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Abstract

Machine learning systems must adapt to data dis-
tributions that evolve over time, in applications
ranging from sensor networks and self-driving car
perception modules to brain-machine interfaces.
Traditional domain adaptation is only guaranteed
to work when the distribution shift is small; empir-
ical methods combine several heuristics for larger
shifts but can be dataset specific. To adapt to
larger shifts we consider gradual domain adapta-
tion, where the goal is to adapt an initial classifier
trained on a source domain given only unlabeled
data that shifts gradually in distribution towards a
target domain. We prove the first non-vacuous up-
per bound on the error of self-training with grad-
ual shifts, under settings where directly adapting
to the target domain can result in unbounded er-
ror. The theoretical analysis leads to algorithmic
insights, highlighting that regularization and label
sharpening are essential even when we have infi-
nite data. Leveraging the gradual shift structure
leads to higher accuracies on a rotating MNIST
dataset, a forest Cover Type dataset, and a realistic
Portraits dataset.

1. Introduction
Machine learning models are typically trained and tested
on the same data distribution. However, when a model
is deployed in the real world, the data distribution typi-
cally evolves over time, leading to a drop in performance.
This problem is widespread: sensor measurements drift
over time due to sensor aging (Vergara et al., 2012), self-
driving car vision modules have to deal with evolving road
conditions (Bobu et al., 2018), and neural signals received
by brain-machine interfaces change within the span of a
day (Farshchian et al., 2019). Repeatedly gathering large
sets of labeled examples to retrain the model can be imprac-

1Stanford University, Stanford, California, USA. Correspon-
dence to: Ananya Kumar <ananya@cs.stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. In gradual domain adaptation we are given labeled data
from a source domain, and unlabeled data from intermediate do-
mains that shift gradually in distribution towards a target domain.
Here, blue = female, red = male, and gray = unlabeled data.

tical, so we would like to leverage unlabeled examples to
adapt the model to maintain high accuracy (Farshchian et al.,
2019; Sethi and Kantardzic, 2017).

The traditional solution to adapt to the distribution shift
is unsupervised domain adaptation, but existing methods
are only guaranteed to work when the distribution shift is
small—when the source and target distributions cannot be
easily distinguished from each other (Zhao et al., 2019).
To adapt to larger shifts, recent empirical papers propose
combining several heuristics (Hoffman et al., 2018; Shu
et al., 2018), but these methods can be brittle, working well
on some datasets but not on others (Peng et al., 2019) and
requiring substantial tuning for new domains.

In many real applications the domain shift does not happen
at one time, but happens gradually, although this structure
is ignored by most domain adaptation methods. We show
that the gradual shift structure allows us to reliably adapt
to very different distributions, both in theory and practice.
We analyze self-training (also known as pseudolabeling), a
method for semi-supervised learning (Chapelle et al., 2006)
that has led to state-of-the-art results on ImageNet (Xie
et al., 2020) and adversarial robustness on CIFAR-10 (Ue-
sato et al., 2019; Carmon et al., 2019; Najafi et al., 2019).

Intuitively, it is easier to handle smaller shifts, but for each
shift we can incur some error so the more steps, the more
degradation—making it unclear whether leveraging the grad-
ual shift structure is better than directly adapting to the tar-
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Figure 2. The source classifier w0 gets 100% accuracy on the
source domain (Figure 2a), where we have labeled data. But after
3 time steps (Figure 2d) the source classifier is stale, classifying
most examples incorrectly. Now, we cannot correct the classifier
using unlabeled data from the target domain, which corresponds
to traditional domain adaptation directly to the target. Given unla-
beled data in an intermediate domain (Figure 2b) where the shift
is gradual, the source classifier pseudolabels most points correctly,
and self-training learns an accurate classifier (show in green) that
separates the classes. Successively applying self-training learns a
good classifier on the target domain (green classifier in Figure 2d).

get. In this paper, we provide the first theoretical analysis
showing that gradual domain adaptation improves over the
traditional approach of direct domain adaptation, allowing
us to adapt to very different target distributions.

As a concrete example of our setting, the Portraits
dataset (Ginosar et al., 2017) contains photos of high school
seniors taken across many years, labeled by gender (Fig-
ure 1). We use the first 2000 images (1905 - 1935) as the
source, next 14000 (1935 - 1969) as intermediate domains,
and next 2000 images as the target (1969 - 1973). A model
trained on labeled examples from the source gets 98% ac-
curacy on held out examples in the same years, but only
75% accuracy on the target domain. Assuming access to
unlabeled images from intermediate domains, our goal is
to adapt the model to do well on the target domain. Direct
adaptation to the target with self-training only improves the
accuracy a little, from 75% to 77%.

The gradual self-training algorithm begins with a classifier
w0 trained on labeled examples from the source domain
(Figure 2a). For each successive domain Pt, the algorithm
generates pseudolabels for unlabeled examples from that
domain, and then trains a regularized supervised classifier
on the pseudolabeled examples. The intuition, visualized in
Figure 2, is that after a single gradual shift, most examples
are pseudolabeled correctly so self-training learns a good
classifier on the shifted data, but the shift from the source to
the target can be too large for self-training to correct. We find
that gradual self-training on the Portraits dataset improves
upon direct target adaptation (77% to 84% accuracy).

Our results: We analyze gradual domain adaptation in
two settings. The key challenge for domain adaptation
theory is dealing with source and target domains that are
very different, for example where the source and target can
be easily discriminated / distinguished (Zhao et al., 2019;
Shu et al., 2018), which are typical in the modern high-
dimensional regime. The gradual shift structure inherent
in many applications provides us with leverage to handle
adapting to target distributions that are very different.

Our first setting, the margin setting, is distribution-free—we
only assume that at every point in time there exists some
Lipschitz classifier that can classify most of the data cor-
rectly with a margin, where the classifier may be different at
each time step (so this is more general than covariate shift),
and that the shifts are small in Wasserstein-infinity distance.
The classifier can be non-linear. A simple example (as in
Figure 2) shows that a classifier that gets 100% accuracy
can get 0% accuracy after a constant number of time steps.
Directly adapting to the final target domain also gets 0%
accuracy. Gradual self-training does better, letting us bound
the error after T steps: errT ≤ ecT (α0 +O(1/

√
n)), where

α0 is the error of the classifier on the source domain, and n
is the number of unlabeled examples in each intermediate
domain. While this bound is exponential in T , this bound is
non-vacuous for small α0, and we show that this bound is
tight for gradual self-training.

In the second setting, stronger distributional assumptions
allow us to do better—we assume that P (X | Y = y) is
a d-dimensional isotropic Gaussian for each y. Here, we
show that if we begin with a classifier w0 that is nearly
Bayes optimal for the initial distribution, we can recover a
classifier wT that is Bayes optimal for the target distribution
with infinite unlabeled data. This is an idealized setting
to understand what properties of the data might allow self-
training to do better than the exponential bound.

Our theory leads to practical insights, showing that
regularization—even when we have infinite data—and label
sharpening are essential for gradual self-training. Without
regularization, the accuracy of gradual self-training drops
from 84% to 77% on Portraits and 88% to 46% on rotating
MNIST. Even when we self-train with more examples, the
accuracy gap between regularized and unregularized models
stays the same—unlike in supervised learning where the
benefit of regularization diminishes with more examples.

Finally, our theory suggests that the gradual shift structure
helps when the shift is small in Wasserstein-infinity distance
as opposed to other distance metrics like the KL-divergence.
For example, one way to interpolate between the source
and target domains is to gradually introduce more images
from the target, but this shift is large in Wasserstein-infinity
distance—we see experimentally that gradual self-training
does not help in this setting. We hope this gives practitioners
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some insight into when gradual self-training can work.

2. Setup
Gradually shifting distributions: Consider a binary clas-
sification task of predicting labels y ∈ {−1, 1} from input
features x ∈ Rd. We have joint distributions over the inputs
and labels, Rd × {−1, 1}: P0, P1, . . . , PT , where P0 is the
source domain, PT is the target domain, and P1, . . . , PT−1

are intermediate domains. We assume the shift is gradual:
for some ε > 0, ρ(Pt, Pt+1) < ε for all 0 ≤ t < T , where
ρ(P,Q) is some distance function between distributions P
and Q. We have n0 labeled examples S0 = {x(0)

i , y
(0)
i }

n0
i=1

sampled independently from the source P0 and n unlabeled
examples St = {x(t)

i }ni=1 sampled independently from Pt
for each 1 ≤ t ≤ T .

Models and objectives: We have a model family Θ, where
a model Mθ : Rd → R, for each θ ∈ Θ, outputs a
score representing its confidence that the label y is 1 for
the given example. The model’s prediction for an in-
put x is sign(Mθ(x)), where sign(r) = 1 if r ≥ 0 and
sign(r) = −1 if r < 0. We evaluate models on the fraction
of times they make a wrong prediction, also known as the
0-1 loss:

Err(θ, P ) = E
X,Y∼P

[sign(Mθ(X)) 6= Y ] (1)

The goal is to find a classifier θ that gets high accuracy on
the target domain PT—that is, low Err(θ, PT ). In an online
setting we may care about the accuracy at the current Pt for
every time t, and our analysis works in this setting as well.

Baseline methods: We select a loss function ` : R ×
{−1, 1} → R+ which takes a prediction and label, and
outputs a non-negative loss value, and we begin by training
a source model θ0 that minimizes the loss on labeled data in
the source domain:

θ0 = arg min
θ′∈Θ

1

n0

∑
(xi,yi)∈S0

`(Mθ′(xi), yi) (2)

The non-adaptive baseline is to use θ0 on the target domain,
which incurs error Err(θ0, PT ). Self-training uses unlabeled
data to adapt a model. Given a model θ and unlabeled
data S, ST(θ, S) denotes the output of self-training. Self-
training pseudolabels each example in S using Mθ, and
then selects a new model θ′ that minimizes the loss on this
pseudolabeled dataset. Formally,

ST(θ, S) = arg min
θ′∈Θ

1

|S|
∑
xi∈S

`(Mθ′(xi), sign(Mθ(xi)))

(3)

Here, self-training uses “hard” labels: we pseudolabel ex-
amples as either −1 or 1, based on the output of the clas-
sifier, instead of a probabilistic label based on the model’s

confidence—we refer to this as label sharpening. In our
theoretical analysis, we sometimes want to describe the be-
havior of self-training when run on infinite unlabeled data
from a probability distribution P :

ST(θ, P ) = arg min
θ′∈Θ

E
X∼P

[`(Mθ′(X), sign(Mθ(X)))]

(4)

The direct adaptation to target baseline takes the source
model θ0 and self-trains on the target data ST , and is denoted
by ST(θ0, ST ). Prior work often chooses to repeat this
process of self-training on the target k times, which we
denote by STk(θ0, ST ).

Gradual self-training: In gradual self-training, we self-
train on the finite unlabeled examples from each domain
successively. That is, for i ≥ 1, we set:

θi = ST(θi−1, Si) (5)

Let ST(θ0, (S1, . . . , ST )) = θT denote the output of grad-
ual self-training, which we evaluate on the target distribution
PT . As defined here, gradual self-training uses more data
than directly adapting to the target, but we account for this
in our theory and experiments.

3. Theory for the margin setting
We show that gradual self-training does better than directly
adapting to the target, where we assume that at each time
step there exists some Lipschitz classifier—which can be
different at each step—that can classify most of the data
correctly with a margin (a standard assumption in learning
theory), and that the shifts are small. Our main result (Theo-
rem 3.2) bounds the error of gradual self-training. We show
that our analysis is tight for gradual self-training (Exam-
ple 3.4), and explain why regularization, label sharpening,
and the ramp loss, are key to our bounds. Proofs are in
Appendix A.

