
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

A. Proofs
In the followings, the norm ‖ · ‖ is the standard `2-norm.

Proposition 2.2 (Invariance property). Let fθ : Rn → R
be a binary classifier network parametrized by θ and let
N (θ|µ,Σ) be the distribution over θ. Then for any x ∈ Rn,
we have σ(fµ(x)) = 0.5 if and only if σ(z(x)) = 0.5.

Proof. Let x ∈ Rn be arbitrary and denote µf := fθMAP(x)
and vf := d(x)>Σd(x). For the forward direction, sup-
pose that σ(µf) = 0.5. This implies that µf = 0, and we
have σ(0/(1 + π/8 vf)1/2) = σ(0) = 0.5. For the reverse
direction, suppose that σ(µf/(1 + π/8 vf)1/2) = 0.5. This
implies µf/(1 + π/8 vf)1/2 = 0. Since the denominator of
the l.h.s. is positive, it follows that µf must be 0, implying
that σ(µf) = 0.5.

Lemma A.1 (Hein et al., 2019). Let {Qi}Rl=1 be the set
of linear regions associated to the ReLU network f :
Rn → Rk. For any x ∈ Rn there exists an α > 0 and
t ∈ {1, . . . , R} such that δx ∈ Qt for all δ ≥ α. Fur-
thermore, the restriction of f to Qt can be written as an
affine function U>x + c for some suitable U ∈ Rn×k and
c ∈ Rk.

Theorem 2.3 (All-layer approximation). Let fθ : Rn → R
be a binary ReLU classification network parametrized by
θ ∈ Rp with p ≥ n, and let N (θ|µ,Σ) be the Gaussian
approximation over the parameters. Then for any input
x ∈ Rn,

lim
δ→∞

σ(|z(δx)|) ≤ σ

(
‖u‖

smin (J)
√
π/8λmin(Σ)

)
, (6)

where u ∈ Rn is a vector depending only on µ and the
n× p matrix J := ∂u

∂θ

∣∣
µ

is the Jacobian of u w.r.t. θ at µ.
Moreover, if fθ has no bias parameters, then there exists
α > 0 such that for any δ ≥ α, we have that

σ(|z(δx)|) ≤ lim
δ→∞

σ(|z(δx)|) .

Proof. By Lemma 3.1 of Hein et al. (2019) (also presented
in Lemma A.1) there exists an α > 0 and a linear region R,
along with u ∈ Rn and c ∈ R, such that for any δ ≥ α, we
have that δx ∈ R and the restriction fθ|R can be written as
u>x + c. Note that, for any such δ, the vector u and scalar
c are constant w.r.t. δx. Therefore for any such δ, we can
write the gradient d(δx) as follows:

d(δx) =
∂(δu>x)

∂θ

∣∣∣∣
µ

+
∂c

∂θ

∣∣∣∣
µ

= δ
∂u

∂θ

∣∣∣∣>
µ

x +
∂c

∂θ

∣∣∣∣
µ

= δ

(
J>x +

1

δ
∇θ c|µ

)
. (9)

Hence, by (5),

|z(δx)| = |δu>x + c|√
1 + π/8 d(δx)>Σd(δx)

=
|δ(u>x + 1

δ c)|√
1 + π/8 δ2(J>x + 1

δ∇θ c|µ)>Σ(J>x + 1
δ∇θ c|µ)

=
�δ|(u>x + 1

δ c)|

�δ
√

1
δ2 + π/8 (J>x + 1

δ∇θ c|µ)>Σ(J>x + 1
δ∇θ c|µ)

Now, notice that as δ →∞, 1/δ2 and 1/δ goes to zero. So,
in the limit, we have that

lim
δ→∞

|z(δx)| = |u>x|√
π/8 (J>x)>Σ(J>x)

.

Using the Cauchy-Schwarz inequality and Lemma A.3, we
can upper-bound this limit with

lim
δ→∞

|z(δx)| ≤ ‖u‖‖x‖√
π/8λmin(Σ)‖J>x‖2

.

The following lemma is needed to get the desired result.

Lemma A.2. Let A ∈ Rm×n and z ∈ Rn with m ≥ n,
then ‖Az‖2 ≥ s2min(A)‖z‖2.

Proof. By SVD, A = USV>. Notice that U,V are or-
thogonal and thus are isometries, and that S is a rectangular
diagonal matrix with n non-zero elements. Therefore,

‖U(SV>z)‖2 = ‖SV>z‖2 =

n∑
i=1

s2i (A)(V>z)2i

≥ s2min(A)

n∑
i=1

(V>z)2i

= s2min(A)‖V>z‖2 = s2min(A)‖z‖2 ,
(10)

thus the proof is complete.

Notice that J> ∈ Rp×n with p ≥ n by our hypothesis.
Therefore, using the previous lemma on ‖J>x‖2 in con-
junction with smin(J) = smin(J>), we conclude that

lim
δ→∞

|z(δx)| ≤ ‖u‖‖x‖√
π/8λmin(Σ) s2min(J)‖x‖2

=
‖u‖

smin(J)
√
π/8λmin(Σ)

, (11)

thus the first result is proved.

To prove the second statement, let L := limδ→∞ |z(δx)|.
Since L is the limit of |z|Q(δx)| in the linear regionQ given

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

by Lemma A.1, it is sufficient to show that the function
(0,∞]→ R defined by δ 7→ |z|Q(δx)| is increasing.

