsity

In this section, we investigate generic ways to systemati-
cally produce networks with high activation sparsity. We
begin with static methods (which require no retraining), and
then continue with dynamic methods, which are allowed to
retrain in order to recover accuracy.

Forced-Activation Thresholds. Formally, the Forced-
Activation Threshold ReLLU activation function (FATReLU)
is simply defined as:

x whenz >T,
FATReLUr(x) = 0 otherwise

Note that FATReLU cannot be simulated by simply adding
a linear bias term to ReLU. Further, not only is FATReLU
not differentiable at 71", but it is not even continuous at T,
which renders training neural networks from scratch with
FATReLU cumbersome. However, our use case allows us
to use it to directly replace ReLU on a pre-trained model
whose activations we wish to further sparsify.

Baseline Model. We assume an accurate pre-trained model
for the target architecture and task. We first fine-tune the
provided model using the square Hoyer regularizer, which
sets a fraction of the activations to zero, and also “stabi-
lizes” the other activations, allowing a larger fraction to be
thresholded via FATReLU.
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Figure 2. Tllustration of the sensitivity analysis results for a single
convolutional layer in ResNet18, for different threshold values (X
axis) and different regularizers (panels).

Activation Sensitivity Analysis. We first aim to find layer-
wise activation thresholds which sparsify a large fraction of
the activations preserving accuracy. We adapt the weight
sparsity sensitivity analysis (Han et al., 2015) for the case
of activations. Intuitively, we estimate the “derivative” of
the loss with respect to the activation sparsity of each layer.
The procedure starts by identifying a set of target sparsity
percentages for the outputs of the different layers. For each
layer L, we pick a maximal percentage 77, of the extra
activations which should be set to zero, in addition to the
natural sparsity. We evaluate and record the loss at discrete
thresholds ¢ € [0,77]. (This procedure exclusively uses
batches from the training set.)

We thus obtain a “sensitivity profile” for each layer, based
on which we set a threshold for the activations of the layer.
We usually pick the threshold for each layer to be the largest
value which did not result in accuracy loss, modulo some
small error tolerance. A typical set of results is illustrated in
Figure 2. It is not uncommon for FFAT ReLU to improve
accuracy at low threshold values— one possible explanation
is that this serves to remove some of the noise from the
activations close to the zero threshold.

Retraining and Sharp Activation Thresholds. The above
procedure is static, in the sense that the model weights are
not modified, and the model is not retrained. It results in
consistent, but relatively limited improvements in terms of
activation sparsity: for instance, for the ResNet18 model,
the average increase across layers due to static boosting is
under 3% globally. We wish to achieve higher thresholds
by allowing retraining of the network to adapt the weights
to the higher thresholds. Such procedures are common for
weight sparsification (Zhu & Gupta, 2017; Gale et al., 2019).

Perhaps surprisingly, we find that this behavior is bi-modal
for activations: we can increase activation sparsity within
a continuous range and still have the model recover full
accuracy through retraining at each level within the range.
However, each layer appears to have a “sharp” activation
threshold beyond which the model is no longer able to re-
cover accuracy, even with significant retraining. Identifying

the exact root cause of this phenomenon is difficult, but we
conjecture that it is related to the fact that the forward and
backward information flow through the layer is break down
due to the high activation threshold.

Dynamic Thresholding. Due to this bi-modal recovery
behavior, we use dynamic thresholding to simplify the pro-
cess of finding the optimal thresholds per layer. We fix a
small accuracy loss tolerance, 7 (0.2% in our experiments),
and, for each layer, we refer to the static analysis results
to identify the maximal threshold for which accuracy loss
remained below 7, determined by binary search over the
range of thresholds. Once this threshold is determined for
each layer, we run one fine-tuning training epoch until either
recovery is achieved, or recovery fails. Using this success
or failure criterion, we can perform binary search on 7 to
determine the largest 7 for which recovery is possible.

We adopt this procedure since it has low cost, and similar
outcomes to more complex iterative procedures we have
investigated, both in terms of sparsity and accuracy. In ad-
dition, Dynamic Thresholding performs particularly well
when used in conjunction with Hoyer regularization (please
see Figure 4(a)). We adopt Hoyer regularization plus Boost-
ing via Dynamic Thresholding as our main method for gen-
erating activation-sparse models.