3.1. Assumptions

Models: We consider a model family ΘR where each model
Mθ, for θ ∈ ΘR, is R-Lipschitz in the input in `2 norm for
some fixed R > 0. That is, for all x, x′ ∈ Rd:

|Mθ(x)−Mθ(x
′)| ≤ R‖x− x′‖2 (6)

An example is the set of regularized linear models that have
weights with bounded `2 norm:

ΘL
R = {(w, b) : w ∈ Rd, b ∈ R, ‖w‖2 ≤ R} (7)

In this case, given (w, b) ∈ ΘL
R, the model’s output is

Mw,b(x) = w>x + b. Our theory applies to non-linear
models that are Lipschitz, but it may help the reader to think
of linear models on a first reading.
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Losses: We consider margin loss functions such as the
hinge and ramp losses. Intuitively, a margin loss encourages
a model to classify points correctly and confidently—by
keeping correctly classified points far from the decision
boundary. We consider the hinge function h and ramp func-
tion r:

h(m) = max(1−m, 0) (8)
r(m) = min(h(m), 1) (9)

The ramp loss is `r(ŷ, y) = r(yŷ), where ŷ ∈ R is a model’s
prediction, and y ∈ {−1, 1} is the true label. The hinge loss
is the standard way to enforce margin, but the ramp loss is
more robust towards outliers because it is bounded above—
no single point contributes too much to the loss. We will
see that the ramp loss is key to the theoretical guarantees for
gradual self-training because of its robustness. We denote
the population ramp loss as:

Lr(θ, P ) = E
X,Y∼P

[`r(Mθ(X), Y )] (10)

Given a finite sample S, the empirical loss is:

Lr(θ, S) =
1

|S|
∑
x,y∈S

`r(Mθ(x), y) (11)

Distributional distance: Our notion of distance isW∞, the
Wasserstein-infinity distance. Intuitively, W∞ moves points
from distribution P to Q by distance at most ε to match
the distributions. For ease of exposition we consider the
Monge form of W∞, although the results can be extended
to the Kantarovich formulation as well. Formally, given
probability measures P,Q on X :

W∞(P,Q) = inf{ sup
x∈Rd

||f(x)− x||2 :

f : Rd → Rd, f#P = Q} (12)

As usual, # denotes the push-forward of a measure, that is,
for every set A ⊆ Rd, f#P (A) = P (f−1(A)).

In our case, we require that the conditional distributions do
not shift too much. Given joint probability measures P,Q
on the inputs and labels Rd × {−1, 1}, the distance is:

ρ(P,Q) = max(W∞(PX|Y=1, QX|Y=1),

W∞(PX|Y=−1, QX|Y=−1)). (13)

α∗-low-loss assumption: Assume every domain admits a
classifier with low loss α∗, that is there exists α∗ ≥ 0
and for every domain Pt, there exists some θt ∈ ΘR with
Lr(θt, Pt) ≤ α∗ (θt can be different for each domain).

Gradual shift assumption: For some ρ < 1
R , assume

ρ(Pt, Pt+1) ≤ ρ for every consecutive domain, where 1
R

can be interpreted as the regularization strength of the model
class ΘR or as the geometric margin (distance from decision
boundary to data) the model is trying to enforce.

Bounded model complexity assumption: For finite sam-
ple guarantees, we assume that the Rademacher complexity
of the model family,Rn(ΘR;P ), is bounded for all distri-
butions P0, . . . , PT . That is, for some fixed B > 0:

Rn(ΘR;P ) ≤ B√
n
, ∀P = P0, . . . , PT (14)

whereRn(ΘR;P ) is defined as usual as:

Rn(ΘR;P ) = E
[

sup
θ∈ΘR

1

n

n∑
i=1

σiMθ(xi)
]

(15)

where the expectation is taken over xi ∼ P and σi ∼
Uniform({−1, 1}) sampled independently for i = 1, . . . , n,
so σi = −1 or σi = 1 with equal probability 0.5.

An example is the set of regularized linear models, ΘL
R,

when the data is not too large on average: EX∼P [||X||22] ≤
β2 where β > 0. In this case a standard result, e.g. Theorem
11, page 82 in (Liang, 2016), is thatRn(ΘL

R;P ) ≤ βR/
√
n,

so B = βR is the desired bound on the model complexity.

No label shift assumption: Assume that the fraction of
Y = 1 labels does not change: Pt(Y ) is the same for all t.

3.2. Domain shift: baselines fail

While the distribution shift from Pt to Pt+1 is small, the
distribution shift from the source P0 to the target PT can be
large, as visualized in Figure 2. A classifier that gets 100%
accuracy on P0, might classify every example wrong on PT ,
even if T ≥ 2. In this case, directly adaptating to PT would
not help. The following example formalizes this:

Example 3.1. Even under the α∗-low-loss, no label shift,
gradual shift, and bounded model complexity assumptions,
there exists distributions P0, P1, P2 and a source model
θ ∈ ΘL

R that gets 0 loss on the source (Lr(θ, P0) = 0),
but high loss on the target: Lr(θ, P2) = 1. Self-training
directly on the target does not help: Lr(ST(θ, P2), P2) = 1.
This holds true even if every domain is separable, so α∗ = 0.

Other methods: Our analysis focuses on self-training, but
other bounds do not apply in this setting because they either
assume that the density ratio between the target and source
exists and is not too small (Jiayuan et al., 2006), or that
the source and target are similar enough that we cannot
discriminate between them (Ben-David et al., 2010).

3.3. Gradual self-training improves error

We show that gradual self-training helps over direct adapta-
tion. For intuition, consider a simple example where α∗ = 0



Understanding Gradual Domain Adaptation

and θ0 classifies every example in P0 correctly with geo-
metric margin γ = 1

R . If each point shifts by distance < γ,
θ0 gets every example in the new domain P1 correct. If we
had infinite unlabeled data from P1, we can learn a model θ′

that classifies every example in the new domain P1 correctly
with margin γ since α∗ = 0. Repeating the process for
P2, . . . , PT , we get every example in PT correct.

But what happens when we start with a model that has some
error, for example because the data cannot be perfectly
separated, and have only finite unlabeled samples? We show
that self-training still does better than adapting to the target
domain directly, or using the non-adaptive source classifier.

The first main result of the paper says that if we have a
model θ that gets low loss and the distribution shifts slightly,
self-training gives us a model θ′ that does not do too badly
on the new distribution.

Theorem 3.2. Given P,Q with ρ(P,Q) = ρ < 1
R and

marginals on Y are the same so P (Y ) = Q(Y ). As-
suming ΘR has bounded model complexity with respect
to P and Q, if we have initial model θ, and n unlabeled
samples S from Q, and we set θ′ = ST(θ, S), then with
probability at least 1 − δ over the sampling of S, letting
α∗ = minθ∗∈ΘR Lr(θ

∗, Q):

Lr(θ
′, Q) ≤ 2

1− ρR
Lr(θ, P ) + α∗

+
4B +

√
2 log 2/δ√
n

(16)

The proof of this result is in Appendix A, but we give a
high level sketch here. There exists some classifier that
gets accuracy α∗ on Q, so if we had access to n labeled
examples from Q then empirical risk minimization gives
us a classifier that is accurate on the population—from a
Rademacher complexity argument we get a classifier θ′ with
loss at most α∗ +O(B/

√
n), the second and third term in

the RHS of the bound.

Since we only have unlabeled examples from Q, self-
training uses θ to pseudolabel these n examples and then
trains on this generated dataset. Now, if the distribution shift
ρ is small relative to the geometric margin γ = 1

R , then we
can show that the original model θ labels most examples
in the new distribution Q correctly—that is, Err(θ,Q) is
small if Lr(θ, P ) is small. Finally, if most examples are
labeled correctly we show that because there exists some
classifier θ∗ with low margin loss, self-training will also
learn a classifier θ′ with low margin loss Lr(θ′, Q), which
completes the proof.

We apply this argument inductively to show that after T time
steps, the error of gradual self-training is . exp(cT )α0 for
some constant c, if the original error is α0.

Corollary 3.3. Under the α∗-low-loss, no label shift, grad-
ual shift, and bounded model complexity assumptions, if
the source model θ0 has low loss α0 ≥ α∗ on P0 (i.e.
Lr(θ0, P0) ≤ α0) and θ is the result of gradual self-training:
θ = ST(θ0, (S1, . . . , Sn)), letting β = 2

1−ρR :

Lr(θ, PT ) ≤ βT+1
(
α0 +

4B +
√

2 log 2T/δ√
n

)
. (17)

Corrollary 3.3 says that the gradual structure allows some
control of the error unlike direct adaptation where the accu-
racy on the target domain can be 0% if T ≥ 2. Note that
if the classes are separable and we have infinite data, then
gradual self-training maintains 0 error.

Our next example shows that our analysis for gradual self-
training in this setting is tight—if we start with a model with
lossα0, then the error can in fact increase exponentially even
with infinite unlabeled examples. Intuitively, at each step
of self-training the loss can increase by a constant factor,
which leads to an exponential growth in the error.
Example 3.4. Even under the α∗-low-loss, no label shift,
gradual shift, and bounded model complexity assumptions,
given 0 < α0 ≤ 1

4 , for every T there exists distribu-
tions P0, . . . , P2T , and θ0 ∈ ΘL

R with Lr(θ0, P0) ≤ α0,
but if θ′ = ST(θ0, (P1, . . . , P2T )) then Lr(θ

′, P2T ) ≥
min(0.5, 1

22Tα0). Note that Lr is always in [0, 1].

This suggests that if we want sub-exponential bounds we
either need to make additional assumptions on the data
distributions, or devise alternative algorithms to achieve
better bounds (which we believe is unlikely).

3.4. Essential ingredients for gradual self-training

In this section, we explain why regularization, label sharp-
ening, and the ramp loss are essential to bounding the error
of gradual self-training (Theorem 3.2).

Regularization: Without regularization there is no incen-
tive for the model to change when self-training—if we self-
train without regularization an optimal thing to do is to
output the original model. The intuition is that since the
model θ = (w, b) is used to pseudolabel examples, θ gets
every pseudolabeled example correct. The scaled classifier
θ′ = (αw,αb) for large α then gets optimal loss, but θ′ and
θ make the same predictions for every example. We use
ST′(θ, S) to denote the set of possible θ′ that minimize the
loss on the pseudolabeled distribution (Equation (3)):
Example 3.5. Given a model θ ∈ ΘL

∞ (in other words
R = ∞) and unlabeled examples S where for all x ∈ S,
Mθ(x) 6= 0, there exists θ′ ∈ ST′(θ, S) such that for all
x ∈ Rd, Mθ(x) = Mθ′(x).

More specific to our setting, our bounds require regularized
models because regularized models classify the data cor-
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rectly with a margin, so even after a mild distribution shift
we get most new examples correct. Note that in traditional
supervised learning, regularization is usually required when
we have few examples for better generalization to the popu-
lation, whereas in our setting regularization is important for
maintaining a margin even with infinite data.

Label sharpening: When self-training, we pseudolabel ex-
amples as −1 or 1, based on the output of the classifier.
Prior work sometimes uses “soft” labels (Najafi et al., 2019),
where for each example they assign a probability of the label
being −1 or 1, and train using a logistic loss. The loss on
the soft-pseudolabeled distribution is defined as:

Lσ,θ(θ
′) = E

X∼P
[ll(σ(Mθ(X)), σ(Mθ′(X)))] (18)

, where σ is the sigmoid function, and ll is the log loss:

ll(p, p′) = p log p′ + (1− p) log (1− p′) (19)

Self-training then picks θ′ ∈ ΘR minimizing Lσ,θ(θ′). A
simple example shows that this form of self-training may
never update the parameters because θ minimizes Lσ,θ:
Example 3.6. For all ΘR and θ ∈ ΘR, θ is a minimizer of
Lσ,θ, that is, for all θ′ ∈ ΘR, Lσ,θ(θ) ≤ Lσ,θ(θ′).

This suggests that we “sharpen” the soft labels to encourage
the model to update its parameters. Note that this is true
even on finite data: set P to be the empirical distribution.

Ramp versus hinge loss: We use the ramp loss, but does the
more popular hinge loss Lh work? Unfortunately, the next
example shows that we cannot control the error of gradual
self-training with the hinge loss even if we had infinite
examples, so the ramp loss is important for Theorem 3.2.
Example 3.7. Even under the α∗-low-loss, no label shift,
and gradual shift assumptions, given α0 > 0, there exists
distributions P0, P1, P2 and θ0 ∈ ΘL

R with Lh(θ0, P0) ≤
α, but if θ′ = ST(θ0, (P1, P2)) then Lh(θ′, P2) ≥
Err(θ′, P2) = 1 (θ′ gets every example in P2 wrong), where
we use the hinge loss in self-training.

We only analyzed the statistical effects here—the hinge loss
tends to work better in practice because it is much easier to
optimize and is convex for linear models.

3.5. Self-training without domain shift

Example 3.4 showed that when the distribution shifts, the
loss of gradual self-training can grow exponentially (though
the non-adaptive baseline has unbounded error). Here we
show that if we have no distribution shift, the error can only
grow linearly: if P0 = . . . = PT , given a classifier with loss
α0, if we do gradual self-training the loss is at most α0T .
Proposition 3.8. Given α0 > 0, distributions P0 =
. . . = PT , and model θ0 ∈ ΘR with Lr(θ0, P0) ≤ α0,
Lr(θ

′, PT ) ≤ α0(T + 1) where θ′ = ST(θ0, (P1, . . . , PT ))

In Appendix A, we show that self-training can indeed hurt
without domain shift: given a classifier with loss α on P ,
self-training on P can increase the classifier’s loss on P to
2α, but here the non-adaptive baseline has error α.