For some suitable choices of u ∈ Rn that depends on µ,
we can write the restriction of the “point-estimated” ReLU
network fµ|Q(x) as u>x by definition of ReLU network
and since we assume that f has no bias parameters. Further-
more, we let the matrix J := ∂u

∂θ |µ to be the Jacobian of u
w.r.t. θ at µ. Therefore for any δ ≥ α, we can write as a
function of δ:

|z|Q(δx)| = |δu>x|√
1 + π/8 δ2 (J>x)>Σ(J>x)

=:
|δa|√

1 + π/8 δ2 b
,

where for simplicity we have let a := u>x and b :=
(J>x)>Σ(J>x). The derivative is therefore given by

d

dδ
|z|Q(δx)| = δ|a|

(1 + δ2b)
3
2 |δ|

and since Σ is positive-definite, it is non-negative for δ ∈
(0,∞]. Thus we conclude that |z|Q(δx)| is an increasing
function.

Theorem 2.4 (Last-layer approximation). Let g : Rd → R
be a binary linear classifier defined by g(φ(x)) := w>φ(x)
where φ : Rn → Rd is a fixed ReLU network and let
N (w|µ,Σ) be the Gaussian approximation over the last-
layer’s weights. Then for any input x ∈ Rn,

lim
δ→∞

σ(|z(δx)|) ≤ σ

(
‖µ‖√

π/8λmin(Σ)

)
. (7)

Moreover, if φ has no bias parameters, then there exists
α > 0 such that for any δ ≥ α, we have that

σ(|z(δx)|) ≤ lim
δ→∞

σ(|z(δx)|) .

Proof. By Lemma 3.1 of Hein et al. (2019) there exists
α > 0 and a linear region R, along with U ∈ Rd×n and
c ∈ Rd, such that for any δ ≥ α, we have that δx ∈ R and
the restriction φ|R can be written as Ux + c. Therefore, for
any such δ,

|z ◦ φ|R(δx)| = |µ>(δUx + c)|√
1 + π/8 (δUx + b)>Σ(δUx + c)

=
|µ>(Ux + 1

δc)|√
1
δ2 + π/8 (Ux + 1

δc)>Σ(Ux + 1
δc)

Now, notice that as δ →∞, 1/δ2 and 1/δ goes to zero. So,
in the limit, we have that

lim
δ→∞

|z ◦ φ|R(δx)| = |µ>(Ux)|√
π/8 (Ux)>Σ(Ux)

.

We need the following lemma to obtain the bound.

Lemma A.3. Let x ∈ Rn be a vector and A ∈ Rn×n be
an SPD matrix. If λmin(A) is the minimum eigenvalue of A,
then x>Ax ≥ λmin‖x‖2.

Proof. Since A is SPD, it admits an eigendecomposition
A = QΛQ> and Λ = Λ

1
2 Λ

1
2 makes sense. Therefore, by

keeping in mind that Q>x is a vector in Rn, we have

x>Ax = x>QΛ
1
2 Λ

1
2 Q>x = ‖Λ 1

2 Q>x‖2

=

n∑
i=1

λi(A)(Q>x)2i ≥ λmin(A)

n∑
i=1

(Q>x)2i

= λmin(A)‖Q>x‖2 = λmin(A)‖x‖2 ,

where the last equality is obtained since ‖Q>x‖2 =
x>Q>Qx and by noting that Q is an orthogonal ma-
trix.

Using the Cauchy-Schwarz inequality and the previous
lemma, we can upper-bound the limit with

lim
δ→∞

|z ◦ φ|R(δx)| ≤ ‖µ‖‖Ux‖√
π/8λmin(Σ)‖Ux‖2

=
‖µ‖√

π/8λmin(Σ)
,

which concludes the proof for the first statement.

For the second statement, since the previous limit is the limit
of |z|R(δx)| in the linear region R, it is sufficient to show
that the function (0,∞]→ R defined by δ 7→ |z|R(δx)| is
increasing. For some U ∈ Rd×n that depends on the fixed
parameter of φ, we write the restriction φ|R(x) as Ux by
definition of ReLU network and since φ is assumed to have
no bias parameters. Therefore for any δ ≥ α, we can write
as a function of δ:

|z|Q(δx)| = |δµ>Ux|√
1 + π/8 δ2 (Ux)>Σ(Ux)

=:
|δa|√

1 + π/8 δ2 b
,

where for simplicity we have let a := µ>Ux and b :=
(Ux)>Σ(Ux). The derivative is therefore given by

d

dδ
|z|Q(δx)| = δ|a|

(1 + δ2b)
3
2 |δ|

and since Σ is positive-definite, it is non-negative for δ ∈
(0,∞]. Thus we conclude that |z|Q(δx)| is an increasing
function.

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Proposition 2.5 (All-layer Laplace). Let fθ be a binary
ReLU classification network modeling a Bernoulli distribu-
tion p(y|x,θ) = B(σ(fθ(x))) with parameter θ ∈ Rp. Let
N (θ|µ,Σ) be the posterior obtained via a Laplace approx-
imation with prior N (θ|0, σ2

0I), H be the Hessian of the
negative log-likelihood at µ, and J be the Jacobian as in
Theorem 2.3. Then for any input x ∈ Rn, the confidence
σ(|z(x)|) is a decreasing function of σ2

0 with limits

lim
σ2
0→∞

σ(|z(x)|) ≤ σ

(
|fµ(x)|

1 +
√
π/8λmax(H)‖Jx‖2

)
lim
σ2
0→0

σ(|z(x)|) = σ(|fµ(x)|) .

Proof. The assumption on the prior implies that
− log p(θ) = 1/2θ>(1/σ2

0I)θ + const, which has
Hessian 1/σ2

0I. Thus, the Hessian of the negative log poste-
rior − log p(θ|D) = − log p(θ)− log

∏
x,t∈D p(y|x,θ) is

1/σ2
0I + H. This implies that the posterior covariance Σ of

the Laplace approximation is given by

Σ =

(
1

σ2
0

I + H

)−1
. (12)

Therefore, the ith eigenvalue of Σ for any i = 1, . . . , n is

λi(Σ) =
1

1/σ2
0 + λi(H)

=
σ2
0

1 + σ2
0λi(H)

.

