
Two Routes to Scalable Credit Assignment without Weight Symmetry

A. Code base
In this section we describe our implementation and highlight
the technical details that allow its generality for use in any
architecture. We used TensorFlow version 1.13.1 to conduct
all experiments, and adhered to its interface. All code can
be found at https://github.com/neuroailab/
neural-alignment.

A.1. Layers

The essential idea of our code base is that by implement-
ing custom layers that match the TensorFlow API, but use
custom operations for matrix multiplication (matmul) and
two-dimensional convolutions (conv2d), then we can ef-
ficiently implement arbitrary feedforward networks using
any credit assignment strategies with untied forward and
backward weights. Our custom matmul and conv2d op-
erations take in a forward and backward kernel. They use
the forward kernel for the forward pass, but use the back-
ward kernel when propagating the gradient. To implement
this, we leverage the @tf.custom gradient decorator,
which allows us to explicitly define the forward and back-
ward passes for that op. Our Layer objects implement
custom dense and convolutional layers which use the cus-
tom operations described above. Both layers take in the
same arguments as the native TensorFlow layers and an
additional argument for the learning rule.

A.2. Alignments

A learning rule is defined by the form of the layer-wise
regularization R added to the model at each layer. The
custom layers take an instance of an alignment class which
when called will define its alignment specific regularization
and add it to the computational graph.

The learning rule are specializations of a parent
Alignment object which implements a call method
that creates the regularization function. The regularization
function uses tensors that prevent the gradients from flowing
to previous layers via tf.stop gradient, keeping the
alignment loss localized to a single layer. Implementation
of the call method is delegated to subclasses, such that
they can define their alignment specific regularization as a
weighted sum of primitives, each of which is defined as a
function.

A.3. Optimizers

The total network loss is defined as the sum of the global
cost function J and the local alignment regularization R.
The optimizer class provides a framework for specifying
how to optimize each part of the total network loss as a
function of the global step.

In the Optimizers folder you will find two important
files:

• rate scheduler.py defines a scheduler which is
a function of the global step, that allows you to adapt
the components of the alignment weighting based on
where it is in training. If you do not pass in a scheduling
function, it will by default return a constant rate.

• optimizers.py provides a class which takes in a
list of optimizers, as well as a list of losses to optimize.
Each loss element is optimized with the corresponding
optimizer at each step in training, allowing you to
have potentially different learning rate schedules for
different components of the loss. Minibatching is also
supported.

B. Experimental Details
In what follows we describe the metaparameters we used
to run each of the experiments reported above, tabulated in
Table 5. Any defaults from TensorFlow correspond to those
in version 1.13.1.

B.1. TPE search spaces

We detail the search spaces for each of the searches per-
formed in §4. For each search, we trained approximately
60 distinct settings at a time using the HyperOpt package
(Bergstra et al., 2011) using the ResNet-18 architecture and
L2 weight decay of � = 10�4 (He et al., 2016) for 45
epochs, corresponding to the point in training midway be-
tween the first and second learning rate drops. Each model
was trained on its own Tensor Processing Unit (TPUv2-8
and TPUv3-8).

We employed a form of Bayesian optimization, a Tree-
structured Parzen Estimator (TPE), to search the space of
continuous and categorical metaparameters (Bergstra et al.,
2011). This algorithm constructs a generative model of
P [score | configuration] by updating a prior from a main-
tained history H of metaparameter configuration-loss pairs.
The fitness function that is optimized over models is the
expected improvement, where a given configuration c is
meant to optimize EI(c) =

R
x<t P [x | c, H]. This choice

of Bayesian optimization algorithm models P [c | x] via a
Gaussian mixture, and restricts us to tree-structured config-
uration spaces.

B.1.1. RTPE
WM SEARCH SPACE

Below is a description of the metaparameters and their
ranges for the search that gave rise to RTPE

WM in Table 3.