4. Theory for the Gaussian setting
In this section we study an idealized Gaussian setting to
understand conditions under which self-training can have
better than exponential error bounds: we show that if we
begin with a good classifier, the distribution shifts are not
too large, and we have infinite unlabeled data, then gradual
self-training maintains a good classifier.

4.1. Setting

We assume Pt(X | Y = y) is an isotropic Gaussian in
d-dimensions for each y ∈ {−1, 1}. We can shift the data
to have mean 0, so we suppose:

Pt(X|Y = y) = N (yµt, σ
2
t I) (20)

Where µt ∈ Rd and σt > 0 for each t. As usual, we
assume the shifts are gradual: for some B > 0, ‖µt+1 −
µt‖2 ≤ B

4 . We assume that the means of the two classes do
not get closer than the shift, or else it would be impossible
to distinguish between no shift, and the distributions of the
two classes swapping: so ‖µt‖2 ≥ B for all t. We assume
infinite unlabeled data (access to Pt(X)) in our analysis.

Given labeled data in the source, we use the objective:

L(w,P ) = E
X,Y∼P

[φ(Y (w>X))] (21)

For unlabeled data, self-training performs descent steps
on an underlying objective function (Amini and Gallinari,
2003), which we focus on:

U(w,P ) = E
X∼P

[φ(|w>X|)] (22)

We assume φ : R → R+ is a continuous, non-increasing
function which is strictly decreasing on [0, 1]: these are
regularity conditions which the hinge, ramp, and logis-
tic losses satisfy. If w′ = ST(w,P ) then U(w′, P ) ≤
U(w,P ) (Amini and Gallinari, 2003).

The algorithm we analyze begins by choosing w0 from
labeled data in P0, and then updates the parameters with
unlabeled data from Pt for 1 ≤ t ≤ T :

wt = arg min
‖w‖2≤1,‖w−wt−1‖2≤ 1

2

U(w,Pt) (23)

Note that we do not show that self-training actually con-
verges to the constrained minimum of U in Equation (23)
and prior work only shows that self-training descends on
U—we leave this optimization analysis to future work.



Understanding Gradual Domain Adaptation

4.2. Analysis

Let w∗(µ) = µ
‖µ‖2 where ‖µ‖ ≥ B > 0. Note that w∗(µt)

minimizes the 0-1 error on Pt. Our main theorem says
that if we start with a regularized classifier w0 that is near
w∗(µ0), which we can learn from labeled data, and the
distribution shifts ‖µt+1 − µt‖2 are not too large, then we
recover the optimal wT = w∗(µT ). The key challenge is
that the unlabeled loss U in d dimensions is non-convex,
with multiple local minima, so directly minimizing U does
not guarantee a solution that minimizes the labeled loss L.

Theorem 4.1. Assuming the Gaussian setting, if ‖w0 −
w∗(µ0)‖2 ≤ 1

4 , then we recover wT = w∗(µT ).

Proving this reduces to proving the single-step case. At
each step t+ 1, if we have a classifier wt that was close to
w∗(µt), then we will recover wt+1 = w∗(µt+1). We give
intuition here and the formal proof in Appendix B.

We first show that if µ changes by a small amount, the
optimal parameters (for the labeled loss) does not change
too much. Then since wt is close to w∗(µt), wt is not
too far away from w∗(µt+1). The key step in our argu-
ment is showing that the unique minimum of the unlabeled
loss U(w,Pµt+1

) in the neighborhood of wt, is w∗(µt)—
looking for a minimum nearby is important because if we
deviate too far we might select other “bad” minima. We
consider arbitrary w near w∗(µt+1) and construct a pairing
of points (a, b) in Rd, using a convexity argument to show
that (a, b) contributes more to the loss of w than w∗(µt+1).

5. Experiments
Our theory leads to practical insights—we show that regular-
ization and label sharpening are important for gradual self-
training, that leveraging the gradual shift structure improves
target accuracy, and give intuition for when the gradual shift
assumption may not help. We run experiments on three
datasets (see Appendix C for more details):

Rotating MNIST: Rotating MNIST is a semi-synthetic
dataset where we rotate each MNIST image by an angle
between 0 and 60 degrees. We split the 50,000 MNIST
training set images into a source domain (images rotated
between 0 and 5 degrees), intermediate domain (rotations
between 5 and 60 degrees), and a target domain (rotations
between 55 degrees and 60 degrees). Note that each image
is seen at exactly one angle, so the training procedure cannot
track a single image across different angles.

Cover Type: A dataset from the UCI repository where the
goal is to predict the forest cover type at a particular location
given 54 features (Blackard and Dean, 1999). We sort the
examples by increasing distance to water body, splitting the
data into a source domain (first 50K examples), intermediate
domain (next 400K examples), and a target domain (final

50K examples).

Portraits: A real dataset comprising photos of high school
seniors across years (Ginosar et al., 2017). The model’s
goal is to classify gender. We split the data into a source do-
main (first 2000 images), intermediate domain (next 14000
images), and target domain (next 2000 images).

In Appendix C we also include synthetic experiments on a
mixture of Gaussians dataset which resembles the Gaussian
setting of our theory but the covariance matrices are not
isotropic, and the number of labeled and unlabeled samples
is finite and on the order of the dimension d.

5.1. Leveraging gradual shifts improves adaptation

Our goal is to see if adapting to the gradual shift sequen-
tially helps compared to directly adapting to the target. We
evaluate four methods: Source: simply train a classifier on
the labeled source examples. Target self-train: repeatedly
self-train on the unlabeled target examples ignoring the in-
termediate examples. All self-train: pool all the unlabeled
examples from the intermediate and target domains, and re-
peatedly self-train on this pooled dataset to adapt the initial
source classifier. Gradual self-train: sequentially self-train
on unlabeled data in each successive intermediate domain,
and finally self-train on unlabeled data on the target domain,
to adapt the initial source classifier.

For the rotating MNIST datasets, we ensured that the target
self-train method sees as many unlabeled target examples as
gradual self-train sees across all the intermediate examples.
Since Portraits and Cover Type are real datasets we cannot
synthesize more examples from the target, so target self-
train uses fewer unlabeled examples here. However, the all
self-train baseline uses all of the unlabeled examples from
all domains.

For rotating MNIST and Portraits we used a 3-layer convo-
lutional network with dropout(0.5) and batchnorm on the
last layer, that was able to achieve 97%− 98% accuracy on
held out examples in the source domain. For the CoverType
dataset we used a 2 hidden layer feedforward neural network
with dropout(0.5) and batchnorm on the last layer which
got higher accuracies than logistic regression. For each
step of self-training, we filter out the 10% of images where
the model’s prediction was least confident—Appendix C
shows similar findings without this filtering. To account
for variance in initialization and optimization, we ran each
method 5 times and give 90% confidence intervals. More
experimental details are in Appendix C.

Table 1 shows that leveraging the gradual structure leads to
improvements over baselines on all 3 datasets, and closes
over half the gap between the source and oracle classifiers.
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Table 1. Percentage classification accuracies for gradual self-training (ST) and baselines on three datasets, with 90% standard errors for
the mean over 5 runs in parantheses. Gradual ST closes about half the gap between the source and oracle classifiers on all three datasets,
and does better than self-training directly on the target or self-training on all the unlabeled data pooled together.

ROT MNIST COVER TYPE PORTRAITS

SOURCE MODEL 31.9 (±1.7) 62.8 (±5.0) 75.3 (±1.6)

TARGET ST +1.0 (±0.5) +0.7 (±1.5) +1.6 (±1.2)
ALL ST +6.1 (±1.1) +1.5 (±2.2) +3.5 (±1.8)
GRADUAL ST +56.0 (±1.5) +7.6 (±3.7) +8.5 (±0.9)

ORACLE +59.6 (±1.2) +16.8 (±3.7) +17.0 (±0.8)

5.2. Important ingredients for gradual self-training

Our theory suggests that regularization and label sharpen-
ing are important for gradual self-training, because without
regularization and label sharpening there is no incentive for
the model to change (Section 3.4). However, prior work
suggests that overparameterized neural networks trained
with stochastic gradient methods have strong implicit reg-
ularization (Zhang et al., 2017; Hardt et al., 2016)—in the
supervised setting they perform well without explicit regu-
larization even though the number of parameters is much
larger than the number of data points—is this implicit regu-
larization enough for gradual self-training?

In our experiments, we see that even without explicit reg-
ularization, or with ‘soft’ probabilistic labels, gradual self-
training does slightly better than the non-adaptive source
classifier, suggesting that this implicit regularization may
have some effect. However, explicit regularization and
‘hard’ labeling gives a much larger accuracy boost.

Regularization is important: We repeat the same experi-
ment as Section 5.1, comparing gradual self-training with
or without regularization—that is, disabling dropout and
batchnorm (Ioffe and Szegedy, 2015) in the neural network
experiments. In both cases, we first train an unregularized
model on labeled examples in the source domain. Then, we
either turn on regularization during self-training, or keep
the model unregularized. We control the original model to
be the same in both cases to see if regularization helps in
the self-training process, as opposed to in learning a bet-
ter supervised classifier. Table 2 shows that accuracies are
significantly better with regularization, even though unreg-
ularized performance is still better than the non-adaptive
source classifier.

Soft labeling hurts: We ran the same experiment as Sec-
tion 5.1, comparing gradual self-training with hard labeling
versus using probabilistic labels output by the model. Ta-
ble 2 shows that accuracies are better with hard labels. Note
that in datasets with more intrinsic uncertainty, soft labeling
may work well (Mey and Loog, 2016).

Regularization is still important with more data: In su-

Table 2. Classification accuracies for gradual self-train with ex-
plicit regularization and hard labels (Gradual ST), without regular-
ization but with hard labels (No Reg), and with regularization but
with soft labels (Soft Labels). Gradual self-train does best with
explicit regularization and hard labels, as our theory suggests, even
for neural networks with implicit regularization.

ROT MNIST COV TYPE PORTRAITS

SOFT LABELS 44.1±2.3 63.2±8.5 80.1±1.8
NO REG 45.8±2.5 70.7±1.8 76.5±1.0
GRADUAL ST 83.8±2.5 73.5±1.6 82.6±0.8

pervised learning, the importance of regularization dimin-
ishes as we have more training examples—if we had access
to infinite data (the population), we don’t need regulariza-
tion. On the other hand, for gradual domain adaptation, the
theory says regularization is needed to adapt to the dataset
shift even with infinite data, and predicts that regularization
remains important even if we increase the sample size.

To test this hypothesis, we construct a rotating MNIST
dataset where we increase the sample sizes. The source
domain P0 consists of N ∈ {2000, 5000, 20000} images
on MNIST. Pt then consists of these same N images, ro-
tated by angle 3t, for 0 ≤ t ≤ 20. The goal is to get high
accuracy on P20: these images rotated by 60 degrees—the
model doesn’t have to generalize to unseen images, but to
seen images at different angles. We compare using regu-
larization versus not using regularization during gradual
self-training. Table 3 shows that regularization is still impor-
tant here, and the gap between regularized and unregularized
gradual self-training does not shrink much with more data.

5.3. When does gradual shift help?

Our theory in Section 3 says that gradual self-training works
well if the shift between domains is small in Wasserstein-
infinity distance, but it may not be enough for the total
variation or KL-divergence between P and Q to be small.

To test this, we run an experiment on a modified version of
the rotating MNIST dataset. We keep the source and target
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Table 3. Classification accuracies for gradual self-train on rotating
MNIST as we vary the number of samples. Unlike in previous
experiments, here the same N samples are rotated, so the models
do not have to generalize to unseen images, but seen images at
different angles. The gap between regularized and unregularized
gradual self-training does not shrink much with more data.

N=2000 N=5000 N=20,000

SOURCE 28.3±1.4 29.9±2.5 33.9±2.6
NO REG 55.7±3.9 53.6±4.0 55.1±3.9
REG 93.1±0.8 91.7±2.4 87.4±3.1

domains the same as before, but change the intermediate
domains. In Table 1 we saw that gradual self-training works
well if we have intermediate images rotated by gradually
increasing rotation angles. Another type of gradual transfor-
mation is to gradually introduce more examples rotated by
55 to 60 degrees. That is, in the i-th domain, (20 − i)/20
fraction of the examples are MNIST images rotated by 0
to 5 degrees, and i/20 of the examples are MNIST images
rotated by 55 to 60 degrees, where 1 ≤ i ≤ 20. Here the
total-variation distance between successive domains is small,
but intuitively the Wasserstein distance is large because each
image undergoes a large (≈ 55 degrees) rotation.