For all i = 1, . . . , n, the derivative of λi(Σ) w.r.t. σ2
0 is

1/(1 + σ2
0λi(H))2 which is non-negative. This tells us that

λi(Σ) is a non-decreasing function of σ2
0 . Furthermore, it

is also clear that σ2
0/(1 + σ2

0λi(H)) goes to 1/λi(H) as σ2
0

goes to infinity, while it goes to 0 as σ2
0 goes to zero.

Now, we can write.

|z(x)| = |fµ(x)|√
1 + π/8

∑d
i=1 λi(Σ)(Q>d)2i

, (13)

where Σ = Q diag(λi(Σ), . . . , λd(Σ)) Q> is the eigende-
composition of Σ. It is therefore clear that the denominator
of the r.h.s. is a non-decreasing function of σ2

0 . This implies
|z(x)| is a non-increasing function of σ2

0 .

For the limits, it is clear that λmin(Σ) has limits 1/λmax(H)
and 0 whenever σ2

0 →∞ and σ2 → 0, respectively. From
these facts, the right limit is immediate from Lemma A.3
while the left limit is directly obtained by noticing that the
denominator goes to 1 as σ2

0 → 0.

Proposition A.4 (Last-layer Laplace). Let g : Rd → R be
a binary linear classifier defined by g ◦ φ(x) := w>φ(x)
where φ : Rn → Rd is a ReLU network, modeling a
Bernoulli distribution p(y|x,w) = B(σ(g ◦ φ(x))) with

parameter w ∈ Rd. Let N (w|µ,Σ) be the posterior ob-
tained via a Laplace approximation with prior N (θ|0, σ2

0I)
and H be the Hessian of the negative log-likelihood at µ.
Then for any input x ∈ Rn, the confidence σ(|z(x)|) is a
non-increasing function of σ2

0 with limits

lim
σ2
0→∞

σ(|z(x)|) ≤ σ

(
|µ>φ|

1 +
√
π/8λmax(H)‖φ‖2

)
lim
σ2
0→0

σ(|z(x)|) = σ(|µ>φ|) .

Proof. The assumption on the prior implies that
− log p(w) = 1/2 w>(1/σ2

0I)w + const, which has
Hessian 1/σ2

0I. Thus, the Hessian of the negative log poste-
rior − log p(w|D) = − log p(w) − log

∏
x,t∈D p(y|x,w)

is 1/σ2
0I + H. This implies that the posterior covariance Σ

of the Laplace approximation is given by

Σ =

(
1

σ2
0

I + H

)−1
. (14)

Therefore, the ith eigenvalue of Σ for any i = 1, . . . , n is

λi(Σ) =
1

1/σ2
0 + λi(H)

=
σ2
0

1 + σ2
0λi(H)

.

For all i = 1, . . . , n, the derivative of λi(Σ) w.r.t. σ2
0 is

1/(1 + σ2
0λi(H))2 which is non-negative. This tells us that

λi(Σ) is a non-decreasing function of σ2
0 . Furthermore, it

is also clear that σ2
0/(1 + σ2

0λi(H)) goes to 1/λi(H) as σ2
0

goes to infinity, while it goes to 0 as σ2
0 goes to zero.

Now, we can write.

|z(x)| = |µ>φ|√
1 + π/8

∑d
i=1 λi(Σ)(Q>φ)2i

, (15)

where Σ = Q diag(λi(Σ), . . . , λd(Σ)) Q> is the eigende-
composition of Σ. It is therefore clear that the denominator
of the r.h.s. is a non-decreasing function of σ2

0 . This implies
|z(x)| is a non-increasing function of σ2

0 .

For the limits, it is clear that λmin(Σ) has limits 1/λmax(H)
and 0 whenever σ2

0 →∞ and σ2 → 0, respectively. From
these facts, the right limit is immediate from Lemma A.3
while the left limit is directly obtained by noticing that the
denominator goes to 1 as σ2

0 → 0.

B. Laplace Approximations
The theoretical results in the main text essentially tell us
that if we have a Gaussian approximate posterior that comes
from a Laplace approximation, then using eq. (1) (and
eq. (2)) to make predictions can remedy the overconfidence
problem on any ReLU network. In this section, we describe

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

LLLA, DLA, and KFLA: the Laplace methods being used
in the main text. For the sake of clarity, we omit biases in
the following and revisit the case where biases are included
at the end of this section.

B.1. LLLA

In the case of LLLA, we simply perform a Laplace approxi-
mation to get the posterior of the weight of the last layer w
while assuming the previous layer to be fixed. I.e. we infer
p(w|D) = N (w|wMAP,H

−1) where H is the Hessian of
the negative log-posterior w.r.t. w at wMAP. This Hessian
could be easily obtained via automatic differentiation. We
emphasize that we only deal with the weight at the last layer
and not the weight of the whole network, thus the inversion
of H is rarely a problem. For instance, even for large models
such as DenseNet-201 (Huang et al., 2017) and ResNet-152
(He et al., 2016) have d = 1920 and d = 2048 respectively,7

implying that we only need to do the inversion of a single
1920× 1920 or 2048× 2048 matrix once.