• Gaussian input noise standard deviation � 2 [10�10, 1]
used in the backward pass, sampled uniformly.

https://github.com/neuroailab/neural-alignment
https://github.com/neuroailab/neural-alignment

Two Routes to Scalable Credit Assignment without Weight Symmetry

RTPE
WM RTPE

WM+AD RTPE
WM+AD+OPS RTPE

IA

Alternating Minimization True True True True
Delay Epochs (de) 2 0 0 1

Train Batch Size (|B|) 2048 256 256 256
SGDM Learning Rate 1.0 0.125 0.125 0.125
Alignment Optimizer Vanilla GD Adam Adam Adam

Alignment Learning Rate (⌘) 1.0 0.0053 0.0025 0.0098
� 0.6905 0.9500 0.6402 0.8176

↵/� 15.6607 13.9040 0.1344 129.1123
� 0.0283 2.8109 ⇥ 10�8 232.7856 7.9990
� N/A N/A N/A 3.1610 ⇥ 10�6

Forward Path Output (FO) Bias True True True True
FO ReLU True True True True

FO BWMC True True True True
FO FWMC False False True True

FO FWL2N False False False False
Backward Path Output (BO) Bias False False False True

BO ReLU False False True False
BO FWMC False False False True

BO FWL2N False False True True
Backward Path Input (BI) BWMC True True True False

BI FWMC False False False False
BI FWL2N False False False False

Table 5. Metaparameter settings (rows) for each of the learning rules obtained by large-scale searches (columns). Continuous values were
rounded up to 4 decimal places.

• Ratio between the weighting of Pamp and Pdecay given
by ↵/� 2 [0.1, 200], sampled uniformly.

• The weighting of Pdecay given by � 2 [10�11, 107],
sampled log-uniformly.

We fix all other metaparameters as prescribed by Akrout
et al. (2019), namely batch centering the backward path
inputs and forward path outputs in the backward pass, as
well as applying a ReLU activation function and bias to the
forward path but not to the backward path in the backward
pass. To keep the learning rule fully local, we do not allow
for any transport during the mirroring phase of the batch
normalization mean and standard deviation as Akrout et al.
(2019) allow.

B.1.2. RTPE
WM+AD SEARCH SPACE

Below is a description of the metaparameters and their
ranges for the search that gave rise to RTPE

WM+AD in Table 3.

• Train batch size |B| 2 {256, 1024, 2048, 4096}. This
choice also determines the forward path Nesterov mo-

mentum learning rate on the pseudogradient of the
categorization objective J , as it is set to be |B|/2048,
and linearly warm it up to this value for 6 epochs fol-
lowed by 90% decay at 30, 60, and 80 epochs, training
for 100 epochs total, as prescribed by Buchlovsky et al.
(2019).

• Alignment learning rate ⌘ 2 [10�6, 10�2], sampled
log-uniformly. This parameter sets the adaptive learn-
ing rate on the Adam optimizer applied to the gradient

of the alignment loss R, and which will be dropped
synchronously by 90% decay at 30, 60, and 80 epochs
along with the Nesterov momentum learning rate on
the pseudogradient of the categorization objective J .

• Number of delay epochs de 2 {0, 1, 2} for which we
delay optimization of the categorization objective J
and solely optimize the alignment loss R. If de > 0,
we use the alignment learning rate ⌘ during this delay
period and the learning rate drops are shifted by de
epochs; otherwise, if de = 0, we linearly warmup ⌘
for 6 epochs as well.

Two Routes to Scalable Credit Assignment without Weight Symmetry

• Whether or not to perform alternating minimization of
J and R each step, or instead simultaneously optimize
these objectives in a single training step.

The remaining metaparameters and their ranges were the
same as those from Appendix B.1.1.

We fix the layer-wise operations as prescribed by Akrout
et al. (2019), namely batch centering the backward path
input and forward path outputs in the backward pass (BI
BWMC and FO BWMC, respectively), as well as apply-
ing a ReLU activation function and bias to the forward path
(FO ReLU and FO Bias, respectively) but not to the back-
ward path in the backward pass (BO ReLU and BO Bias,
respectively).