As the theory suggests, here gradual self-training does not
outperform directly self-training on the target—gradual self-
training gets 33.5 ± 1.5% accuracy on the target, while
direct adaptation to the target gets 33.0± 2.2% over 5 runs.
Intuitively, gradual self-training helps when most of the
distribution shifts by a small amount, and it may not be
sufficient if only a small fraction of the distribution shifts
but by a large amount. We hope this gives practitioners
some insight into when gradual self-training helps.

6. Related work
Self-training is a popular method in semi-supervised learn-
ing (Lee, 2013; Sohn et al., 2020) and domain adapta-
tion (Long et al., 2013; Zou et al., 2019; Inoue et al., 2018),
and is related to entropy minimization (Grandvalet and Ben-
gio, 2005). Recent work shows that a robust variant of
self-training can mitigate the tradeoff between standard and
adversarial accuracy (Raghunathan et al., 2020). Related
to self-training is co-training (Blum and Mitchell, 1998),
which assumes that the input features can be split into two or
more views that are conditionally independent on the label.
Other theory in semi-supervised learning (Rigollet, 2007;
Singh et al., 2008; Ben-David et al., 2008) does not analyze
domain shift.

Unsupervised domain adaptation, where the goal is to di-
rectly adapt from a labeled source domain to an unlabeled
target domain, is widely studied (Quiñonero-Candela et al.,

2009). The key challenge for domain adaptation is when
the source and target domains are very different, when it
is easy to discriminate between the two domains and their
supports do not overlap (Zhao et al., 2019; Shu et al., 2018),
which is typical in the modern high-dimensional regime.
Importance weighting based methods (Shimodaira, 2000;
Sugiyama et al., 2007; Jiayuan et al., 2006) assume the do-
mains are close, with bounds depending on the expected
density ratios between the source and target. In practice,
even if the domains overlap, the density ratio often scales
exponentially in the dimension in which case these methods
perform poorly. These methods also assume that P (Y | X)
is the same for the source and target which we do not re-
quire. The theory of H∆H-divergence (Ben-David et al.,
2010; Mansour et al., 2009) gives conditions for when a
model trained on the source does well on the target without
any adaptation. Empirical methods aim to learn domain
invariant representations (Tzeng et al., 2014; Ganin and
Lempitsky, 2015; Tzeng et al., 2017) but there are no the-
oretical guarantees for these methods (Zhao et al., 2019).
These methods require several additional heuristics (Hoff-
man et al., 2018), and work well on some tasks but not
others (Bobu et al., 2018; Peng et al., 2019).

Hoffman et al. (2014); Michael et al. (2018); Markus
et al. (2018); Bobu et al. (2018) among others propose ap-
proaches for gradual domain adaptation. This setting dif-
fers from online learning (Shalev-Shwartz, 2007), lifelong
learning (Silver et al., 2013), and concept drift (Kramer,
1988; Bartlett, 1992; Bartlett et al., 1996), since we only
have unlabeled data from shifted distributions. To the best
of our knowledge, we are the first to develop a theory for
gradual domain adaptation, and investigate when and why
the gradual structure helps.

7. Conclusion and Future Work
Our work suggests that the gradual shift structure, which
appears often in applications, enables us to reliably adapt to
very different target distributions. There are many exciting
avenues for future work:

1. Better algorithms for gradual shifts: Can we de-
velop better algorithms and more general theory for
gradual domain adaptation?

2. Discovering gradual shifts: Can we apply gradual
self-training to spatial data: datapoints close in space
may be similar? More generally, can we learn which
datapoints are similar and do gradual self-training?

3. Structured domain adaptation: Are there other
structures in real applications we can leverage to reli-
ably adapt to very different target distributions?
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A. Proofs for Section 3
Restatement of Example 3.1. Even under the α∗-low-
loss, no label shift, gradual shift, and bounded model com-
plexity assumptions, there exists distributions P0, P1, P2

and a source model θ ∈ ΘL
R that gets 0 loss on the

source (Lr(θ, P0) = 0), but high loss on the target:
Lr(θ, P2) = 1. Self-training directly on the target does
not help: Lr(ST(θ, P2), P2) = 1. This holds true even if
every domain is separable, so α∗ = 0.

Proof. We construct an example in 2-D, where we consider
the set of regularized linear models ΘL

R, where R = 1.
Such a classifier is parametrized by (w, b) where w ∈ R2

with ||w||2 ≤ 1, and b ∈ R. The output of the model is
Mw,b(x) = wTx+ b, and the predicted label is sign(wTx+
b).

We first define the source distribution P0:

P0(X = (1, 1) ∧ Y = 1) = 0.5 (24)

P0(X = (−1,−1) ∧ Y = −1) = 0.5 (25)

Consider the source classifier w0 = (0, 1). The
classifier classifies all examples correctly, in particular
sign(wT0 (1, 1)) = 1, and sign(wT0 (−1,−1)) = −1. In
addition, the ramp loss is 0, that is:

E
X,Y∼P0

[r(Y (wT0 X))] = 0 (26)

We now construct distributions P1 and P2:

P1(X = (1, 1/3) ∧ Y = 1) = 0.5 (27)

P1(X = (−1,−1/3) ∧ Y = −1) = 0.5 (28)

P2(X = (1,−1/3) ∧ Y = 1) = 0.5 (29)

P2(X = (−1, 1/3) ∧ Y = −1) = 0.5 (30)

Basically, the second-coordinate starts at 1 and decreases
over time when the label is Y = 1, and starts at −1 and
increases over time when the label is Y = −1. We note that
ρ(P0, P1) = ρ(P1, P2) = 2

3 ≤
1
R .

Now, w0, b0 classifies everything incorrectly in P2.
sign(wT0 (1,−1/3)) = −1, and sign(wT0 (−1, 1/3)) = 1
but the corresponding labels in P2 are 1 and−1 respectively.
Accordingly, the ramp loss Lr(Mw0,b0 , P2) = 1.

Self-training on P2 cannot fix the problem. w0, b0 gets every
example incorrect, so all the pseudolabels are incorrect.
In particular, let Y ′ be the pseudolabels produced using
w0, b0—we have, Y ′ | [X = (1,−1/3)] = −1 and Y ′ |
[X = (−1, 1/3)] = 1. Self-training on this is now a convex
optimization problem, which attains 0 loss, for example
using the classifier w′ = (−1, 0), b′ = 0, but any such
classifier also gets all the examples incorrect. Note that the

max-margin classifier on the source also exhibits the same
issue (that is, it can get all the examples wrong after the
dataset shift), from a simple extension of this example.

Finally, the classifier w∗ = (1, 0), b∗ = 0, gets every label
correct in all distributions, P0, P1, P2.

Restatement of Theorem 3.2. Given P,Q with ρ(P,Q) =
ρ < 1

R and marginals on Y are the same so P (Y ) = Q(Y ).
Assuming ΘR has bounded model complexity with respect
to P and Q, if we have initial model θ, and n unlabeled
samples S from Q, and we set θ′ = ST(θ, S), then with
probability at least 1 − δ over the sampling of S, letting
α∗ = minθ∗∈ΘR Lr(θ

∗, Q):

Lr(θ
′, Q) ≤ 2

1− ρR
Lr(θ, P ) + α∗

+
4B +

√
2 log 2/δ√
n

(31)

We begin by stating and proving some lemmas that formal-
ize the proof outline in the main paper. We begin with a
standard lemma that says if a model family ΘR has bounded
Rademacher complexity, and we learn a model from n la-
beled examples from a distribution P , then the classifier is
almost as good as the optimal classifier in ΘR on P , and the
classifier gets closer to optimal as n increases.

Lemma A.1. Given n samples S from a joint distribu-
tion P over inputs Rd and labels {−1, 1}, and suppose
Rn(ΘR;P ) ≤ B/

√
n. Let f̂ and f be the empirical and

population minimizers of the ramp loss respectively:

f̂ = arg min
f∈ΘR

Lr(f, S) (32)

f∗ = arg min
f∈ΘR

Lr(f, P ) (33)

Then with probability at least 1− δ,

Lr(f̂)− Lr(f∗) ≤
4B +

√
2 log 2/δ√
n

(34)

Proof. We begin with a standard bound (see e.g. Theorem
9, page 70 in (Liang, 2016)), where the generalization error
on the left is bounded by the Rademacher complexity:

Lr(f̂)− Lr(f∗) ≤ 4Rn(A;P ) +

√
2 log 2/δ

n
(35)

Here, A = {(x, y) 7→ `r(Mθ(x), y) : θ ∈ ΘR} is the
composition of the loss with the model family, and Rn is
the Rademacher complexity. It now suffices to bound the
Rn term.
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We first use Talagrand’s lemma, which says that if φ : R→
R+ is an L-Lipschitz function (that is, |φ(b) − φ(a)| ≤
L|b− a| for all a, b), then:

Rn(φ ◦ F ;P ) ≤ LRn(F ;P ) (36)

In our case, we let F = {(x, y) 7→ yMθ(x) : θ ∈ ΘR},
in which case A = r ◦ F where r is the ramp loss. The
Lipschitz constant of the ramp loss r is 1, soRn(A;P ) ≤
Rn(F ;P ).

This gives us the desired result since from a simple calcula-
tion we can showRn(F ;P ) = Rn(ΘR;P ) (the y cancels
out since it gets multiplied by a Rademacher random vari-
able which is −1 and 1 with equal probability), so we have:

Rn(F ;P ) ≤ B√
n

(37)

The next lemma shows that the error (0-1 loss) of Mθ is low
on Q, even though the margin loss may be high. Intuitively,
Mθ classifies most points in P correctly with geoemtric
margin 1

R , so after a small distribution shift < 1
R , these

points are still correctly classified since the margin acts as a
‘buffer’ protecting us from misclassification.

Lemma A.2. If θ ∈ ΘR, ρ(P,Q) = ρ < 1
R , and the

marginals on Y are the same so P (Y ) = Q(Y ), then
Err(Mθ, Q) ≤ 2

1−ρRLr(Mθ, P )

Proof. Intuitively, if the ramp loss for anR-Lipschitz model
is low, then most points are classified correctly with high
geometric margin (distance to decision boundary). Formally,
we first show (using basically Markov’s inequality) that
P (YMθ(X) ≤ ρR) ≤ 1

1−ρRLr(θ, P ), where we recall
that r : R → [0, 1] is the ramp loss which is bounded
between 0 and 1:

Lr(θ, P ) = E
X,Y∼P

[r(YMθ(X))]

≥ E
X,Y∼P

[r(YMθ(X))IYMθ(X)≤ρR]

≥ E
X,Y∼P

[(1− ρR)IYMθ(X)≤ρR]

= (1− ρR)P (YMθ(X) ≤ ρR)

Here, the inequality on the third line follows because if
YMθ(X) ≤ ρR where 0 < ρR ≤ 1, then r(YMθ(X)) ≥
1− ρR, from the definition of the ramp loss.

This gives us:

P (YMθ(X) ≤ ρR) ≤ 1

1− ρR
Lr(θ, P ) (38)

The high level intuition of the next step is that since the
shift is small, only points x, y with yMθ(x) ≤ ρR can

be misclassified after the distribution shift, and from the
previous step since there aren’t too many of these the error
of θ on Q is small.

Formally, fix ε > 0 with ρ + ε < 1
R , and let fy :

Rd → Rd be a mapping such that for all measurable
A ⊆ Rd, P (f−1(A) | Y = y) = Q(A|Y = y), with
supx∈Rd ||fy(x)− x||2 ≤ ρ+ ε for y ∈ {−1, 1}1, then we
have:

Err(θ,Q)

= Q(Y 6= sign(Mθ(X)))

= Q(YMθ(X) ≤ 0)

= Q(Y = 1)Q(Mθ(X) ≤ 0 | Y = 1) +

Q(Y = −1)Q(Mθ(X) ≥ 0 | Y = −1)

= P (Y = 1)P (Mθ(f1(X)) + b ≤ 0 | Y = 1) +

P (Y = −1)P (Mθ(f−1(X)) + b ≥ 0 | Y = −1)

≤ P (Y = 1)P (Mθ(X) ≤ (ρ+ ε)R | Y = 1) +

P (Y = −1)P (Mθ(X) ≥ −(ρ+ ε)R | Y = −1)

= P (YMθ(X) ≤ (ρ+ ε)R)

Where the inequality follows since Mθ is R-Lipschitz:

|Mθ(X)−Mθ(fy(X))| ≤ R||X − fy(X)||2
≤ R(ρ+ ε)

Combining this with Equation (38), this gives us:

Err(θ,Q) ≤ 1

1− (ρ+ ε)R
Lr(θ, P ) (39)

Since ε > 0 was arbitrary, by taking the infimum over all
ε > 0, we get:

Err(θ,Q) ≤ 1

1− ρR
Lr(θ, P ) (40)

Which was what we wanted to show.