In the case of multi-class classification, we now have
f : Rd → Rk defined by φ 7→ WMAPφ. We obtain the
posterior over a random matrix W ∈ Rk×d in the form
N (vec(W)|vec(WMAP),Σ) for some Σ ∈ Rdk×dk SPD.
The procedure is still similar to the one described above,
since the exact Hessian of the linear multi-class classifier
can still be easily and efficiently obtained via automatic
differentiation. Note that in this case we need to invert a
dk × dk matrix, which, depending on the size of k, can be
quite large.8

For a more efficient procedure, we can make a further
approximation to the posterior in the multi-class case by
assuming the posterior is a matrix Gaussian distribution.
We can use the Kronecker-factored Laplace approximation
(KFLA) (Ritter et al., 2018), but only for the last layer of
the network. That is, we find the Kronecker factorization
of the Hessian H−1 ≈ V−1 ⊗U−1 via automatic differ-
entiation (Dangel et al., 2020).9 Then by definition of a
matrix Gaussian (Gupta & Nagar, 1999), we immediately
obtain the posteriorMN (W|WMAP,U,V). The distribu-
tion of the latent functions is Gaussian, since f := Wφ and
p(W|D) =MN (W|WMAP,U,V) imply

p(f |D) =MN (f |WMAPφ,U,φ
>Vφ)

= N (f |WMAPφ, (φ
>Vφ)⊗U)

= N (f |WMAPφ, (φ
>Vφ)U) , (16)

where the last equality follows since (φ>Vφ) is a scalar.

7Based on the implementations available in the TorchVision
package.

8For example, the ImageNet dataset has k = 1000.
9In practice, we take the running average of the Kronecker

factors of the Hessian over the mini-batches.

We then have the following integral

p(y = i|x,D) =∫
softmax(f , i)N (f |WMAPφ, (φ

>Vφ)U) df ,

which can be approximated via a MC-integral.

While one can always assume that the bias trick is already
used, i.e. it is absorbed in the weight matrix/vector, in prac-
tice when dealing with pre-trained networks, one does not
have such liberty. In this case, one can simply assume that
the bias b or b is independent of the weight w or W, re-
spectively in the two- and multi-class cases. By using the
same Laplace approximation procedure, one can easily get
p(b|D) := N (b|µb, σ2

b) or p(b|D) := N (b|µb,Σb). This
implies w>φ+b =: f and Wφ+b =: f are also Gaussians
given by

N (f |µ>φ + µb,φ
>H−1φ + σ2

b) (17)

or

N (f |Mφ + b, (φ> ⊗ I)Σ(φ⊗ I) + Σb) , (18)

respectively, with I ∈ Rk×k if W ∈ Rk×d and φ ∈ Rd.
Similarly, in the case when the Kronecker-factored approxi-
mation is used, we have

p(f |D) = N (f |WMAPφ + µb, (φ
>Vφ)U + Σb) . (19)

We present the pseudocodes of LLLA in Algorithms 1 and 2.

Algorithm 1 LLLA with exact Hessian for binary classifi-
cation.
Input:

A pre-trained network f ◦ φ with wMAP as the weight
of f , (averaged) cross-entropy loss L, training set
Dtrain, test set Dtest, mini-batch size m, running average
weighting ρ, and prior precision τ0 = 1/σ2

0 .
Output:

Predictions P containing p(y = 1|x,Dtrain)∀x ∈ Dtest.
1: Λ = 0 ∈ Rd×d
2: for i = 1, . . . , |Dtrain|/m do
3: Xi,yi = sampleMinibatch(Dtrain,m)
4: Ai,Bi = getHessian(L(f ◦ φ(Xi),yi),wMAP)
5: Λ = ρΛ + (1− ρ)Λi

6: end for
7: Σ = (|Dtrain|Λ + τ0 I)−1

8: p(w|D) = N (w|wMAP,Σ)
9: Y = ∅

10: for all x ∈ Dtest do
11: y = σ(w>MAPφ/(1 + π/8φ>Σφ)1/2)
12: Y = P ∪ {y}
13: end for

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Algorithm 2 LLLA with Kronecker-factored Hessian for
multi-class classification.
Input:

A pre-trained network f ◦ φ with WMAP as the weight
of f , (averaged) cross-entropy loss L, training setDtrain,
test set Dtest, mini-batch size m, number of samples
s, running average weighting ρ, and prior precision
τ0 = 1/σ2

0 .
Output:

Predictions P containing p(y = i|x,Dtrain)∀x ∈
Dtest ∀i ∈ {1, . . . , k}.

1: A = 0 ∈ Rk×k,B = 0 ∈ Rd×d
2: for i = 1, . . . , |Dtrain|/m do
3: Xi,yi = sampleMinibatch(Dtrain,m)
4: Ai,Bi = KronFactors(L(f ◦φ(Xi),yi),WMAP)
5: A = ρA + (1− ρ)Ai

6: B = ρB + (1− ρ)Bi

7: end for
8: U = (

√
|Dtrain|A +

√
τ0 I)−1

9: V = (
√
|Dtrain|B +

√
τ0 I)−1

10: p(W|D) =MN (W|WMAP,U,V)
11: Y = ∅
12: for all x ∈ Dtest do
13: p(f |D) = N (f |WMAPφ, (φ

>Vφ)U)
14: y = 0
15: for j = 1, . . . , s do
16: fj ∼ p(f |D)
17: y = y + softmax(fj)
18: end for
19: y = y/m
20: Y = Y ∪ {y}
21: end for

B.2. DLA

In this method, we aim at inferring the diagonal of the co-
variance of the Gaussian over the whole layer of a network.
Instead of using the exact diagonal Hessian, we use the di-
agonal of the Fisher information matrix F of the network
(Ritter et al., 2018) as follows

diag(Σ) ≈ (σ2
0 + diag(F))−1

= (σ2
0 + Ey∼p(y|x,θ),x∼D(∇θ p(y|x,θ))2)−1 .

Thus, one simply needs to do several backpropaga-
tion to compute the gradients of all weight matrices of
the network. This gives rise to the Gaussian poste-
rior N (θ|θMAP,diag(Σ)). During prediction, an MC-
integration scheme is employed: we repeatedly sample a
whole network and average their predictions. That is, for
each layer l ∈ {1, . . . , L}, we sample the lth layer’s weight

matrix Wl ∼ N (Wl|Wl
MAP,diag(Σ)) by computing

e ∼ N (0, I)

vec(Wl) = vec(Wl
MAP + e� diag(Σl)

1
2) ,

where we have denoted the covariance matrix of the lth
layer as Σl. Note that, the computational cost for doing
prediction scales with the size of the network, thus this
scheme is already orders of magnitude more expensive than
LLLA, cf. Table 3.