Channel-wise Thresholding. Next, we ask whether we
could further increase activation sparsity by performing Dy-
namic Thresholding channel-wise, setting a distinct thresh-
old for each channel of each layer. This procedure is costly,
since it requires fine-grained tuning across each channel, and
requires care, since the impact of each individual channel
on the loss may be small. We proceed as follows.

We start from the layer-wise FATReLU thresholds deter-
mined above. Next, we perform a one-shot sensitivity anal-
ysis for each channel in each layer, by estimating the piece-
wise integral of the cross-entropy loss relative to the channel
threshold, obtained from sensitivity analysis. We adopt the
maximum threshold across all channels as the maximum
value to integrate for across all channels. A lower integral
value suggests that the channel is less sensitive to thresh-
olding. Based on the results of this channel-wise sensitivity
procedure, we partition the channels into groups based on
their sensitivity. For each channel group (e.g. the 25% least
sensitive channels, and so on), we perform binary search on
their joint thresholds, attempting to increase their FATReLU
threshold, until the point where we reach the tolerance in
terms of accuracy difference.

We have performed channel-wise thresholding for ResNet18
following the above procedure. Please see Figure 3 for a
sample of the results. On the positive side, the procedure
does not diverge—we are able to systematically increase
thresholds per channels without accuracy loss. On the nega-
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(a) Channel Thresholds after Channel-Wise Sensitivity Analysis.
Notice the relatively low proportion of channels which can be

boosted past the average threshold.
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(b) Sparsity Boosting across Channels. We can only obtain a low
average activation sparsity increase, at significantly increased
computational cost.

Figure 3. Channel-wise boosting results for a fixed “highly-sensitive” layer of ResNet18.

tive side, we can only obtain an average activation sparsity
increase of approximately 2% relative to the coarse-grained
dynamic thresholding method, at significantly increased
computational cost. Further analysis of the results suggests
that a fraction of approximately 30% of the channels cannot
be boosted past the layer threshold, whereas a small fraction
of approximately 10% of the channels have negligible im-
pact on the loss and thus can be completely eliminated. The
cost of this method outweigh its computational benefits.

4. Leveraging Activation Sparsity

Background. To make use of activation sparsity at runtime,
we implement an algorithm to perform sparse convolutions
on data that is initially produced (e.g. from a previous layer)
in a standard (i.e. dense) format. We make use of a variant
of the Compressed Sparse Row (CSR) representation (e.g.
as implemented in (Wang et al., 2014)). Prior work has
taken advantage of CSR for computing convolutions when
the kernels are sparse, on both GPUs (Park et al., 2016b)
and CPUs (Park et al., 2016a), where one has the luxury
of being able to pre-compress the sparse kernels prior to
inference with no performance overhead. However, for acti-
vations, the location of the non-zero elements is not known
until inference time, and so we must be able to efficiently
compress the activations at run time. Once compressed, we
can apply Algorithm 1 to the compressed input. Importantly,
both CSR compression and sparse-input convolution can be
implemented efficiently on modern hardware, i.e. without
the need to branch on zero elements.

We use a “3-array” variation of CSR, wherein a sparse ma-
trix M is represented with the following three arrays:

e values: Element j contains the j** non-zero element
of M in row-major order

e columns: Element j contains the column index in M
of the corresponding element values|j]

e row_pointers: Element ¢ contains a pointer to the
first element in values which came from row ¢ of M

Note that row_pointers serves the additional function of

encoding the number of non-zero elements per row, ¢, deriv-
able as row_pointers[i + 1] — row_pointers[i].

The Algorithm. Algorithm 1 shows a simple pseudo-code
implementation to compute the convolution of a dense ker-
nel K with sparse input I given in CSR format to produce
output O. For simplicity, we assume that the input data
has one channel dimension and one spatial dimension. In
particular, the input I is a CSR representation of data with
dimensionality I X I, the output O is a matrix with dimen-
sions O¢ x O, and the kernel K is a tensor with dimensions
O¢ x 1o x K. Extending to more spatial dimensions (as
is typical, e.g., in image processing NNs) is straightforward
and omitted for clarity.

AVX Implementation. We implemented Algorithm 1 on
Intel’s Skylake architecture with x86+AV X512 instruction
set. Both CSR compression and Algorithm 1 can be im-
plemented efficiently using available SIMD instructions.
Algorithm 2 demonstrates how to implement Algorithm 1
in a SIMD way. Note that Oc refers to the number of vec-
tors of output channels to be computed, i.e. Oc = O¢ /T
when there are r values per vector. In our implementation,
r = 16, as we use FP32 data stored in 512-bit vector regis-
ters. Note that we assume that there are Oc vector registers,
v((,?l)t e vf,?;;), available to hold intermediate results. Other-
wise, we can subdivide the output tensor O along its channel
dimension into blocks small enough to be held in register,
and execute Algorithm 2 independently for each block.