From the previous lemma, Mθ has low error on Q, or in
other words only occasionally mislabels examples from Q.
The next lemma says that if we minimize the ramp loss
on a distribution where the points are only occasionally
mislabeled, then we learn a classifier with low (good) ramp
loss as well.

Lemma A.3. Given random variables X,Y, Y ′ (defined on
the same measure space) with joint distribution P , where
X denotes the distribution over inputs, and Y, Y ′ denote

1We need the ε here because a mapping with exactly the W∞
distance may not exist, although if P and Q have densities then
such a mapping does exist.
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distinct distributions over labels. If P (Y 6= Y ′) ≤ β then
for any θ, Lr(θ, PXPY ′|X) ≤ Lr(θ, PXPY |X) + β. Here
PXPY |X denotes the distribution where the input X is sam-
pled from PX and then the label is sampled from PY |X .

Proof. The proof is by algebra, where we recall that r :
R → [0, 1] is the ramp loss which is bounded between 0
and 1:

Lr(θ, PXPY ′|X)

= E
[
r
(
Y ′Mθ(X)

)]
= E

[
r
(
Y ′Mθ(X)

)
IY=Y ′

]
+

E
[
r
(
Y ′Mθ(X)

)
IY 6=Y ′

]
≤ E

[
r
(
Y ′Mθ(X)

)
IY=Y ′

]
+ E

[
IY 6=Y ′

]
= E

[
r
(
Y ′Mθ(X)

)
IY=Y ′

]
+ β

= E
[
r
(
YMθ(X)

)
IY=Y ′

]
+ β

≤ E
[
r
(
YMθ(X)

)]
+ β

= Lr(θ, PXPY |X) + β

Proof of Theorem 3.2. We begin by noting that there is
some θ∗ ∈ ΘR that gets low loss α∗ on Q:

Lr(Mθ∗ , Q) = α∗ = min
θ∗∈ΘR

Lr(Mθ∗ , Q) (41)

In self-training, we do not have access to labels from Q
so we use Mθ to pseudolabel examples X from Q, so let
w, b = θ and let Y ′ | X = sign(Mθ(X)) be the pseudola-
bel distribution QY ′|X .

However, our pseudolabels are mostly correct. That is, let
β = 2

1−ρRLr(Mθ, P ). Since the conditions of Lemma A.2
are satisfied, Err(Mθ, Q) ≤ β. This means that the pseu-
dolabels from Mθ and the true labels on Q mostly agree:
Q(Y 6= Y ′) ≤ β. So by Lemma A.3, θ∗, which attained
low loss α∗ on Q, also does fairly well on the pseudola-
beled distributionQXQY ′|X , which denotes the distribution
where the input X is sampled from QX and then the label
is sampled from QY ′|X :

Lr(Mθ∗ , QXQY ′|X) ≤ Lr(Mθ∗ , Q) + β

≤ α∗ + β (42)

Since we have n examples from QXQY ′|X , from
Lemma A.1 the empirical risk minimizer θ′ on the n ex-

amples satisfies:

Lr(θ
′, QXQY ′|X) ≤ min

θ∈ΘR
Lr(θ,QXQY ′|X)

+
4B +

√
2 log 2/δ√
n

(43)

But minimizing the loss on QXQY ′|X explicitly gives us a
lower loss than θ∗ gets on QXQY ′|X (recall that θ∗ is the
minimizer of the loss on Q which is different):

min
θ∈ΘR

Lr(θ,QXQY ′|X) ≤ Lr(Mθ∗ , QXQY ′|X)

≤ α∗ + β (44)

Combining Equations (43) and (44), we get:

Lr(θ
′, QXQY ′|X) ≤ α∗ + β +

4B +
√

2 log 2/δ√
n

(45)

This bounds the ramp loss of θ′ on the pseudolabeled dis-
tribution QXQY ′|X—to convert this back to Q we apply
Lemma A.3 again which we can since Q(Y 6= Y ′) ≤ β,
which gives us:

Lr(θ
′, Q) ≤ α∗ + 2β +

4B +
√

2 log 2/δ√
n

(46)

This completes the proof.

Restatement of Corollary 3.3. Under the α∗-low-loss, no
label shift, gradual shift, and bounded model complexity
assumptions, if the source model θ0 has low loss α0 ≥ α∗ on
P0 (i.e. Lr(θ0, P0) ≤ α0) and θ is the result of gradual self-
training: θ = ST(θ0, (S1, . . . , Sn)), letting β = 2

1−ρR :

Lr(θ, PT ) ≤ βT+1
(
α0 +

4B +
√

2 log 2T/δ√
n

)
. (47)

Proof. We begin with a classifier with loss α0. Applying
Theorem 3.2 for each subsequent step of self-training, let-
ting β = 2

1−ρR , we get:

Lr(Mθi+1 , Pi+1) ≤βLr(Mθi , Pi) + α∗

+
4B +

√
2 log 2T/δ√
n

(48)

Expanding, this becomes the sum of a geometric series.
Noting that α∗ ≤ α0, by using the formula for the sum of
geometric series, we get:

Lr(MθT , PT ) ≤ βT+1
(
α0 +

4B +
√

2 log 2T/δ√
n

)
(49)
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Restatement of Example 3.4. Even under the α∗-low-loss,
no label shift, gradual shift, and bounded model complexity
assumptions, given 0 < α0 ≤ 1

4 , for every T there exists
distributions P0, . . . , P2T , and θ0 ∈ ΘL

R with Lr(θ0, P0) ≤
α0, but if θ′ = ST(θ0, (P1, . . . , P2T )) then Lr(θ′, P2T ) ≥
min(0.5, 1

22Tα0). Note that Lr is always in [0, 1].

Proof. The construction works even in 1-D. We will con-
sider regularized linear models ΘL

R with R = 1, so ρ < 1
R .

Such a model in 1D can be parametrized by 2 parameters,
w, b ∈ R with |w| ≤ 1, where the output of the linear model
for an input x ∈ R is wx+ b, and the label is sign(wx+ b).

First we give intuition, and then we dive into the formal
details of the construction.

We start with a classifier θ0 = (w0, b0) = (1, 0). We will
construct the distributions so that the classifier θt = θ0

for all t, that is, gradual self-training will not update the
classifier. In the initial distribution P0, all the negative
examples will be located at x = −10, so the classifier gets
them correct and incurs 0 loss on them. α0 fraction of the
positive examples will be at x = −0.1, these examples are
misclassified so the classifier incurs loss α0. The rest of the
positive examples will be at x = 1, and the classifier incurs
0 loss on them.

In distribution P1, 0.5α0 fraction of the positive examples
will move from x = 1 to x = 0.5, but everything else stays
the same as in P0. After pseudolabeling and self-training,
the classifier still stays the same, that is θ1 = θ0. This is
because the α0 fraction of examples at x = −0.1 will be
pseudolabeled negative, the 0.5α0 fraction of examples at
x = 0.5 pseudolabeled positive, and the remaining positive
examples at x = 1 will be pseudolabeled positive. Training
on this pseudolabeled distribution gives us θ1 = (w1, b1) =
(1, 0) as the optimal parameters.

In P2, the 0.5α0 fracton of points at x = 0.5 moves to
x = −0.1. After pseudolabeling and self-training, we still
get θ2 = θ0. At this point the classifier incurs loss 1.5α0.
We repeat this process, except for P3, α0 fraction of the
positive examples move from x = 1 to x = 0.5, and then
the next time in P5, 2α0 fraction of the positive examples
move from x = 1 to x = 0.5, etc. So in this way the loss
grows exponentially.

We now give the formal construction, which works even in
just 1 dimension. First, we choose S to be the maximum
integer such that (2S−1 + 1

2 )α0 < 1
2 . We have S ≥ 1,

because (21−1 + 1
2 )α0 = 3

2α0 ≤ 3
2

1
4 <

1
2 .

We now define a sequence of weights, which represents the
fraction of points we move in each step as in the sketch
above. For 0 ≤ i ≤ S − 1, let wi = 1

22iα0, and let
wS = 1

2 − (2S−1 + 1
2 )α0. From the sum of geometric

series, we can verify that each of these weights are positive,

and the weights sum up to 1
2 .

We now define the distributions at each step, we case on
whether the step is odd or even since as in the above high
level sketch, it takes 2 steps to move a point from x = 1
across to the other side of the decision boundary. One
subtlety is that unlike the sketch above, since we use the
Monge form of the Wasserstein distance, we cannot have
all the points exactly at x = 1 but keep them separated by
a small distance δ = 1

10S . This is a technical detail, so on
a first reading the reader may just pretend δ = 0 to work
through the structure of the proof.

(Odd case) For 0 ≤ t < min(T, S + 1), P2t+1 is given by:

P2t+1(x = −10 ∧ Y = −1) = 0.5 (50)

P2t+1(x = −0.1 ∧ Y = 1) = α0 +

t−1∑
i=0

wi (51)

P2t+1(x = 0.5 ∧ Y = 1) = wt (52)
P2t+1(x = 1 + iδ ∧ Y = 1) = wi ∀t < i ≤ S (53)

(Even case) For 0 ≤ t ≤ min(T, S + 1), P2t is given by:

P2t(x = −10 ∧ Y = −1) = 0.5 (54)

P2t(x = −0.1 ∧ Y = 1) = α0 +

t−1∑
i=0

wi (55)

P2t(x = 1 + iδ ∧ Y = 1) = wi ∀t ≤ i ≤ S (56)

If T ≥ S+1, then for 2S+2 ≤ i ≤ 2T , we set Pi = P2S+2

(by this step the classifier will have reached ramp loss and
error 0.5).

We can check that if t < 2S, then the classifier ob-
tained from gradual self-training is wt = (1, 0) (the clas-
sifier does not change after self-training). When t = 2S,
wt = (1,−0.9), and finally if 2S < t then wt = (1,−1.5).
The edge case is because at the end all positive points are to
the left of the classifier, so the classifier moves to the right.

Next we examine the loss values. If t ≤ S, the fraction of
examples the classifier w2t gets wrong on P2t is:

α0 +

t−1∑
i=0

wi = (2t−1 +
1

2
)α0 ≥

1

2
2tα0 (57)

If t > S, the fraction of examples the classifier w2t gets
wrong on P2t is 0.5. The ramp loss is bounded below by
the error rate, which means:

Lr(θ
′, P2T ) ≥ min(0.5,

1

2
2Tα0) (58)

As desired.

We can verify that for every i, W∞(Pi, Pi+1) ≤ 0.6 < 1 =
1
R , so these distributions satisfy the gradual shift assumption.
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Pi(Y = 1) = Pi(Y = −1) = 0.5 for all i, so the distri-
butions satisfy the no label shift assumption. The classifier
(w, b) = (1, 5) gets 0 loss on all Pi, so the distributions sat-
isfy the α∗-low-loss assumption with α∗ = 0. Finally, the
data is all bounded in a constant region, between x = −10
and x = 2, so the distributions satisfy the bounded model
complexity assumption.

Restatement of Example 3.5. Given a model θ ∈ ΘL
∞ (in

other words R =∞) and unlabeled examples S where for
all x ∈ S, Mθ(x) 6= 0, there exists θ′ ∈ ST′(θ, S) such that
for all x ∈ Rd, Mθ(x) = Mθ′(x).

Proof. The proof is straightforward: scaling up the param-
eters of the original model θ gives us a θ′ that gets 0 loss
(ramp or hinge) on the pseudolabeled distribution, but does
not change the model predictions. For simplicity, we focus
on the ramp loss but the proof applies to the hinge loss as
well. Suppose θ = (w, b), where w ∈ Rd and b ∈ R.

We choose our new parameters to be θ′ = (αw,αb), where
α ≥ 1 is a scaling factor we will choose. Then we can write
L(θ′), the loss of θ′ on the pseudolabeled examples S as:

L(θ′) =
1

|S|
∑
x∈S

`r(Mθ′(x), sign(Mθ(x)))

=
1

|S|
∑
x∈S

r(sign(wTx+ b)(αwTx+ αb))

=
1

|S|
∑
x∈S

r(α|wTx+ b|) (59)

Now, we can choose large enough α so that the term inside
the r in the last line above is always ≥ 1:

α =
1

minx∈S |wTx+ b|
(60)

So now, |(w′)Tx+ b′| = α|(wTx+ b)| ≥ 1 for all x ∈ S.
This gives us that L(θ′) = 0, since r(m) = 0 for m ≥ 1.
Note that this is true for the hinge loss as well, h(m) = 0 for
m ≥ 1. Since L is bounded below by 0, θ′ is a minimizer
of the loss on the pseudolabeled distribution (which is what
self-training minimizes, see Equation (3)).