B.3. KFLA

LLLA with a matrix normal distribution as described in the
previous section is a special case of KFLA (Ritter et al.,
2018). In KFLA, similar to DLA, we aim to infer the poste-
rior of the whole network parameters and not just those of
the last layer. Concretely, for each layer l ∈ {1, . . . , L}, we
infer the posterior

p(Wl|D) ≈MN (Wl|Wl
MAP,U

l,Vl)

= N (vec(Wl)|vec(Wl
MAP),Vl ⊗Ul) ,

where

Ul = (
√
|D|A + 1/σ2

0I)−1 ,

Vl = (
√
|D|B + 1/σ2

0I)−1 ,

and A,B are the Kronecker-factors—e.g. obtained KFAC
(Martens & Grosse, 2015)—of the Hessian of the loss w.r.t.
Wl.

During predictions, as in DLA, we also use MC-integration
to compute the posterior predictive distribution. That is, at
each layer l ∈ {1, . . . , L}, we sample the lth layer’s weight
matrix Wl via

E ∼ N (0, I)

Wl = Wl
MAP + (Ul)

1
2 E(Vl)

1
2 ,

where S,T are the Cholesky factors such that
(Ul)

1
2 (U

1
2)> = U and (V

1
2)>V

1
2 = V. Again,

the cost for doing prediction scales with the size of the
network, and it is clear that KFLA is more expensive than
DLA.

C. Training Detail
We train all networks we use in Table 2 for 100 epochs
with batch size of 128. We use ADAM and SGD with 0.9
momentum with the initial learning rates of 0.001 and 0.1
for MNIST and CIFAR-10/SVHN/CIFAR1-00 experiments,
respectively, and we divide them by 10 at epoch 50, 75,
and 95. Standard data augmentations, i.e. random crop and
standardization are also used for training the network on
CIFAR-10. We use a graphic card with 11GB memory for
all computation.

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

D. Further Experiments
D.1. Non-Bayesian Baselines

To represent non-Bayesian Gaussian approximations, we
use the following simple baseline: Given a ReLU network,
we assume that the distribution over the last-layer’s weights
is an isotropic Gaussian N (0, σ2

0I), where σ2
0 is found via

cross-validation, optimizing (8). The results on toy datasets
are presented in Figure 6. We found that our theoretical
analysis hold under this setup, in the sense that far-away
from the training data, the confidence is constant less than
one. However, predictions around the training data lack
structure, unlike the predictions of Bayesian methods. This
is because an isotropic Gaussian is too simple and does
not capture the structure of the training data. In contrast,
Bayesian methods, in particular Laplace approximations,
capture this structure in the Hessian of the negative log-
likelihood.

D.2. Histograms

To give a more fine-grained perspective of the results in
Tables 1 and 2, we show the histograms in Figures 9 and 10.
The histograms of both the in-distribution data and far-away
OOD data are close together in both MAP and temperature
scaling methods, leading to low AUR scores. Meanwhile
LLLA (representing Bayesian methods) yields clear separa-
tions.

D.3. Asymptotic Confidence of Multi-class Problems

In Figure 7, we present the multi-class counterpart of Fig-
ure 5. We found that, as in the binary case, the Bayesian
method (LLLA) mitigates overconfidence in the asymptotic
regime. We observed, however, that LLLA is less effective
in MNIST, which might be due to the architecture choice
and the training procedure used: The eigenvalues of the
Gaussian posterior’s covariance might be too small such
that (4) is still large.

D.4. Rotated MNIST

Following Ovadia et al. (2019), we further benchmark the
methods in Section 4.3 on the rotated MNIST dataset. The
goal is to see whether Bayesian methods could detect dataset
shifts of increasing strength in term of Brier score (Brier,
1950). Note that lower Brier score is favorable. We present
the results in Figure 8. We found that all Bayesian methods
achieve lower Brier score compared to MAP and tempera-
ture scaling, signifying that Bayesian methods are better at
detecting dataset shift.

D.5. Adversarial Examples

The adversarial datasets (“Adversarial” and “FarAwayAdv”,
cf. Table 2) are constructed as follows. For “Adversarial”:
We use the standard PGD attack (Madry et al., 2018) on a
uniform noise dataset of size 2000. The objective is to max-
imize the confidence of the MAP model (resp. ACET and
OE below) inside of an `∞ ball with radius ε = 0.3. The
optimization is carried out for 40 iterations with a step size
of 0.1. We ensure that the resulting adversarial examples are
in the image space. For “FarAwayAdv”: We use the same
construction, but start from the “far-away” Noise datasets
as used in Table 2 and we do not project the resulting adver-
sarial examples onto the image space.

D.6. Bayesian Methods on Top of State-of-the-art OOD
Detectors

We can also apply all methods we are considering here on
top of the state-of-the-art models that are specifically trained
to mitigate the overconfidence problem, namely ACET
(Hein et al., 2019) and outlier exposure (OE) (Hendrycks
et al., 2019). The results are presented in Tables 7 and 8.
In general, applying the Bayesian methods improves the
models further, especially in the asymptotic regime.

D.7. Frequentist Calibration

Although calibration is a frequentist approach for predictive
uncertainty quantification, it is nevertheless interesting to
get an insight on whether the properties of the Bayesian
predictive distribution lead to a better calibration. To answer
this, we use a standard metric (Naeini et al., 2015; Guo
et al., 2017): the expected calibration error (ECE). We use
the same models along with the same hyperparameters as we
have used in the previous OOD experiments. We present the
results in Table 5. We found that all the Bayesian methods
are competitive to the temperature scaling method, which is
specifically constructed for improving the frequentist cali-
bration.