SIMD Compression. Because we must compress our input
data at runtime, we also require an efficient algorithm to
compress a matrix M to CSR format. This can be done as
follows: given a SIMD vector, v, of 16 floats, which we
want to compress, we use the vemp instruction to identify
the locations of the non-zero elements in v stored in a mask
register m. Then use the vcompress instruction twice:
once applied to v with mask m to produce contiguous non-
zero elements to be written to values, and a second time
applied to the vector {7, ...,j + 15} with mask m (where
7 is the column index of the first element of v in M) to
produce column indices to be written to columns. The



Inducing and Exploiting Activation Sparsity for Fast Neural Network Inference

popcnt instruction applied to m can be used to keep track
of the number of non-zero elements and thereby maintain
the offset for writing to values and columns, as well as to
record row_pointers|il.

Algorithm 1 Sparse Convolution
for (ox,kx) € [0,0;) x [0, K,) do
ix ¢ ox + kx
for in_loc € [row_pointers[ix], row_pointers[ix + 1]) do
ic ¢+ columns[ix]|[{]

1:
2
3
4:
5: for oc € [0,0¢) do
6.
7
8
9:

0[oc][ox] += values[in_loc] * K[oc]|[ic][kx]
end for
end for
end for

Algorithm 2 AVX Sparse Convolution

1: for (ox,kx) € [0,0;) x [0, K;) do
. initialize v'%) -+ v{%) 10 0
ix < ox + kx
for in loc € [row.pointers[ix], row_pointers[ix + 1]) do
Vin < vbroadcast(values[in_loc|)
ic < columns[ix][/]
for oc = 1to O¢ do
// K[oc][ic][kx] points to a kernel vector in memory
Vous  vimadd(vin, K[oc][ic][kx], vou:)
10: end for
11: end for R
12:  Store vf,?,l e vgﬂ? to memory locations 0[0 - - - Oc] [ox]
13: end for

R A A R

Next, we discuss a number of optimizations which we apply
to our framework, focusing on CPU-based implementations.

Multicore. Our sparse convolution framework is embarrass-
ingly parallel: we partition O into blocks O1, ..., O, and
assign blocks to n threads. Each thread fully computes its
corresponding block of O. In order to avoid many threads
having to load the same input data, we minimize the over-
laps between pre-images of the blocks O;. Observing that
two elements of O with different channel coordinates, but
which share the same spatial coordinate, have identical pre-
images, we partition O spatially as much as possible, rather
than partitioning along channels. In some cases, image sizes
are too small to get spatial partitions with enough work to
saturate threads, in which case we can choose to additionally
partition along channels after all.

Input Pre-loading. We observe that the input broadcast on
line 4 of Algorithm 2 has the potential to be high latency
since it must read from memory. Fortunately, modern CPUs
can hide the latency of such memory accesses via pipelining
them, i.e. executing instructions which do not depend on
the results of the load while waiting for the values from
memory to become available. In order to take full advantage
of this pipeline, we re-order the memory loads to be as
early as possible, by issuing each broadcast instruction s

loop iterations before it is actually needed, at the cost of
requiring s additional registers to hold pending input values.

Hot kernels in cache. In some layers of some networks,
convolutional kernels are so large that they do not fit
in cache. For instance, the last several convolutions of
Resnet50 are either 2048 x 512 x 1 x 1or512x512x 3 x 3,
which, at 4 bytes per (floating point) value, are 4MB and
9MB respectively, yet L2 cache sizes of Intel machines are
commonly only 1MB. Keeping kernels in L2 is critical for
performance since every iteration of the inner-most loop
accesses a different kernel value (line 4). To ensure that ker-
nels remain hot, we use a combination of two techniques.

Firstly, if the kernel dimensions are such that the values
associated with a single spatial pixel do fit in cache (i.e.
41-0¢c < 1MB), then we can order the outer loops of
Algorithm 2 so that the loops over the spatial dimensions of
the kernels is outermost. That is, for each of the K, spatial
coordinates of the kernel, we will compute partial outputs by
performing all of the multiply-adds involving kernel values
that share that coordinate, ultimately accumulating all of
the partial results together. Thus, we only need to move the
kernel values into L2 cache once and reuse them from there,
at the cost of a few extra reads and writes of the (typically
smaller) inputs and outputs.