B.1.3. RTPE
WM+AD+OPS SEARCH SPACE

Below is a description of the metaparameters and their
ranges for the search that gave rise to RTPE

WM+AD+OPS in Ta-
ble 3. In this search, we expand the search space described
in Appendix B.1.2 to include boolean choices over layer-
wise operations performed in the backward pass, involving
either the inputs, the forward path fl (involving only the
forward weights Wl), or the backward path bl (involving
only the backward weights Bl):

Use of biases in the forward and backward paths:

• FO Bias: Whether or not to use biases in the forward
path.

• BO Bias: Whether or not to use biases in the backward
path.

Use of nonlinearities in the forward and backward paths:

• FO ReLU: Whether or not to apply a ReLU to the
forward path output.

• BO ReLU: Whether or not to apply a ReLU to the
backward path output.

Centering and normalization operations in the forward and
backward paths:

• FO BWMC: Whether or not to mean center (across the
batch dimension) the forward path output fl = fl � f̄l.

• BI BWMC: Whether or not to mean center (across the
batch dimension) the backward path input.

• FO FWMC: Whether or not to mean center (across
the feature dimension) the forward path output fl =
fl � f̂l.

• BO FWMC: Whether or not to mean center (across
the feature dimension) the backward path output bl =
bl � b̂l.

• FO FWL2N: Whether or not to L2 normalize (across
the feature dimension) the forward path output fl =
(fl � f̂l)/||fl � f̂l||2.

• BO FWL2N: Whether or not to L2 normalize (across
the feature dimension) the backward path output bl =
(bl � b̂l)/||bl � b̂l||2.

Centering and normalization operations applied to the inputs
to the backward pass:

• BI FWMC: Whether or not to mean center (across
the feature dimension) the backward pass input xl =
xl � x̂l.

• BI FWL2N: Whether or not to L2 normalize (across
the feature dimension) the backward pass input xl =
(xl � x̂l)/||xl � x̂l||2.

The remaining metaparameters and their ranges were the
same as those from Appendix B.1.2.

B.1.4. RTPE
IA SEARCH SPACE

Below is a description of the metaparameters and their
ranges for the search that gave rise to RTPE

IA in Table 3.
In this search, we expand the search space described in Ap-
pendix B.1.3, to now include the additional Pnull primitive.

• The weighting of Pnull given by � 2 [10�11, 107], sam-
pled log-uniformly.

The remaining metaparameters and their ranges were the
same as those from Appendix B.1.3.

B.2. Symmetric and Activation Alignment
metaparameters

We now describe the metaparameters used to generate Ta-
ble 4. We used a batch size of 256, forward path Nesterov
with Momentum of 0.9 and a learning rate of 0.1 applied
to the categorization objective J , warmed up linearly for 5
epochs, with learning rate drops at 30, 60, and 80 epochs,
trained for a total of 90 epochs, as prescribed by He et al.
(2016).

For Symmetric and Activation Alignment (RSA and RAA),
we used Adam on the alignment loss R with a learning
rate of 0.001, along with the following weightings for their
primitives:

• Symmetric Alignment: ↵ = 10�3, � = 2 ⇥ 10�3

Two Routes to Scalable Credit Assignment without Weight Symmetry

�10 �8 �6 �4 �2 0

Log Variance of Gaussian Noise (�2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
op

1
V
al

id
at

io
n

A
cc

ur
ac

y

Backprop ResNet-18

Symmetric ResNet-18

Activation ResNet-18

Kolen Pollack ResNet-18

Figure S1. Noisy updates. Symmetric Alignment, Activation
Alignment, and Kolen-Pollack are more robust to noisy updates
than backpropagation for ResNet-18.

• Activation Alignment: ↵ = 10�3, � = 2 ⇥ 10�3

We use biases in both the forward and backward paths of
the backward pass, but do not employ a ReLU nonlinearity
to either path.

B.3. Noisy updates

We describe the experimental setup and metaparameters
used in §5 to generate Fig. 5.

Fig. 5a was generated by running 10 trials for each experi-
ment configuration. The error bars show the standard error
of the mean across trials.

For backpropagation we used a momentum optimizer with
an initial learning rate of 0.1, standard batch size of 256,
and learning rate drops at 30 and 60 epochs.