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6. Binary and multi-class toy classification results using a simple isotropic Gaussian baseline. Black lines represent decision
boundary, shades represent confidence.

0

0.2

0.4

0.6

0.8

1

C
on

f.
(M

A
P)

0

0.2

0.4

0.6

0.8

1

C
on

f.
(T

em
p.

)

5 10 15 20

0

0.2

0.4

0.6

0.8

1

δ

C
on

f.
(L

L
L

A
)

(a) MNIST

0 10 20 30

δ

(b) CIFAR10

0 50 100 150 200

δ

(c) SVHN

0 10 20 30

δ

(d) CIFAR100

Figure 7. The multi-class confidence of MAP (top row), temperature scaling (middle row), and LLLA (bottom row) as functions of δ over
the test sets of the multi-class datasets. Thick blue lines and shades correspond to means and ±3 standard deviations. Dotted lines signify
the desirable confidence for δ sufficiently high.

0 50 100 150

0

0.5

1

1.5

Angle

B
ri

er
sc

or
e

MAP
Temp
LLLA
DLA
KFLA

Figure 8. Brier scores (lower is better) over the rotated MNIST
dataset. Values shown are means over ten trials. The standard
deviations are very small and not visually observable.

Table 5. Expected calibration errors (ECE).

MNIST CIFAR10 SVHN CIFAR100

MAP 6.7±0.3 13.1±0.2 10.1±0.2 8.1±0.3
+Temp. 11.4±2.2 3.6±0.6 2.1±0.5 6.4±0.5
+LLLA 6.9±0.3 3.6±0.6 5.2±0.8 4.8±0.3
+DLA 15.5±0.2 6.9±0.1 8.3±0.0 4.7±0.3
+KFLA 9.7±0.3 7.9±0.1 6.5±0.1 5.6±0.4

ACET 5.9±0.2 15.8±0.4 11.9±0.2 10.1±0.4
+Temp. 11.0±1.5 3.7±0.8 2.3±0.4 6.4±0.4
+LLLA 6.1±0.2 12.3±0.7 9.3±0.5 6.9±0.3
+DLA 6.2±0.3 4.3±0.3 2.0±0.1 6.0±0.3
+KFLA 6.1±0.3 4.3±0.2 2.1±0.1 4.6±0.2

OE 14.7±1.2 15.8±0.3 11.0±0.1 25.0±0.2
+Temp. 9.0±2.3 23.3±0.7 3.7±0.7 19.4±0.2
+LLLA 6.5±0.6 14.6±0.2 4.1±0.3 24.9±0.4
+DLA 9.1±0.6 15.8±0.3 7.2±0.1 29.0±0.2
+KFLA 10.1±0.9 15.9±0.3 6.4±0.1 29.0±0.2

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
In - MNIST
Out - FMNIST
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40 In - CIFAR10
Out - SVHN
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
In - SVHN
Out - CIFAR10
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
In - CIFAR100
Out - SVHN
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

0
5

10
15
20
25
30
35

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

(a) Bin.-MNIST

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

(b) Bin.-CIFAR10

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

(c) Bin.-SVHN

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

(d) Bin.-CIFAR100

Figure 9. The histograms of MAP (top row), temperature scaling (middle row), and LLLA (bottom row) over the binary datasets. Each
entry “Out - FarAway” refers to the OOD dataset obtained by scaling the corresponding in-distribution dataset with some δ > 0.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
In - MNIST
Out - EMNIST
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
In - CIFAR10
Out - SVHN
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
In - SVHN
Out - CIFAR10
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
In - CIFAR100
Out - SVHN
Out - FarAway

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

(a) MNIST

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

(b) CIFAR10

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

(c) SVHN

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

(d) CIFAR100

Figure 10. The histograms of MAP (top row), temperature scaling (middle row), and LLLA (bottom row) over the multi-class datasets.
Each entry “Out - FarAway” refers to the OOD dataset obtained by scaling the corresponding in-distribution dataset with some δ > 0.

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Table 6. Adversarial OOD detection results.

MAP +Temp. +LLLA +DLA +KFLA

MMC AUR MMC AUR MMC AUR MMC AUR MMC AUR

MNIST - Adversarial 100.0±0.0 0.3±0.0 100.0±0.0 6.8±4.1 100.0±0.0 5.3±0.1 99.6±0.2 2.0±0.9 91.3±1.2 69.2±3.5
MNIST - FarAwayAdv 100.0±0.0 0.1±0.0 100.0±0.0 6.8±4.1 99.9±0.0 9.3±0.6 85.3±1.4 53.0±3.8 55.6±2.0 97.4±0.3

CIFAR10 - Adversarial 100.0±0.0 0.0±0.0 100.0±0.0 0.0±0.0 99.7±0.0 9.1±0.1 99.3±0.1 9.0±1.0 99.2±0.0 5.8±0.4
CIFAR10 - FarAwayAdv 99.5±0.0 8.8±0.0 99.2±0.0 7.9±0.1 17.4±0.1 100.0±0.0 61.3±2.4 89.4±1.0 61.2±1.3 87.8±0.8

SVHN - Adversarial 100.0±0.0 0.0±0.0 100.0±0.0 0.0±0.0 97.6±0.0 32.5±0.3 98.6±0.0 6.8±0.3 98.6±0.1 9.6±0.4
SVHN - FarAwayAdv 99.7±0.0 7.7±0.0 99.5±0.0 6.9±0.1 27.5±0.1 99.6±0.0 61.7±1.4 92.4±0.9 61.0±1.2 94.4±0.3

CIFAR100 - Adversarial 100.0±0.0 0.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 0.2±0.0 100.0±0.0 0.1±0.0 100.0±0.0 0.0±0.0
CIFAR100 - FarAwayAdv 100.0±0.0 1.3±0.0 99.9±0.0 1.2±0.0 5.9±0.0 99.9±0.0 42.0±1.5 83.9±0.9 42.3±1.8 80.8±1.2

Table 7. OOD detection results when applying post-hoc Bayesian methods on top of models trained with ACET (Hein et al., 2019).