Hot compression. To save on expensive memory accesses,
we ensure that the results of the input pre-compression are
used before being evicted from cache. To accomplish this,
we subdivide the Sparse Convolutional operation into sub-
tasks, each of which contains a block of data which fits
entirely in cache. Then, we can process each block by first
running the CSR compressor on only that block, and then
immediately applying Algorithm 2 to the resulting com-
pressed data while it is still hot.

5. Experimental Results

Goals, Setup and Tasks. We experimentally validate our
methods by applying them to a range of classic convolu-
tional models for image classification. We aim to determine
the extent to which our techniques can boost activation spar-
sity, and the impact this has in terms of layer-wise and
end-to-end inference speedup on real models and tasks,
compared against optimized baselines which do not lever-
age activation sparsity. We focus on the ResNet (He et al.,
2016), and Mobilenet (Howard et al., 2017) architectures,
applied to ImageNet ILSVRC2012 (Deng et al., 2009).

We implemented our thresholding methods in Pytorch, mak-
ing use of the provided pre-trained models as starting points
for the regularization and thresholding procedures. We im-
plemented our sparse-input convolution in C++, on top of
an existing fully-dense baseline framework, which uses
optimized direct convolution or general matrix multiply
(GeMM) operations for all layers. This framework gets an
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(b) Layer Latencies and Speedups for ResNet18/ImageNet.

Figure 4. Layerwise sparsities and speedups for ResNet18/ImageNet. The sparsified variant achieves significant speedups since it
significantly reduces overhead in the more computationally-heavy layers.
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(b) Layerwise Speedups for Mobilenet/ImageNet. Note: even-
numbered layers are depthwise convolutions to which we do not
apply our sparse algorithms.

Figure 5. A sample of our results for the Mobilenet model trained on the ImageNet dataset.

ONNKX file (Bai et al., 2019) describing the network archi-
tecture as an input, parses and optimizes the graph, and then
generates the Just-in Time compiled (JITted) assembly code
for each layer. This baseline framework is well-optimized:
as evident in Table 2, inference numbers using Dense match
a state-of-the-art industrial solutions (MXNet 1.3 (Chen
et al., 2015) using Intel MKL-DNN for CPU inference, and
Pytorch/CUDA 10 for GPU inference).

We perform our performance experiments on an AWS
C5.12xlarge instance which sports an Intel Cascade Lake
chip with 24 physical cores, has 96 GB of memory and runs
Ubuntu 18.04, as well as on a local server with the same
configuration. For GPU inference, we used P2.xlarge in-
stance with one NVIDIA K80 GPU, running Pytorch 1.2.0
with CUDA10, using 16bit half precision.

Boosting Activation Sparsity. Our first experiments evalu-
ate the ability of various methods to induce a large subset of
activations to be zero. In particular, we study the average ac-

Model | Baseline | L1 | Hoyer | Boosted Hoyer
ResNet18 ‘ 53% ‘ 55% ‘ 62 % ‘ 67 %
ResNets0 | 53% | 54% | 61% |  65%
Mobilenet | 48% | 2% | 58% |  60%

Table 1. Average activation sparsities using different methods.

tivation sparsity of 1) the baseline pre-trained models from
Pytorch, 2) the L1-regularized models following the opti-
mized hyperparameter values from (Georgiadis, 2019), 3)
the (square) Hoyer-regularized models whose hyperparam-
eters we identify through grid search, 4) the dynamically-
boosted variants of the Hoyer-regularized models, following
the algorithm from Section 3. For methods 2)—4) we per-
formed fine-tuning for 20 epochs to recover or even increase
accuracy under regularization. ((Georgiadis, 2019) recom-
mends 90 epochs of retraining with regularization, but we
were able to reproduce their results with this compressed
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Model | MXNet+MKL-DNN | NVIDIA K80 | Dense | Natural Sparsity | Hoyer Reg. | Boosted Hoyer
ResNetl8 | 11341 | 100.16 | 107.25 | 6840 | 63.67 | 60.92(1.86x)
ResNet50 ‘ 317.49 ‘ 350.2 ‘ 256.06 ‘ 194.86 ‘ 183.21 ‘ 180.5 (1.75x)
Mobilenet | 88.55 | 1143 | 62.64 | 58.93 | 51.80 | 49.77 (1.78x)

Table 2. Average inference running times in ms for batch size 64 on various models and variants (AWS C5.24xlarge for CPU and AWS
P2.xlarge for GPU). Speedups are presented in brackets relative to the state-of-the art MXNet/MKL-DNN CPU inference framework.

schedule.) We present average values, with the note that
results are extremely stable across sample batches (stan-
dard deviation < 1%). For all of the models presented, the
accuracy loss relative to the Torchvision baseline is < 0.3%.