For Symmetric and Activation Alignment we used the same
metaparameters as backpropagation for the categorization
objective J and an Adam optimizer with an initial learning
rate of 0.001 and learning rate drops at 30 and 60 epochs
for the alignment loss R. All other metaparameters were
the same as described in Appendix B.2.

In all experiments we added the noise to the update given by
the respective optimizers and scaled by the current learning
rate, that way at learning rate drops the noise scaled appro-
priately. To account for the fact that the initial learning rate
for the backpopagation experiments was 0.1, while for sym-
metric and activation experiments it was 0.001, we shifted
the latter two curves by 104 to account for the effective
difference in variance. See Fig. S1.

A B C D E F G H I
0.0

0.1

0.2

0.3

0.4

0.5

T
op

1
V
al

id
at

io
n

A
cc

ur
ac

y
A
ft

er
45

E
po

ch
s

Categorical Parameter Importance

True

False

Figure S2. Analysis of important categorical metaparameters
of top performing local rule RTPE

IA . Mean across models, and the
error bars indicate SEM across models.

B.4. Metaparameter importance quantification

We include here the set of discrete metaparameters that
mattered the most across hundreds of models in our large-
scale search, sorted by most to least important, plotted in
Fig. S2. Specifically, these amount to choices of activation,
layer-wise normalization, input normalization, and Gaussian
noise in the forward and backward paths of the backward
pass. The detailed labeling is given as follows: A: Whether
or not to L2 normalize (across the feature dimension) the
backward path outputs in the backward pass. B: Whether to
use Gaussian noise in the backward pass inputs. C: Whether
to solely optimize the alignment loss in the first 1-2 epochs
of training. D, E: Whether or not to apply a non-linearity
in the backward or forward path outputs in the backward
pass, respectively. F: Whether or not to apply a bias in the
forward path outputs (pre-nonlinearity). G, H: Whether
or not to mean center or L2 normalize (across the feature
dimension) the inputs to the backward pass. I: Same as
A, but instead applied to the forward path outputs in the
backward pass.

B.5. Neural Fitting Procedure

We fit trained model features to multi-unit array responses
from (Majaj et al., 2015). Briefly, we fit to 256 recorded
sites from two monkeys. These came from three multi-unit
arrays per monkey: one implanted in V4, one in posterior IT,
and one in central and anterior IT. Each image was presented
approximately 50 times, using rapid visual stimulus presen-
tation (RSVP). Each stimulus was presented for 100 ms,
followed by a mean gray background interleaved between
images. Each trial lasted 250 ms. The image set consisted
of 5120 images based on 64 object categories. Each image
consisted of a 2D projection of a 3D model added to a ran-
dom background. The pose, size, and x- and y-position of
the object was varied across the image set, whereby 2 levels
of variation were used (corresponding to medium and high
variation from (Majaj et al., 2015).) Multi-unit responses

Two Routes to Scalable Credit Assignment without Weight Symmetry

to these images were binned in 10ms windows, averaged
across trials of the same image, and normalized to the av-
erage response to a blank image. They were then averaged
70-170 ms post-stimulus onset, producing a set of (5120
images x 256 units) responses, which were the targets for
our model features to predict. The 5120 images were split
75-25 within each object category into a training set and a
held-out testing set.

C. Visualizations
In this section we present some visualizations which deepen
the understanding of the weight dynamics and stability dur-
ing training, as presented in §4 and §5. By looking at the
weights of the network at each validation point, we are able
to compare corresponding forward and backward weights
(see Fig. S3) as well as to measure the angle between the
vectorized forward and backward weight matrices to quan-
tify their degree of alignment (see Fig. S4). Their similarity
in terms of scale can also be evaluated by looking at the
ratio of the Frobenius norm of the backward weight matrix
to the forward weight matrix, kBlkF /kWlkF . Separately
plotting these metrics in terms of model depth sheds some
insight into how different layers behave.

D. Further Analysis
D.1. Instability of Weight Mirror

As explained in §4, the instability of weight mirror can be
understood by considering the dynamical system given by
the symmetrized gradient flow on RSA, RAA, and RWM at
a given layer l. By symmetrized gradient flow we imply
the gradient dynamics on the loss R modified such that it is
symmetric in both the forward and backward weights. We
ignore biases and non-linearities and set ↵ = � for all three
losses.