MAP +Temp. +LLLA +DLA +KFLA

MMC AUR MMC AUR MMC AUR MMC AUR MMC AUR

MNIST - MNIST 98.9±0.0 - 99.5±0.0 - 98.9±0.0 - 98.9±0.0 - 98.9±0.0 -
MNIST - EMNIST 59.1±0.0 96.9±0.0 70.9±1.8 96.5±0.1 59.0±0.0 96.9±0.0 59.0±0.0 96.9±0.0 59.1±0.0 96.9±0.0
MNIST - FMNIST 10.2±0.0 100.0±0.0 10.3±0.0 100.0±0.0 10.2±0.0 100.0±0.0 10.2±0.0 100.0±0.0 10.2±0.0 100.0±0.0
MNIST - Noise (δ = 2000) 100.0±0.0 0.0±0.0 100.0±0.0 21.9±9.2 100.0±0.0 0.3±0.2 99.9±0.0 0.3±0.2 100.0±0.0 0.2±0.1
MNIST - Adversarial 10.0±0.0 100.0±0.0 10.0±0.0 100.0±0.0 10.1±0.0 100.0±0.0 10.0±0.0 100.0±0.0 10.0±0.0 100.0±0.0
MNIST - FarAwayAdv 100.0±0.0 0.0±0.0 100.0±0.0 21.9±9.2 100.0±0.0 0.1±0.0 100.0±0.0 0.2±0.0 100.0±0.0 0.1±0.0

CIFAR10 - CIFAR10 97.3±0.0 - 95.2±0.2 - 96.7±0.1 - 94.7±0.0 - 94.9±0.0 -
CIFAR10 - SVHN 62.8±0.0 96.1±0.0 52.9±0.7 96.5±0.0 59.5±0.5 96.1±0.1 53.1±0.1 96.2±0.1 53.7±0.1 96.2±0.0
CIFAR10 - LSUN 72.1±0.0 92.8±0.0 62.6±0.7 93.2±0.1 68.9±0.6 92.8±0.1 59.9±0.6 93.8±0.2 60.4±0.2 93.7±0.1
CIFAR10 - Noise (δ = 2000) 100.0±0.0 0.0±0.0 100.0±0.0 0.0±0.0 16.0±0.0 100.0±0.0 71.7±1.7 92.3±0.7 65.8±1.8 94.4±0.5
CIFAR10 - Adversarial 78.1±0.0 83.1±0.1 71.1±0.5 84.1±0.1 76.8±0.0 83.2±0.1 67.9±0.4 88.5±0.2 67.7±0.3 88.8±0.2
CIFAR10 - FarAwayAdv 100.0±0.0 0.0±0.0 100.0±0.0 0.0±0.0 16.0±0.0 100.0±0.0 72.5±2.4 92.1±0.7 70.7±1.9 93.1±0.5

SVHN - SVHN 98.5±0.0 - 97.3±0.2 - 98.3±0.0 - 96.7±0.0 - 96.2±0.0 -
SVHN - CIFAR10 65.9±0.0 95.6±0.0 58.5±0.8 95.7±0.0 64.0±0.3 95.7±0.0 49.8±0.1 97.5±0.0 48.3±0.1 97.4±0.0
SVHN - LSUN 28.0±0.0 99.3±0.0 24.6±0.3 99.4±0.0 27.8±0.1 99.3±0.0 22.8±0.6 99.6±0.0 21.7±0.6 99.6±0.0
SVHN - Noise (δ = 2000) 17.9±0.2 100.0±0.0 16.0±0.3 100.0±0.0 15.0±0.0 100.0±0.0 45.1±2.1 99.0±0.2 41.6±1.3 99.1±0.1
SVHN - Adversarial 10.4±0.0 100.0±0.0 10.3±0.0 100.0±0.0 10.8±0.0 100.0±0.0 10.4±0.0 100.0±0.0 10.4±0.0 100.0±0.0
SVHN - FarAwayAdv 17.6±0.0 100.0±0.0 15.7±0.2 100.0±0.0 15.0±0.0 100.0±0.0 44.9±2.6 99.0±0.2 44.8±1.5 98.8±0.1

CIFAR100 - CIFAR100 82.0±0.1 - 78.1±0.5 - 79.6±0.1 - 78.7±0.1 - 76.3±0.1 -
CIFAR100 - SVHN 57.1±0.0 77.8±0.1 49.5±0.8 78.7±0.1 52.7±0.1 78.4±0.1 52.4±0.0 77.7±0.1 49.5±0.0 77.4±0.2
CIFAR100 - LSUN 55.1±0.0 78.8±0.1 48.3±0.7 79.0±0.1 50.6±0.1 79.5±0.1 49.8±0.1 79.3±0.1 46.8±0.2 79.2±0.2
CIFAR100 - Noise (δ = 2000) 99.3±0.1 4.2±0.2 99.2±0.1 3.8±0.2 5.4±0.0 100.0±0.0 58.5±1.3 76.1±0.9 51.8±1.1 77.6±0.9
CIFAR100 - Adversarial 1.5±0.0 100.0±0.0 1.4±0.0 100.0±0.0 1.5±0.0 100.0±0.0 1.4±0.0 100.0±0.0 1.4±0.0 100.0±0.0
CIFAR100 - FarAwayAdv 99.7±0.0 3.4±0.0 99.6±0.0 3.1±0.0 5.4±0.0 100.0±0.0 57.7±1.5 76.6±1.0 57.9±1.4 73.4±1.0

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Table 8. OOD detection results when applying post-hoc Bayesian methods on top of models trained with outlier exposure (OE) (Hendrycks
et al., 2019).