Since θ′ is just a scaled up version of θ, it does not change
the predictions:

sign(αwTx+ αb) = sign(wTx+ b) (61)

Restatement of Example 3.6. For all ΘR and θ ∈ ΘR, θ
is a minimizer of Lσ,θ, that is, for all θ′ ∈ ΘR, Lσ,θ(θ) ≤
Lσ,θ(θ

′).

Proof. The reason for this is that the logistic loss is a proper
scoring loss—if we fix p, the loss of ll(p, p′) is minimized
when p′ = p. That is, if 0 ≤ p, p′ ≤ 1:

ll(p, p) ≤ ll(p, p′) (62)

So we have:

Lσ,θ(θ
′) = E[ll(σ(Mθ(X)), σ(Mθ′(X)))]

≥ E[ll(σ(Mθ(X)), σ(Mθ(X)))]

= Lσ,θ(θ) (63)

Restatement of Example 3.7. Even under the α∗-low-
loss, no label shift, and gradual shift assumptions, given
α0 > 0, there exists distributions P0, P1, P2 and θ0 ∈ ΘL

R

with Lh(θ0, P0) ≤ α, but if θ′ = ST(θ0, (P1, P2)) then
Lh(θ′, P2) ≥ Err(θ′, P2) = 1 (θ′ gets every example in P2

wrong), where we use the hinge loss in self-training.

Proof. We construct an example in 2D. We consider the set
of regularized linear models ΘL

R, where R = 1. Such a clas-
sifier is parametrized by (w, b) where w ∈ R2 with ||w||2 ≤
1, and b ∈ R. The output of the model is Mw,b(x) =
wTx+ b, and the predicted label is sign(wTx+ b).

Set α0 = min(1
2 ,

2α
3 ). We will construct an example where

the initial hinge error is ≤ α0, but it increases to over 1
and gets every example wrong, in 2 distribution shifts, even
though there exists a single classifier with 0 hinge loss across
all the distributions. Let w0 = (1, 0) and b0 = 0. Consider
a distribution Qδ , for δ ∈ R, defined as follows:

Qδ(Y = 1 ∧X = (δ, 1)) =
1− α0

2
[Point 1]

Qδ(Y = 1 ∧X = (−1

2
,

1− α0

α0
)) =

α0

2
[Point 2]

Qδ(Y = −1 ∧X = (−δ,−1)) =
1− α0

2
[Point 3]

Qδ(Y = −1 ∧X = (
1

2
,−1− α0

α0
)) =

α0

2
[Point 4]

We will set P0 = Q1, P1 = Q1/3, and P2 = Q−1/3. First,
we note that the Wasserstein-infinity distance between any
consecutive one of these is at most 2/3 < 1.

Next, we can verify that Lh(w0, P0) = 3
2α0 ≤ α. In

particular, w0 gets points 2 and 4 incorrect, and points 1 and
3 correct with margin 1. Computing the expectation of the
loss, we get 3

2α0.

Now the algorithm self-trains on P1: w0 pseudolabels points
1 and 4 positive (y = 1), and pseudolabels points 2 and 3
negative (y = −1), again getting points 2 and 4 incorrect.
From the KKT conditions, we can verify that the minimizer
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of the hinge loss on these pseudolabeled points is w1 = w0,
and b2 = 0.

Finally, the algorithm self-trains on P2: here w0 pseudola-
bels points 3 and 4 positive, and 1 and 2 negative. That
is, it gets all the examples wrong. Self-training on these
pseudolabels, the model still gets every example wrong (one
solution is w2 = (0,−1) and b2 = 0). So Err(w2, P2) = 1,
and the hinge loss is lower bounded by the error with
Lh(w2, P2) ≥ Err(w2, P2).

On the other hand, the classifier w∗ = (0, 1) and b∗ = 0,
gets hinge loss 0 on P1, P2, P3.

Restatement of Proposition 3.8. Given α0 > 0, distri-
butions P0 = . . . = PT , and model θ0 ∈ ΘR with
Lr(θ0, P0) ≤ α0, Lr(θ′, PT ) ≤ α0(T + 1) where θ′ =
ST(θ0, (P1, . . . , PT ))

We give intuition for our argument, and then dive into the
formal proof. Suppose we start out with a model that has
ramp loss α0 on P = P0 = · · · = PT . After a single step of
self-training, the loss can increase to 2α0 on P . So a naive
argument leads to an exponential bound (since the loss is
now 2α0, it can increase to 2 · 2α0 after another round of
self-training, etc, so after T steps the loss on P is bounded
by 2Tα0). Showing a linear upper bound requires a more
subtle argument that tracks some other invariants, and not
just the loss value.

Roughly speaking, if the initial loss is below α0, there can-
not be more than α0 fraction of points near the decision
boundary. We show that this invariant is maintained by self-
training: the ‘number’ of points near the decision boundary
decreases, so it always stays below the initial value α0. Fi-
nally, we show that if there are α0 points near the decision
boundary, then self-training cannot increase the loss by more
than α0 no matter what the current loss is. This shows that
at each step the loss can only increase by α0. Compare this
with Example 3.4, where we do have distribution shift—in
this case the ‘number’ of points near the decision boundary
can keep increasing which can lead to an exponential growth
in the loss.

We now dive into the formal proof—we begin by making
some definitions and stating and proving lemmas that for-
malize the above intuition.

In self-training, we pseudolabel an example x with label
sign(Mθ(x)). We define the corresponding distribution on
the pseudolabels PY |x,θ by Y | x, θ = sign(Mθ(x)).

Recall that the loss of θ on labeled data is (where r is the

ramp loss):

Lr(θ, P ) = E
X,Y∼P

[`r(Mθ(X), Y )]

= E
X,Y∼P

[r(YMθ(X))] (64)

We define a loss on unlabeled data which corresponds to the
loss of θ if every example was labeled by Mθ. This roughly
corresponds to the ‘number’ of points near the decision
boundary, since points far from the decision boundary incur
0 loss, but points near the decision boundary incur a loss
between 0 and 1. Note that the unlabeled loss does not use
the labels Y . Letting PX denote the marginal distribution
of P on X , and PXPY |X denote the distribution where
X is sampled from PX and Y is sampled from PY |X , the
unlabeled loss Ur is:

Ur(θ, P ) = Lr(θ, PXPY |X,θ)

= E
X∼P

[`r(Mθ(X), sign(Mθ(X)))]

= E
X∼P

[r(|Mθ(X)|)] (65)

The unlabeled loss Ur and labeled loss Lr are always de-
fined since the ramp loss is bounded below by 0. A straight-
forward lemma shows that the unlabeled loss lower bounds
the labeled loss.

Lemma A.4 (Lower bounds labeled loss). The unlabeled
loss lower bounds the labeled loss: Ur(θ, P ) ≤ Lr(θ, P ).

Proof. Since Y ∈ {−1, 1},

|Mθ(X)| = |YMθ(X)| ≥ YMθ(X) (66)

Now, since r is a non-increasing function, we have:

r(|Mθ(X)|) ≤ r(YMθ(X)) (67)

Taking expectations on both sides:

Ur(θ, P ) ≤ Lr(θ, P ) (68)

The next lemma shows that each step of self-training de-
creases the unlabeled loss.

Lemma A.5 (Unlabeled loss decreases). If θ, θ′ ∈ Θ and
θ′ = ST(θ, P ), then Ur(θ′, P ) ≤ Ur(θ, P ).

Proof. Since the unlabeled loss does not depend on the
labels, we have:

Ur(θ
′, P ) = Ur(θ

′, PXPY |X,θ) (69)
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From Lemma A.4, the unlabeled loss lower bounds the
labeled loss:

Ur(θ
′, PXPY |X,θ) ≤ Lr(θ′, PXPY |X,θ) (70)

But PXPY |X,θ is the distribution of pseudolabels pro-
duced by model θ, which is exactly what self-training
(θ′ = ST(θ, P )) minimizes (recall the definition of self-
training in Equation (4)), so θ′ has lower loss than θ on the
pseudolabeled distribution:

Lr(θ
′, PXPY |X,θ) ≤ Lr(θ, PXPY |X,θ) = Ur(θ, P ) (71)

Which means that:

Ur(θ
′, P ) ≤ Ur(θ, P ) (72)

We now show a type of triangle inequality for the loss, which
says that the loss of θ′ on P is upper bounded by the loss of
θ′ on pseudolabels from θ plus the loss of θ on P .

Lemma A.6 (Triangle Inequality). Lr(θ
′, P ) ≤

Lr(θ
′, PXPY |X,θ) + Lr(θ, P )

Proof. We will first show that for any x, y, θ, θ′:

`r(Mθ′(x), y) ≤ max(`r(Mθ′(x), sign(Mθ(x))),

`r(Mθ(x), y)) (73)

We can prove this by casing. If Mθ′(x) and Mθ(x) have
different signs, or Mθ(x) and y have different signs, then
the RHS is 1. But the ramp loss is bounded above by 1, so
the LHS has loss at most 1, which makes this statement true.
Otherwise, supposeMθ′(x),Mθ(x), and y all have the same
signs—but then sign(Mθ(x)) = y, so `r(Mθ′(x), y) =
`r(Mθ′(x), sign(Mθ(x))).

With this in hand, the result follows with some algebra:

Lr(θ
′, P )

=E[`r(Mθ′(X), Y )]

≤E[max(`r(Mθ′(X), sign(Mθ(X))), `r(Mθ(X), Y ))]

≤E[`r(Mθ′(X), sign(Mθ(X))) + `r(Mθ(X), Y )]

=Lr(θ
′, PXPY |X,θ) + Lr(θ, P ) (74)

Next, we show that if the unlabeled loss of θ is less than α,
then self-training cannot increase the loss by more than α.

Lemma A.7 (Upper bounding loss growth). Suppose
Ur(θ, P ) ≤ α and let θ′ = ST(θ, P ). Then:

Lr(θ
′, P ) ≤ Lr(θ, P ) + α

Proof. From Lemma A.6, it suffices to show that
Lr(θ

′, PXPY |X,θ) ≤ α. But as in Equation (71), this is
simply because θ′ minimizes the pseudolabeled loss so we
have:

Lr(θ
′, PXPY |X,θ) ≤ Ur(θ, P ) ≤ α (75)

The proof of Proposition 3.8 now simply inductively applies
Lemma A.5 and Lemma A.7.

Proof of Proposition 3.8. Let θt = ST(θt−1, Pt) for 1 ≤
t ≤ T . The unlabeled loss lower bounds the labeled
loss: that is, since Lr(θ0, P0) ≤ α0, from Lemma A.4,
Ur(θ0, P0) ≤ α0. The unlabeled loss can only decrease
with self-training: that is, inductively applying Lemma A.5,
we get that for all t, Ur(θt, Pt) ≤ α0. Then from
Lemma A.7, the loss can only increase by α0 at each step
of self-training, so Lr(θT , PT ) ≤ Lr(θ0, P0) + α0T ≤
α0(T + 1).

The next Example shows that even without distribution shift,
self-training can increase the loss of a model from α0 to
nearly 2α0.

Example A.8. Even under the α∗-low-loss and bounded
model complexity assumptions, for every 0.25 > α0 >
ε > 0, there exists a model θ0 and distribution P with
Lr(θ0, P ) ≤ α0 but Lr(ST(θ0, P ), P ) ≥ 2α0 − ε.

Proof. We give an example in 1D, where a linear model can
be parametrized by 2 parameters, w, b ∈ R with |w| ≤ 1,
where the output of the linear model for an input x ∈ R is
wx+ b, and the label is sign(wx+ b).

Let δ = ε/3 and a = α0/(1 + δ). Let the data distribution
P be given by:

P (X = −10 ∧ Y = −1) = 0.5 (76)

P (X = 0 ∧ Y = 1) = a (77)

P (X = 1 ∧ Y = 1) = a− δ (78)

P (X = 10 ∧ Y = 1) = 0.5− 2a+ δ (79)

Note that the probabilities are all non-negative and add up
to 1 and the data is bounded between x = −10 and x = 10.