When the weights, wl and bl, and input, xl, are all scalar
values, the gradient flow for all three losses gives rise to the
dynamical system,

@

@t


wl

bl

�
= �A


wl

bl

�
,

For Symmetric Alignment and Activation Alignment, A is
respectively the positive semidefinite matrix

ASA =


1 �1

�1 1

�
and AAA =


x2

l �x2
l

�x2
l x2

l

�
.

For weight mirror, A is the symmetric indefinite matrix

AWM =


�WM �x2

l
�x2

l �WM

�
.

In all three cases A can be diagonally decomposed by the

(a) SA Epoch 0 (b) SA Epoch 2 (c) SA Epoch 90

(d) AA Epoch 0 (e) AA Epoch 2 (f) AA Epoch 90

(g) WM Epoch 0 (h) WM Epoch 2 (i) WM Epoch 90

(j) IA Epoch 0 (k) IA Epoch 2 (l) IA Epoch 90

Figure S3. Learning symmetry. Weight values of the third con-
volutional layer in ResNet-18 throughout training with various
learning rules. Each dot represents an element in layer l’s weight
matrix and its (x, y) location corresponds to its forward and back-
ward weight values, (W (i,j)

l , B(j,i)
l). The dotted diagonal line

shows perfect weight symmetry, as is the case in backpropagation.

eigenbasis

{u, v} =

⇢
1
1

�
,


1

�1

��
,

where u spans the symmetric component and v spans the
skew-symmetric component of any realization of the weight
vector

⇥
wl bl

⇤|.

As explained in §4, under this basis, the dynamical system
decouples into a system of ODEs governed by the eigenval-
ues �u and �v associated with u and v. For all three learning
rules, �v > 0 (�v is respectively 1, x2, and �WM + x2

l for
SA, AA, and weight mirror). For SA and AA, �u = 0,
while for weight mirror �u = �WM � x2

l .

Two Routes to Scalable Credit Assignment without Weight Symmetry

0 10 20 30 40 50 60 70 80 90
(poch

1

9

90
A

ng
le

 (
∘

)

eDrly

mLddle

lDte

LD
ye

r D
ep

th

0 10 20 30 40 50 60 70 80 90
Epoch

1e-02

1e-01

1e+00

1e+01

1e+02

||Bl||F
||Wl||F

early

middle

late

La
ye

rD
ep

th

(a) Symmetric Alignment

0 10 20 30 40 50 60 70 80 90
(poch

1

9

90

A
ng

le
 (
∘

)

eDrly

mLddle

lDte

LD
ye

r D
ep

th

0 10 20 30 40 50 60 70 80 90
Epoch

1e-02

1e-01

1e+00

1e+01

1e+02

||Bl||F
||Wl||F

early

middle

late

La
ye

rD
ep

th

(b) Activation Alignment

0 10 20 30 40 50 60 70 80 90
(poch

1

9

90

A
ng

le
 (
∘

)

eDrly

mLddle

lDte

LD
ye

r D
ep

th

0 10 20 30 40 50 60 70 80 90
Epoch

1e-02

1e-01

1e+00

1e+01

1e+02

||Bl||F
||Wl||F

early

middle

late

La
ye

rD
ep

th

(c) Weight Mirror

0 10 20 30 40 50 60 70 80 90
(poch

1

9

90

A
ng

le
 (
∘

)