MAP +Temp. +LLLA +DLA +KFLA

MMC AUR MMC AUR MMC AUR MMC AUR MMC AUR

MNIST - MNIST 99.6±0.0 - 99.4±0.1 - 97.8±0.8 - 99.4±0.0 - 99.4±0.0 -
MNIST - EMNIST 84.2±0.0 96.0±0.1 77.1±2.6 96.3±0.1 67.3±3.1 94.3±0.7 79.6±0.0 95.6±0.1 79.1±0.0 95.9±0.1
MNIST - FMNIST 27.9±0.0 99.9±0.0 22.8±1.5 99.9±0.0 25.6±1.6 99.9±0.0 27.5±0.1 99.9±0.0 27.3±0.0 99.9±0.0
MNIST - Noise (δ = 2000) 99.9±0.0 26.4±0.2 99.9±0.0 5.0±2.4 66.0±0.6 95.9±0.4 58.4±0.3 97.6±0.3 49.8±0.3 99.3±0.1
MNIST - Adversarial 40.5±0.0 98.8±0.0 35.2±1.1 99.1±0.0 38.7±0.0 98.1±0.0 38.1±0.0 98.7±0.0 35.8±0.1 99.2±0.0
MNIST - FarAwayAdv 100.0±0.0 25.5±0.2 100.0±0.0 3.6±2.4 66.6±0.1 95.7±0.1 59.2±0.3 97.2±0.2 50.5±0.3 99.3±0.1

CIFAR10 - CIFAR10 89.4±0.1 - 92.5±0.4 - 89.2±0.1 - 89.3±0.1 - 89.3±0.1 -
CIFAR10 - SVHN 10.8±0.0 98.8±0.0 11.2±0.1 98.8±0.0 10.9±0.0 98.7±0.0 10.8±0.0 98.8±0.0 10.8±0.0 98.8±0.0
CIFAR10 - LSUN 10.4±0.0 98.6±0.0 10.7±0.1 98.6±0.0 10.6±0.0 98.5±0.1 10.4±0.0 98.6±0.0 10.4±0.0 98.6±0.0
CIFAR10 - Noise (δ = 2000) 99.1±0.1 6.5±0.6 99.4±0.1 7.6±0.7 25.0±0.1 93.6±0.1 77.9±1.0 79.5±2.0 72.7±1.5 84.6±1.2
CIFAR10 - Adversarial 98.5±0.0 2.4±0.0 98.8±0.0 2.6±0.2 98.5±0.0 2.4±0.0 98.5±0.0 2.4±0.0 98.5±0.0 2.4±0.0
CIFAR10 - FarAwayAdv 99.5±0.0 5.2±0.0 99.8±0.0 6.2±0.3 25.1±0.1 93.6±0.1 79.4±1.1 78.4±1.9 78.1±1.4 79.6±1.7

SVHN - SVHN 97.4±0.0 - 95.8±0.3 - 95.7±0.2 - 92.5±0.0 - 93.5±0.0 -
SVHN - CIFAR10 10.2±0.0 100.0±0.0 10.1±0.0 100.0±0.0 14.3±0.6 99.9±0.0 10.8±0.0 100.0±0.0 10.8±0.0 100.0±0.0
SVHN - LSUN 10.1±0.0 100.0±0.0 10.1±0.0 100.0±0.0 14.2±0.6 99.9±0.0 10.8±0.0 100.0±0.0 10.9±0.1 100.0±0.0
SVHN - Noise (δ = 2000) 99.7±0.0 3.0±0.2 99.6±0.1 2.7±0.2 16.2±0.0 99.7±0.0 31.5±1.4 98.4±0.2 33.0±1.3 98.4±0.2
SVHN - Adversarial 44.9±0.0 98.2±0.0 34.4±0.7 98.5±0.0 34.2±0.0 98.5±0.0 17.9±0.2 99.5±0.0 18.2±0.2 99.6±0.0
SVHN - FarAwayAdv 99.9±0.0 2.4±0.0 99.8±0.0 2.2±0.0 16.3±0.0 99.7±0.0 32.1±1.2 98.3±0.2 31.7±1.6 98.6±0.2

CIFAR100 - CIFAR100 59.6±0.2 - 71.8±0.5 - 54.9±0.2 - 51.5±0.2 - 52.0±0.2 -
CIFAR100 - SVHN 3.6±0.0 93.5±0.1 7.2±0.2 93.4±0.1 3.6±0.2 92.9±0.5 3.6±0.0 93.2±0.1 3.6±0.0 93.4±0.1
CIFAR100 - LSUN 2.6±0.0 95.4±0.1 5.0±0.1 95.3±0.1 2.9±0.1 94.6±0.2 2.5±0.1 95.9±0.2 2.5±0.1 95.9±0.2
CIFAR100 - Noise (δ = 2000) 100.0±0.0 1.3±0.0 100.0±0.0 7.3±0.7 25.3±0.1 64.5±0.2 89.7±1.9 25.0±2.7 82.4±1.4 33.5±1.3
CIFAR100 - Adversarial 95.6±0.0 21.7±0.1 96.7±0.0 24.6±0.4 67.3±0.1 40.2±0.2 89.8±0.3 23.9±0.3 89.8±0.2 24.9±0.2
CIFAR100 - FarAwayAdv 100.0±0.0 1.3±0.0 100.0±0.0 7.3±0.7 25.3±0.1 64.5±0.2 89.4±1.6 25.6±2.2 89.1±1.9 27.2±2.2