Let the initial model be w0 = 1 and b0 = −δ. The initial
loss is Lr((w0, b0), P ) = a + (a − δ)δ = α0 − δ2 ≤ α0.
We can check that after self-training, the updated parameters
are w1 = 1 and b1 = 1. The final loss is Lr((w1, b1), P ) =
2a− δ ≥ 2α0(1− δ)− δ ≥ 2α0 − 3δ = 2α0 − ε.
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B. Proofs for Section 4
We prove Theorem 4.1 in Section 3, following the sketch
described in the paper. Our first lemma shows that if µ does
not change too much, then the optimal parameters w∗(µ)
do not change too much either.
Lemma B.1. w∗ is 1

B -Lipschitz, that is if ||µ||2, ||µ′||2 ≥
B > 0, then:

||w∗(µ′)− w∗(µ)||2 ≤
1

B
||µ′ − µ||2 (80)

Proof. Recall that w∗(µ) = µ/||µ||2, which is well defined
since ||µ||2 > 0. We will first prove that if ||v′||2 ≥ ||v||2 =
1, then the claim holds, that is:

|| v′

||v′||2
− v||22 ≤ ||v′ − v||22 (81)

Expanding both sides, this is equivalent to showing:

1 + ||v||22 −
2vT v′

||v′||2
≤ ||v′||22 + ||v||22 − 2vT v (82)

Subtracting both sides by ||v||22, it suffices to show:

1− 2vT v′

||v′||2
≤ ||v′||22 − 2vT v (83)

But since ||v′|| ≥ 1, we can bound the LHS above if we
multiply by ||v′||2:

1− 2vT v′

||v′||2
≤ ||v′||2 − 2vT v′

≤ ||v′||22 − 2vT v′ (84)

So Equation (81) is true.

Now we prove the main claim. Without loss of generality,
suppose ||µ′||2 ≥ ||µ||2, otherwise we can swap µ and µ′.
Then we can scale µ′ and reduce to the previous case:

||w∗(µ′)− w∗(µ)||2 = || µ′

||µ′||2
− µ

||µ||2
||2

= || µ′/||µ||2
||µ′||2/||µ||2

− µ

||µ||2
||2

= || (µ′/||µ||2)

||(µ′/||µ||2)||2
− µ

||µ||2
||2

≤ || µ
′

||µ||2
− µ

||µ||2
||2

=
1

||µ||2
||µ′ − µ||2

≤ 1

B
||µ′ − µ||2 (85)

Where in the inequality on the 4th line we applied Equa-
tion (81). This completes the proof.

We now state a standard lemma in measure theory, which
says that if f(x) ≥ g(x) for all x, and the inequality is strict
on a set of non-zero measure (volume), then the integral of
f is strictly greater than the integral of g.

Lemma B.2. Let µ be a measure on Rd, and C be measur-
able with µ(C) > 0. Suppose f(x) > g(x) if x ∈ C, and
f(x) ≥ g(x) for all x ∈ Rd, where f and g are measurable
functions with finite integrals. Then:∫

Rd
f(X)dµ >

∫
Rd
g(X)dµ (86)

Our next lemma is the key step of the proof. We show that
w∗(µ) is a strict local minimizer of U(w,Pµ,σ), that is it
has lower loss than any other w nearby.

Lemma B.3. For all w ∈ Rd with ||w||2 ≤ 1 and ||w −
w∗(µ)||2 < 1, with w 6= w∗(µ), we have:

U(w∗(µ), Pµ,σ) < U(w,Pµ,σ) (87)

Proof. Denote w∗(µ) as w∗. By Cauchy-Schwarz, since
‖w∗‖2 = 1 and ‖w − w∗‖2 < 1, we have w · w∗ > 0, and
‖w‖2 > 0. This is because w · w∗ = ‖w∗‖2 + (w − w∗) ·
w∗ ≥ 1− ‖w − w∗‖2‖w∗‖2 > 0. Since the dot product is
non-zero, neither vector can be 0.

We begin by noting that U(w,Pµ,σ) is well-defined and
finite: because φ(|X|) is between 0 and 1 so the expectation
is well-defined with finite, non-negative value.

Step 1 (Scaling Parameters): First, we show that scaling
up the parameters decreases the loss: for any w and λ > 1,
U(λw, Pµ,σ) < U(w,Pµ,σ).

Since φ is non-increasing, φ(|λwTx|) ≥ φ(|wTx|). Now,
let C = {x ∈ Rd : 0 < λwTx < 1}. Since φ is strictly
decreasing on [0, 1], for x ∈ C, φ(|λwTx|) < φ(|wTx|).
Pµ,σ(C) > 0 (the Gaussian mixture distribution assigns pos-
itive probability to any set with non-zero volume / Lebesgue
measure). Then from Lemma B.2:

E
X∼Pµ,σ

[φ(|λwTX|)] < E
X∼Pµ,σ

[φ(|wTX|)] (88)

Which is precisely saying U(λw, Pµ,σ) < U(w,Pµ,σ).

This lets us assume, without loss of generality, that ||w||2 =
1 since scaling up w strictly decreases the loss, and the
theorem statement assumes ||w||2 ≤ 1.

Step 2 (Rotating parameters): Note that rotating the entire
space does not change the loss values, formally if A is a
rotation matrix then:

U(Aw,PAµ,σ) = U(w,Pµ,σ) (89)

So without loss of generality, we rotate the setup so that
w and w∗ lie on the XY plane (except for the first two
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coordinates, all coordinates are 0). Let v be the unit bisector
of w and w∗, given by v = (w+w∗)/||w+w∗||2. Without
loss of generality, rotate the setup so that v is along the
positive Y axis (the second coordinate is 1, and all other
coordinates are 0), and the first two coordinates of w∗ are
positive. Let µ = (r, s, 0) where 0 ∈ Rd−2, we then have
that r, s > 0 since w∗ and µ are in the same direction.

Step 3 (Symmetry argument): Now consider any point
u = (x, y, z) with z ∈ Rd−2, with x, y > 0. Con-
sider its reflection point around v, u′ = (−x, y, z). Let
∆(w,w′, u) = φ(|(w′)Tu|)−φ(|wTu|) denote the increase
in loss on x from using classifier w′ instead of w. Now,
from the way we constructed u′, wTu = (w∗)Tu′, and
(w∗)Tu = wTu′. So ∆(w,w∗, u) = −∆(w∗, w, u′). That
is, as per our sketch, the loss for u decreases when using w∗

instead of w, but increases for u′ when using w∗ instead of
w, but the magnitudes of these two quantities are equal.

Next, we will show that the probability density is higher
for u than u′. Let p denote the density of Pµ,σ. Pµ,σ is
the mixture of two Gaussians, so for normalizing constant
k > 0, we have:

p(u) = k
[

exp
(
− 1

2σ
((r − x)2 + (s− y)2 + z2)

)
+

exp
(
− 1

2σ
((r + x)2 + (s+ y)2 + z2)

)]
(90)

p(u′) = k
[

exp
(
− 1

2σ
((r + x)2 + (s− y)2 + z2)

)
+

exp
(
− 1

2σ
((r − x)2 + (s+ y)2 + z2)

)]
(91)

We now use strict convexity of exp(−x) to show that
p(u) > p(u′). Let a = (r − x)2 + (s − y)2 + z2,
b = (r+x)2 +(s+y)2 +z2, c = (r+x)2−(r−x)2 = 4rx.
Since, x, y, r, s > 0, we have 0 < a < b and 0 < c < b− a.
Letting f(x) = exp(−x/(2σ)) we can rewrite the above
probabilities as:

p(u) = k
[
f(a) + f(b)

]
(92)

p(u′) = k
[
f(a+ c) + f(b− c)

]
(93)

Finally, we use strict convexity of f(x) = exp(−x) to show
the desired result. Since a < a + c < a + b, for some
α ∈ (0, 1), we can write:

a+ c = αa+ (1− α)b (94)

b− c = (1− α)a+ αb (95)

Then, from strict convexity, we have:

f(a+ c) < αf(a) + (1− α)f(b) (96)

f(b− c) < (1− α)f(a) + αf(b) (97)

Adding both of these, we get:

f(a+ c) + f(b− c) < f(a) + f(b) (98)

That is, we have shown p(u) > p(u′).

The case when u = (−x,−y, z), where z ∈ Rd−2 and
x, y > 0 is symmetric. We ignore points {(x, y, z) : x =
0 ∨ y = 0} since this has measure 0.

Step 4 (Expectation): We give intuition and then dive into
the math. For every pair of points in our pairing in Step
3, the contribution to the loss of w∗ is at most as high as
the contribution to the loss of w. So this trivially gives us
L(w∗, Pµ,σ) ≤ L(w,Pµ,σ), but we want a strict inequality.
However, we can find a set of points with non-zero volume
(Lebesgue measure) where the contribution to the loss for
w∗ is strictly less than for w, which completes the proof.

Formally, letting S+ = {(x, y, z) : z ∈ Rd−2, x > 0, y >
0}, we can write (where we defined ∆ in Step 3):

L(w,Pµ,σ)− L(w∗, Pµ,σ)

= 2

∫
S+

[
p(u)∆(w∗, w, u) + p(u′)∆(w∗, w, u′)

]
(99)

Where the 2 comes from the fact that the case when x, y < 0
is symmetric and gives the same integral. Now, let C =
{(x, y, z) : x > 0, y > 0, x2 + y2 ≤ 1, z ∈ Rd−2, w∗} be
a quarter cylinder. The volume of C is > 0, and C ⊆ S+.
Further, for all x ∈ C, we have:

p(u)∆(w∗, w, u) + p(u′)∆(w∗, w, u′) > 0 (100)

So applying Lemma B.2 again, we get:

L(w,Pµ,σ)− L(w∗, Pµ,σ) > 0 (101)

Which completes the proof.

With these key lemmas, the proof of Theorem 4.1 is straight-
forward.

Restatement of Theorem 4.1. Assuming the Gaussian set-
ting, if ‖w0 − w∗(µ0)‖2 ≤ 1

4 , then we recover wT =
w∗(µT ).

Proof. The proof reduces to showing the one-step case:
for 0 < t ≤ T , if ‖wt−1 − w∗(µt−1)‖2 ≤ 1

4 then wt =
w∗(µt), where thewt is selected according to Equation (23).
Applying this one-step result inductively gives us the desired
result, that wT = w∗(µT ).

For the one-step case, from Lemma B.1, since
||µt−1||2, ||µt||2 ≥ B > 0, ||w∗(µt) − w∗(µt−1)||2 ≤
1
B ||µt − µt−1||2 ≤ 1

B
B
4 = 1

4 . Then by triangle in-
equality, since ||wt−1 − w∗(µt−1)||2 ≤ 1

4 , we have
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||wt−1 − w∗(µt)||2 ≤ 1
2 . Further, ||w∗(µt)||2 ≤ 1, and by

Lemma B.3, any other w satisfying ||wt−1−w||2 ≤ 1
2 < 1,

||w||2 ≤ 1, and w 6= w∗(µt) satisfies U(w∗(µt), Pµt,σt) <
U(w,Pµt,σt). So w∗(µt) is the unique minimizer in the
constrained set, which means wt = w∗(µt).

C. Experimental details for Section 5
In this section, we provide additional experimental details,
show results on a synthetic Gaussian dataset, and give re-
sults for ablations for the experiments in Section 5.1. An
advantage of gradual self-training is that it has a very small
number of hyperparameters and we show that our findings
are robust to different choices of these parameters—even if
we do not do confidence thresholding, train every method
for more iterations, and use a smaller window size, gradual
self-training does better than self-training directly to the tar-
get and the other baselines. For reproducibility, we provide
all code but we also describe our datasets and models here.

C.1. Datasets

We ran experiments on 4 datasets:

1. Gaussian in d = 100 dimensions: We randomly se-
lect an initial mean and covariance for each of the two
classes, and a final mean and covariance for each class,
all in d dimensions. Note that unlike in the theory in
Section 4, each class can have a different (non diago-
nal) covariance matrix. The initial and final covariance
matrices can also be different. The marginal probabil-
ity of each class is the same, 0.5. We get labeled source
data sampled from the gaussian with the initial mean
and covariance for each class. For the intermediate
domains, we linearly interpolate the means and covari-
ances for each class between the initial and final, and
sample points from a gaussian with the correspond-
ing mean and covariance matrices. The number of
labeled and unlabeled examples is on the order of d (as
opposed to exponential in d, which importance weight-
ing approaches would need). We provide more details
next.

Details: We sample µ(−1)
0 , µ

(+1)
0 , µ

(−1)
T , µ

(+1)
T inde-

pendently from N (0, I) in d dimensions. Since
d is high, these are all nearly orthogonal to
each other. We then sample covariance matri-
ces Σ

(−1)
0 ,Σ

(+1)
0 ,Σ

(−1)
T ,Σ

(+1)
T independently by sam-

pling a diagonal matrix and rotation matrix (since the
covariance matrices are PSD they decompose into
UDU> for rotation matrix U and diagonal matrix
D). We first sample a diagonal matrix D in d di-
mensions where each entry is uniformly random and
independently sampled between min var= 0.05 and
max var= 0.1. Then, we sample a rotation matrix U
from the Haar distribution (which is a standard way to
sample random orthogonal matrices), and then com-
pose these to get UDU>.