eDrly

mLddle

lDte

LD
ye

r D
ep

th

0 10 20 30 40 50 60 70 80 90
Epoch

1e-02

1e-01

1e+00

1e+01

1e+02

||Bl||F
||Wl||F

early

middle

late

La
ye

rD
ep

th

(d) Information Alignment

Figure S4. Weight metrics during training. Figures on the left column show the angle between the forward and the backward weights at
each layer, depicting their degree of alignment. Figures on the right column show the ratio of the Frobenius norm of the backward weights
to the forward weights during training. For Symmetric Alignment (a) we can clearly see how the weights align very early during training,
with the learning rate drops allowing them to further decrease. Additionally, the sizes of forward and backwards weight also remain at the
same scale during training. Activation Alignment (b) shows similar behavior to activation, though some of the earlier layers fail to align
as closely as the Symmetric Alignment case. Weight Mirror (c) shows alignment happening within the first few epochs, though some of
the later layers don’t align as closely. Looking at the size of the weights during training, we can observe the unstable dynamics explained
in §4 with exploding and collapsing weight values (Fig. 2) within the first few epochs of training. Information Alignment (d) shows a
similar ordering in alignment as weight mirror, but overall alignment does improve throughout training, with all layers aligning within 5
degrees. Compared to weight mirror, the norms of the weights are more stable, with the backward weights becoming smaller than their
forward counterparts towards the end of training.

Two Routes to Scalable Credit Assignment without Weight Symmetry

D.2. Beyond Feedback Alignment

An underlying assumption of our work is that certain forms
of layer-wise regularization, such as the regularization intro-
duced by Symmetric Alignment, can actually improve the
performance of feedback alignment by introducing dynam-
ics on the backward weights. To understand these improve-
ments, we build off of prior analyses of backpropagation
(Saxe et al., 2013) and feedback alignment (Baldi et al.,
2018).

Consider the simplest nontrivial architecture: a two layer
scalar linear network with forward weights w1, w2, and
backward weight b. The network is trained with scalar data
{xi, yi}n

i=1 on the mean squared error cost function

J =
nX

i=1

1

2n
(yi � w2w1xi)

2.

The gradient flow of this network gives the coupled system
of differential equations on (w1, w2, b)

ẇ1 = b(↵ � w2w1�) (2)
ẇ2 = w1(↵ � w2w1�) (3)

where ↵ =
Pn

i=1
yixi

n and � =
Pn

i=1
x2
i

n . For backpropaga-
tion the dynamics are constrained to the hyperplane b = w2,
while for feedback alignment the dynamics are contained
on the hyperplane b = b(0) given by the initialization. For
Symmetric Alignment, an additional differential equation

ḃ = w2 � b, (4)

attracts all trajectories to the backpropagation hyperplane
b = w2.

To understand the properties of these alignment strategies,
we explore the fixed points of their flow. From equation (2)
and (3) we see that both equations are zero on the hyperbola

w2w1 =
↵

�
,

which is the set of minima of J . From equation (4) we see
that all fixed points of Symmetric Alignment satisfy b = w2.
Thus, all three alignment strategies have fixed points on the
hyperbola of minima intersected with either the hyperplane
b = b(0) in the case of feedback alignment or b = w2 in the
case of backpropagation and Symmetric Alignment.

In addition to these non-zero fixed points, equation (2) and
(3) are zero if b and w1 are zero respectively. For backprop-
agation and Symmetric Alignment this also implies w2 = 0,
however for feedback alignment w2 is free to be any value.
Thus, all three alignment strategies have rank-deficient fixed
points at the origin (0, 0, 0) and in the case of feedback
alignment more generally on the hyperplane b = w1 = 0.

To understand the stability of these fixed points we consider
the local linearization of the vector field by computing the
Jacobian matrix5

J =

2

4
@w1ẇ1 @w1ẇ2 @w1 ḃ
@w2ẇ1 @w2ẇ2 @w2 ḃ
@bẇ1 @bẇ2 @bḃ

3

5 .

A source of the gradient flow is characterized by non-
positive eigenvalues of J , a sink by non-negative eigen-
values of J , and a saddle by both positive and negative
eigenvalues of J .

On the hyperbola w2w1 = ↵
� the Jacobian matrix for the

three alignment strategies have the corresponding eigenval-
ues:

�1 �2 �3

Backprop. �
�
w2

1 + w2
2

�
x2 0

Feedback �
�
w2

1 + bw2

�
x2 0 0

Symmetric �
�
w2

1 + w2
2

�
x2 0 �1

Thus, for backpropagation and Symmetric Alignment, all
minima of the the cost function J are sinks, while for feed-
back alignment the stability of the minima depends on the
sign of w2

1 + bw2.

