Appendix
Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness
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A. Proof for lemma 3

Proof. Applying the series expansion of e'%, we get,
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Therefore, keeping only the terms with even n in the expan-
sion of E[e?], we get:
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for some positive constant ¢ < 1.85, because,

I'(l/q) _ 3qU'(1+1/q) ,

T(3/q) ~ aT(1+3/) (using T'(z + 1) = 2I'(2))
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< 1.85%

(forg > 1,T(1+1/¢) <landI'(1+3/q) > 0.88)
O

B. Proof for lemma 6

Proof. The points in V; satisfy the following 2¢ constraints:

T1+ T+ +xg<b
—T1 4T+ F+rg < Db
1 — 2o+ -+24<0b
—r1—x2+ - +2g<Db
—r1—x3— - —2qg<Db
Similarly, points in V5 satisfy,
(r1—€)+z2+--+xg4<b
—(r1—€)+axa+--+xg<b
(x1—€)—xo+ - F+24<Db
—(z1—€) —za+--+xg<b
—(z1—€) —xg—-—xg<b

Then, the points in V3 N V5 must satisfy the following set of
constraints constructed by picking constraints that have a +
sign for x; in the first set of constraints and a — sign for x;
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in the second set.

T+ a0+ -F+xg<b

—(r1—€)+xa+--+xg<b

1 —x2+ - F+29<b

—(r1—€) —xa+---+xg<b

—(z1—€) —xg—---—xg<b

They may be rewritten as,

(x1 —€/2)+xo+ - +xqg<b—¢€/2
—(z1—€/2)+x2+ - +ag<b—¢/2
(x1—€/2) —xa+ - +xa<b—¢€/2
—(r1—€/2) —x2+ -+ a4 <b—€/2
—(r1—€/2) —x0 — - —xg < b—€/2

which define an ¢; ball of radius b — ¢/2 centered at
(e/2,0,...,0), that is, €/2 in the first coordinate and zero
everywhere else. O

C. Additional Plots of Certificate Upper
Bounds

See Figure 1.

D. Experimental Details

Our experiments are adapted from the released code for ¢5
smoothing from (Cohen et al., 2019). In particular, for each
Generalized Gaussian distribution with varying parameter
q and standard deviation o, we trained a ResNet-110 clas-
sifier on CIFAR-10 for 90 epochs, with the training under
the same noise distribution as used for certification. All
training and certification parameters are identical to those
used in (Cohen et al., 2019) unless otherwise specified. In
particular, all certificates are reported to 99.9% confidence,
and we tested using a 500-image subset of the CIFAR-10
test set. For lower-resolution versions of CIFAR-10, we
again trained separate models for each resolution used, with
the resolution at training time matching the resolution at
test time. We first reduced the image resolutions before
adding noise, then, once the noise was added, scaled the
images back to the original 32 x 32 resolution (by repeat-
ing pixel values) before classifying with ResNet-110: this
ensured that the number of parameters did not vary between
classifiers.

We trained with o = 0.12,0.25,0.50, 1.00 for resolutions
32x 32,16 x 16 and 8 x 8. At higher levels of noise for each
scale (60 = 0.25 for 8 x 8, 0 = 0.5 for 8 x 8 and 16 x 16,
o = 1.00 on all scales) the resulting classifiers could not
correctly certify the median image (p1 () < .5), so we do
not report any certificates. o

Values for ImageNet for the median certificate under Gaus-
sian noise are adapted from the released certificate data from
(Cohen et al., 2019).
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Figure 1. Upper bounds for certifying with Generalized Gaussian noise on CIFAR-10 images, with ¢ = p, compared with certificates
using Gaussian noise directly.Left panels show the certificates and the bounds directly, while right panels show the ratios between the i.i.d.
distribution bounds (tighter in each case) and the certificates. Panels (a,b) use unaltered CIFAR-10 images with o = 0.5 noise. Panels
(c,d) and (e,f) use CIFAR-10 images at 16 x 16 scale with ¢ = 0.12 and ¢ = 0.25 respectively. Panels (g,h) use CIFAR-10 images at
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