Table 1 presents average results for each technique, while
Table 3 presents baseline and Boosted Hoyer results for
wide and deep models.

A sample of layer-wise results are presented in Figures 4
(ResNet18) and 5 (Mobilenet) , while the average sparsities
are presented in Table 1. One salient trend is that Hoyer
and Dynamic Boosting are able to consistently boost sparsi-
ties, significantly beyond the baseline or L1 regularization.
For instance, for the input layer of Mobilenet, they both
reduce density by ~ 2x versus the natural sparsity, and
by 50% versus L1 regularization. We note that, across all
layers of all networks, there are only two layers where L1
regularization provides higher sparsity (the input layers of
the residual networks), and by a very narrow margin. The
second noticeable trend is that Dynamic Boosting can con-
sistently reduce the density of activations without accuracy
loss: for Mobilenet, these margins are almost negligible,
but they become significant for the residual models, where
boosting almost doubles the sparsity improvement of the
best regularizer (Hoyer). A third observation (Table 3) is
that our methods are especially effective in the context of
accurate but heavy wide and deep models, where activation
density can be effectively halved through boosting, without
accuracy loss.

Model | Natural AS | Boosted | Speedup
ResNet50 | 53% | 65% | 1.67x

2x Wide ResNet50 | 58% | 81% | 2.04x
ResNetlOl | 57% | 79% | 1.53x

2x Wide ResNet101 | 63% | 84% | 2.57x

Table 3. Average activation sparsity and speedup.

End-to-End Inference Performance. We now turn our at-
tention to how well the activation sparsity numbers we saw
in the previous section translate to actual speedups in end-
to-end inference on the respective models. Figures 4 and 5
presents execution times layer-by-layer, whereas Tables 2
and 3 presents average total execution times for the models
at batch size 64 under various configurations and speedup.

Table 3 presents average natural and boosted sparsities for
deep and wide residual models. For these experiments, we
found that the MXNet benchmark does not efficiently sup-
port the wide/deep models we consider; we therefore present
speedups relative to our own dense implementation, which
provides a more competitive baseline. All experiments are
executed at 12 threads. (Trends for other batch sizes and
thread counts are similar, and therefore omitted.)

Generally, we find that activation sparsity can lead to sig-
nificant and consistent speedups across the layers, roughly
proportional to the amount of activation sparsity. A signif-
icant fraction of the speedup can already be obtained on
top of the pretrained models, by exploiting their natural
sparsity. At the same time, regularization and boosting con-
sistently provide additional speedups, in particular for the
computationally-heavy but accurate wide/deep models. In
fact, fortunately, the layers with the largest computational
overhead have high input sparsity (especially with boosting).

The end-to-end results are summarized in the last column of
each table. Experiments confirm that Hoyer with Dynamic
Boosting consistently provides the highest speedups for
ResNets and Mobilenet, in the range of 1.67x (ResNet50)
to 2.57x (WideResNet101), relative to our optimized dense
implementation.

6. Conclusions and Future Work

We have presented a framework for augmenting and leverag-
ing activation sparsity in DNNs for computational speedups.
Our framework leverages two new techniques: on the ma-
chine learning side, a set of regularization and thresholding
tools to boost the average and peak activation sparsity of
networks; on the technical side, an algorithm for efficiently
performing convolutions on sparse inputs, along with its op-
timized implementation in C++. Our techniques are imple-
mented in an extensible, modular framework, which could
be leveraged by researchers wishing to extend our results
for both creating models with higher activation sparsity, or
faster algorithms for sparse convolutions. Our framework is
particularly well-suited for speeding-up inference on accu-
rate, but heavy, deep and wide models.

In future work, we plan to explore additional strategies
for memory-bound layers, and investigate the impact of
quantization on sparsity on computational speedups.
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