At all times, we keep P(Y = +1) = P(Y =
−1) = 0.5. We now sample N = 500 labeled ex-
amples from the source domain, where P(X|Y =
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1) = N (µ
(+1)
0 ,Σ

(+1)
0 ) and P(X|Y = −1) =

N (µ
(−1)
0 ,Σ

(−1)
0 ). We sample T = 5000 unlabeled

intermediate examples. For y ∈ {−1, 1}, let µ(y)
t =

(t/T )µ
(y)
0 +((T − t)/T )µ

(y)
T and Σ

(y)
t = (t/T )Σ

(y)
0 +

((T − t)/T )Σ
(y)
T . We then sample yt ∼ Bern(0.5),

and xt ∼ N (µ
(y)
t ,Σ

(y)
t )—the model only gets to see

xt but not yt. The unseen target images are sampled
from the final means and covariances for each class,
and we measure accuracy on these held out examples.

We use N = 500 (500 labeled examples from the
source), T = 5000 (so 5000 unlabeled examples in to-
tal), and use min var=0.05, max var=0.1 (the standard-
deviation is the square root of these). We sample 1000
target examples to check accuracy. To ensure that the
benefits of gradual self-training are not merely because
it has access to more data, self-training directly to the
target gets T = 5000 unlabeled examples from the
target, which is the same total number of unlabeled
examples gradual self-training uses.

2. Rotating MNIST: We shuffle the MNIST training data
and normalize the values to the range [0, 1] by divid-
ing by 255. We then split the dataset, using the first
Nsrc = 5000 images as the source training set, next
Nval = 1000 images as source validation set, next
Ninter = 42000 images as unlabeled intermediate ex-
amples, and the next Ntrg = 2000 images as unseen
target examples. We use the first 1000 images in the
target to evaluate target accuracies, holding out the
next 1000 for future work. We rotate each source im-
age by an angle uniformly selected between 0 and 5
degrees. The i-th intermediate example is rotated by
angle 5 + 55i/Ninter degrees. Each target image is
rotated by an angle uniformly selected between 55 de-
grees and 60 degrees. To ensure that the benefits of
gradual self-training are not merely because it has ac-
cess to more data, self-training directly to the target
gets T = 42000 unlabeled examples from the target
(rotated by an angle uniformly selected between 55 de-
grees and 60 degrees), which is the same total number
of unlabeled examples gradual self-training uses. The
oracle classifier is trained on the last 2000 intermediate
examples, but with labels.

3. Cover Type: A more realistic dataset from the UCI
repository where the goal is to predict the forest cover
type at a particular location given 54 features (Blackard
and Dean, 1999). We normalize each feature across the
dataset to have mean 0 and standard deviation 1. We
convert the problem into a binary classification task
by keeping the first two out of six cover types in the
dataset: spruce/fir and lodgepole pine. These classes
comprise the majority of the dataset: 495,141 out of

581,012 examples. We sort the examples by increas-
ing distance to water body, splitting the data into a
source domain (first 50K examples), intermediate do-
main (next 400K examples), and a target domain (next
45K examples), leaving out the final 141 examples to
get a nice round number. We shuffle the source data,
using 10K examples as training, and 40K as a source
validation set. We shuffle the target dataset and use
25K examples to evaluate all methods, holding out the
other 20K examples for future experiments. The target
self-training method sees the last 50K unlabeled ex-
amples in the intermediate domain, while self-training
on all and gradual self-training use all 400K unlabeled
examples in the intermediate domain. The oracle clas-
sifier is trained on the last 50K intermediate examples,
but with labels.

4. Portraits: A more realistic dataset where we do not
control the structure of the shift, consisting of photos
of high school seniors taken across many years. Ad-
ditionally, there is label shift, that is the proportions
of males and females, P(Y ), changes over time (see
Figure 3), unlike our theory which assumes that the
probability of each label stays constant. We use the
first 2000 images as source images. We shuffle these,
and use 1000 for training, and 1000 for validation. We
use the next 14000 images as unlabeled intermediate
examples. Finally, we use the next 2000 images as
unseen target examples, shuffling them and using the
first 1000 to evaluate our methods, and holding out the
other 1000 for future experiments. We downsample
the images to 32x32 and normalize the values to the
range [0, 1] by dividing by 255 but do no other prepro-
cessing. We reserve images at the end of the dataset
as held-out examples for future work, and so that we
can test how the method extrapolates past the point we
validate on. The target self-training method sees the
last 2K unlabeled examples in the intermediate domain
(which are closest in time to the target domain), while
self-training on all and gradual self-training use all 14K
unlabeled examples in the intermediate domain. The
oracle classifier is trained on the last 2K intermediate
examples, but with labels.

C.2. Algorithm and baselines

Next, we describe the gradual self-training algorithm and
parameters in more detail. Algorithm 1 shows pseudocode
for gradual self-training. filter low confidence filters out
the α fraction of examples where the model is least confi-
dent, where confidence is measured as the maximum of the
softmax output of the classifier. This filtering is standard in
many instances of self-training (Xie et al., 2020).

For the baselines—for target self-train, we self-train mul-
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Figure 3. The plot shows a rolling average of the fraction of images
that are female, over a window size of 1000, with 90% confidence
intervals. The plot suggests that the proportion of males and
females changes over time, and is not constant—this label shift
might make the task more challenging for self-training methods.

Algorithm 1 Gradual Self-Training

Input: Labeled source examples S, Intermediate unla-
beled examples I , Window size W , Confidence threshold
α ∈ (0, 1), Number of Epochs n, Regularized model M
Assume: W divides |I|
Train M on S for n epochs
for t = 1 to |I|/W do

cur xs= I[(t− 1)W : tW ]
pseudolabeled ys= M .predict labels(cur xs)
confident idxs=filter low confidence(M , cur xs, α)
filtered xs = cur xs[confident idxs]
filtered ys = pseudolabeled ys[confident idxs]
Train M on filtered xs, filtered ys for n epochs

end for

tiple times (iteratively) on the target. Each round of self-
training uses the current model M to pseudolabel examples
in the target, and then trains on these pseudolabeled exam-
ples. Specifically, to make comparisons fair we self-train
|I|/W times on the target, so that the total number of self-
training steps performed by the target self-train baseline
and gradual self-training are the same. Similarly, when we
self-train to all examples, we self-train multiple times on
all unlabeled data, self-training |I|/W times. Here W is
the window size in Algorithm 1 which is the number of
examples in each intermediate domain.

Note that in the synthetic datasets (rotating MNIST and
Gaussian) we ensure that target self-train gets access to the
same number of unlabeled examples as gradual self-training
does in total, to ensure that the improvements are not simply
because gradual self-training consumes more unlabeled data
(accumulated over all of the intermediate domains). For the

real datasets (Cover Type and Portraits), we cannot generate
additional examples for target self-train. However, this is
why we also compare against self-training directly to all
the unlabeled data, which gets access to exactly the same
data that gradual self-training does but does not leverage the
gradual structure.

C.3. Models and parameter settings

Next, we describe the models and parameter settings we
used:

1. Models: For the Gaussian dataset we use a logistic
regression classifier, with l2 regularization 0.02. For
the MNIST and Portraits dataset, we use a 3 layer con-
volutional network with ReLU activations. For each
conv layer we use a filter size of 5x5, stride of 2x2,
32 output channels, and relu activation. We added
dropout(0.5) after the final conv layer, and batchnorm
after dropout. We flatten the final layer, and then apply
a single linear layer to output logits (the number of
logits is the number of classes in the dataset which
is 10 for rotating MNIST and 2 for Portraits). We
then take the softmax of the logits, and optimize the
cross-entropy loss. We did not tune the model archi-
tecture for our experiments, however we checked that
adding an extra layer, changing the number of output
channels, and using a different architecture with an
extra fully connected layer on top, have little impact
on the results. For the Cover Type dataset, we used
a 2 hidden layer fully connected feedforward neural
network, with ReLU activations, with 32 nodes in each
of the two hidden layers. We then apply a single linear
layer to output logits. We added dropout(0.5) after the
final hidden layer, and batchnorm after dropout. We
take the softmax of the logits, and optimize the cross-
entropy loss. This model performed better than logistic
regression on held out examples from the source.

2. Parameters: For the window size, we use W = 500
for the Gaussian dataset, and W = 2000 for the rotat-
ing MNIST and Portraits dataset, and W = 50000 for
the Cover Type dataset. We use a smaller window for
the Gaussian dataset because the data is lower dimen-
sional and we have less unlabeled data, and a larger
window for Cover Type because we have substantially
more data (400K intermediate examples). We train
the model for 5 epochs, 10 epochs, 20 epochs, and
100 epochs in each round for the Cover Type, rotat-
ing MNIST, Portraits, and Gaussian dataset respec-
tively. The larger datasets need to be trained for fewer
epochs because each epoch passes through many more
examples—these numbers were chosen on validation
data on the source without examining the intermediate
or target data, and we show an ablation which suggests
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Table 4. Percentage classification accuracies for gradual self-train
(ST) and baselines on the Gaussian dataset, with 90% standard
errors for the mean over 5 runs in parantheses. Gradual ST does
better than self-training directly on the target or self-training on all
the unlabeled data pooled together and gets an average accuracy
of over 99% over 5 runs.

GAUSSIAN

SOURCE MODEL 39.4 (±4.2)

TARGET ST -9.1 (±14.7)
ALL ST +46.7 (±12.4)
GRADUAL ST +59.9 (±4.0)

that the results are not sensitive to these choices.

3. Confidence thresholding: We chose α = 0.1 to filter
out the 10% least confident examples, since these are
examples the model is not confident on, so the pre-
dicted label is less likely to be correct. We run an
ablation without this filtering and see that all meth-
ods perform slightly worse, but the relative ordering
is similar—gradual self-training is still significantly
better than all the other methods.

C.4. Results for the Gaussian Dataset

In Table 4 we show results for the three self-training meth-
ods on the synthetic Gaussian dataset, like in Table 1 for the
other three datasets. Gradual self-training outperforms the
baselines and gets an average accuracy of over 99%. Self-
training on all the examples also does fairly well, getting an
average accuracy of over 85%. Self-training on the target
actually worsens performance because the domain shift is
large—a model trained on the source (with no adaptation)
gets under 50% accuracy on this binary classification task,
so the source model does worse than random.

C.5. Ablations

We run ablations which suggest that the results in Section 5.1
are robust to the choice of algorithm hyperparameters.

Confidence thresholding: Table 5 shows the results for ro-
tating MNIST and Portraits without confidence thresholding.
All methods do worse without confidence thresholding but
gradual self-training does significantly better than the other
methods.

Window sizes: Table 6 shows the results for rotating
MNIST and Portraits if we use smaller window sizes (from
2000 to 1000). Gradual self-training still does significantly
better than the other methods.

Additional ablations for Portraits: We ran two additional
ablations, focusing on Portraits. In the first ablation, we
trained every method of self-training for 50% more epochs.

Table 5. Classification accuracies for gradual self-train (ST) and
baselines without confidence thresholding/filtering, with 90% con-
fidence intervals for the mean over 5 runs. All methods do worse
without confidence thresholding but gradual self-training does
significantly better than the other methods.

ROT MNIST PORTRAITS

SOURCE 30.5±1.0 76.2±0.5
TARGET ST 31.1±1.4 76.9±1.3
ALL ST 32.6±1.3 77.1±0.5
GRADUAL ST 80.3±1.4 81.7±1.3

Table 6. Classification accuracies for gradual self-train (ST) and
baselines with smaller window sizes, with 90% confidence inter-
vals for the mean over 5 runs. Gradual self-training still does
significantly better than the other methods.

ROT MNIST PORTRAITS

SOURCE 35.6±1.7 74.1±1.4
TARGET ST 36.0±1.5 77.9±1.4
ALL ST 38.5±2.6 76.3±2.2
GRADUAL ST 90.4±2.0 83.8±0.5

Over 5 trials, gradual self-training got an accuracy of 83.9±
0.4%, target self-train got an accuracy of 80.7± 1.1%, and
self-training to all unlabeled examples got an accuracy of
79.6± 2.2%. The non-adaptive baseline got an accuracy of
77.3± 1.0%.

We also ran an experiment on Portraits where we extrapolate
further in time. Here we use the first 2000 images as source,
next 20,000 images as unlabeled intermediate examples,
and next 2000 images as the target. Here the accuracy
of gradual self-training is 60.6 ± 1.4%, self-training on
the target directly is 56.5 ± 1.4%, and self-training on all
unlabeled data is 57.4 ± 0.3%. Gradual self-training still
does better, but all methods do quite poorly—developing
and analyzing new techniques for gradual domain adaptation
is an exciting avenue for future work.