From this simple example there are two major takeaways:

1. All minima of the cost function J are sinks of the flow
given by backpropagation and Symmetric Alignment,
but only some minima are sinks of the flow given by
feedback alignment.

2. Backpropagation and Symmetric Alignment have the
exact same critical points, but feedback alignment has
a much larger space of rank-deficient critical points.

Thus, even in this simple example it is clear that certain
dynamics on the backward weights can have a stabilizing
effect on feedback alignment.

D.3. Kolen-Pollack Learning Rule

If we consider primitives that are functions of the pseudo-
gradients erl and erl+1 in addition to the forward weight
Wl, backward weight Bl, layer input xl, and layer output
xl+1, then the Kolen-Pollack algorithm, originally proposed
by Kolen & Pollack (1994) and modified by Akrout et al.
(2019), can be understood in our framework.

The Kolen-Pollack algorithm circumvents the weight trans-
port problem, by instead transporting the weight updates

5In the case that the vector field is the negative gradient of a
loss, as in backpropagation, then this is the negative Hessian of the
loss.

Two Routes to Scalable Credit Assignment without Weight Symmetry

Backprop, SA, AA

Info. Alignment

WM + AD + OPS

WM + AD

WM, WM-opt

Kolen-Pollack

Figure S5. Performance of Kolen-Pollack across architectures.
We fixed the categorical and continuous metaparameters for
ResNet-18 and applied them directly to deeper and different
ResNet variants (e.g. v2) as in Fig. 3. The Kolen-Pollack learning
rule, matched backpropagation performance for ResNet-18 and
ResNet-50, but a performance gap emerged for different (ResNet-
50v2) and deeper (ResNet-101v2, ResNet-152v2) architectures.

and adding weight decay. Specifically, the forward and
backward weights are updated respectively by

�Wl = �⌘ erl+1x
|
l � �KPWl,

�Bl = �⌘xl
er|

l+1 � �KPBl,

where ⌘ is the learning rate and �KP a weight decay constant.
The forward weight update is the standard pseudogradient
update with weight decay, while the backward weight update
is equivalent to gradient descent on

tr(x|
l Bl

erl+1) +
�KP

2⌘
||Bl||2.

Thus, if we define the angle primitive

Pangle
l = tr(x|

l Bl
erl+1) = tr(x|

l
erl),

then the Kolen-Pollack (KP) update is given by gradient
descent on the layer-wise regularization function

RKP =
X

l2layers

↵Pangle
l + �Pdecay

l ,

for ↵ = 1 and � = �KP
⌘ . The angle primitive encourages

alignment of the forward activations with the backward
pseudogradients and is local according to the criterion for
locality defined in §3.1. Thus, the Kolen-Pollack learning
rule only involves the use of local primitives, but it does
necessitate that the backward weight update given by the
angle primitive is the exact transpose to the forward weight

update at each step of training. This constraint is essen-
tial to showing theoretically how Kolen-Pollack leads to
alignment of the forward and backward weights (Kolen &
Pollack, 1994), but it is clearly as biologically suspect as
exact weight symmetry. To determine empirically how ro-
bust Kolen-Pollack is when loosening this hard constraint,
we add random Gaussian noise to each update. As shown in
Fig. S1, even with certain levels of noise, the Kolen-Pollack
learning rule can still lead to well performing models. This
suggests that a noisy implementation of Kolen-Pollack that
removes the constraint of exactness might be biologically
feasible.

While Kolen-Pollack uses significantly fewer metaparame-
ters than weight mirror or information alignment, the correct
choice of these metaparameters is highly dependent on the
architecture. As shown in Fig. S5, the Kolen-Pollack learn-
ing rule, with metaparameters specified by Akrout et al.
(2019), matched backpropagation performance for ResNet-
18 and ResNet-50. However, a considerable performance
gap with backpropagation as well as our proposed learn-
ing rules (information alignment, SA, and AA) emerged for
different (ResNet-50v2) and deeper (ResNet-101v2, ResNet-
152v2) architectures, providing additional evidence for the
necessity of the circuits we propose in maintaining robust-
ness across architecture.

