
Figure 4: Diagram of the MDP and parameterized policy. This diagram can be viewed as a Bayesian network where
each square is the node corresponding to the listed random variable. Bayesian network depicting the relationships
of relevant random variables. Independence properties can be established by d-separation. Note that these causal
properties only apply to the MDP M ; any such properties of CoMDPs are explicitly proven.

A Conjugate Markov Decision Process (CoMDP)

In order to reason about the local policy gradient, we begin by modeling the ith coagent’s environment as an MDP,
called the CoMDP, and begin by formally defining the ith CoMDP. Given M , i, πpre

i , πpost
i , and θ̄i, we define a

corresponding CoMDP, M i, as M i := (X i,U i,Ri, P i, Ri, di0, γi), where:

• We write X̃i
t , Ũ

i
t , and R̃it to denote the state, action, and reward of M i at time t. Below, we relate these

random variables to the corresponding random variables in M . Note that all random variables in the CoMDP
are written with tildes to provide a visual distinction between terms from the CoMDP and original MDP.
Additionally, when it is clear that we are referring to the ith CoMDP, we often make i implicit and denote
these as X̃t, Ũt, and R̃t.

• X i := S × Upre
i . We often denote X i simply as X . This is the input (analogous to a state set) to the ith

coagent. Additionally, for x ∈ X , we denote the S component as x.s and the Upre component as x.upre. We

also sometimes denote an x ∈ X i as (x.s, x.upre). For example, Pr(X̃i
t=(s, upre)) represents the probability

that X̃t has S component s and Upre component upre.

• U i (or simply U) is an arbitrary set that denotes the output of the ith coagent.

• Ri := R and γi := γ.

• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀θ̄i ∈ Rn−ni ,

P i(x, u, x′, θ̄i) := πpre
i (x′.s, x′.upre)

∑
a∈A

P (x.s, a, x′.s)πpost
i (x, u, a),

Below, we make θ̄i implicit and denote this as P i(x, u, x′). Recall from the definition of an MDP and its
relation to the transition function that this means: P i(x, u, x′) = Pr(X̃t+1=x′|X̃t=x, Ũt=u).

• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ Ri ∀θ̄i ∈ Rn−ni ,

Ri(x, u, x′, r, θ̄i) :=
∑
a∈A

R(x.s, a, x′.s, r)
P (x.s, a, x′.s)πpost

i (x, u, a)∑
â∈A P (x.s, â, x′.s)πpost

i (x, u, â)
.

Like the transition function, we make θ̄i implicit and write Ri(x, u, x′, r).

• ∀x ∈ X , di0(x) := d0(x.s)πpre
i (x.s, x.upre).

We write Ji(θi) to denote the objective function of M i. Notice that although θ̄i (the parameters of the other
coagents) is not an explicit parameter of the objective function, it is implicitly included via the CoMDP’s transition
function. Note that we cannot assume that, for all θi, ∆i(θi) (the local policy gradient) is equivalent to ∂Ji(θi)/∂θi
(the policy gradient of the ith CoMDP); we do later prove this equivalence.

B Complete CPGT Proofs

We assume that, given the same parameters θi, the ith coagent has the same policy in both the original MDP and
the ith CoMDP. That is,

1

Assumption 1. ∀s ∈ S ∀upre ∈ Upre ∀u ∈ U ∀θi ∈ Ri, πi((s, upre), u, θi) = Pr(Ũt = u|X̃t = (s, upre), θi).

Property 1.
∀x ∈ X , di0(x) = Pr(S0 = x.s, Upre

0 = x.upre).

Proof.

di0(x) =d0(x.s)πpre
i (x.s, x.upre)

(a)
= Pr(S0 = x.s) Pr(Upre

0 = x.upre|S0 = x.s)

= Pr(S0 = x.s, Upre
0 = x.upre),

where (a) follows from the definitions of πpre
i and d0.

Property 2.
∀s ∈ S, Pr(X̃0.s = s) = d0(s).

Proof.

Pr(X̃0.s = s)
(a)
=

∑
upre∈Upre

Pr(X̃0.s = s, X̃0.upre = upre)

(b)
=

∑
upre∈Upre

di0((s, upre))

(c)
=

∑
upre∈Upre

d0(s)πpre
i (s, upre)

=d0(s)
∑

upre∈Upre

Pr(Upre
t = upre|St = s)

︸ ︷︷ ︸
=1

=d0(s),

where (a) follows from marginalization over upre, (b) follows from the definition of the initial state distribution for
an MDP, and (c) follows from the definition of di0 for the CoMDP (see Property 1).

Property 3.

∀x ∈ X ∀x′ ∈ X ∀u ∈ U , P i(x, u, x′) = Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u).

Proof.

P i(x, u, x′) =πpre
i (x′.s, x′.upre)

∑
a∈A

P (x.s, a, x′.s)πpost
i (x, u, a)

(a)
=
∑
a∈A

πpost
i (x, u, a) Pr(St+1 = x′.s|St = x.s, At = a) Pr(Upre

t+1 = x′.upre|St+1 = x′.s)

(b)
=
∑
a∈A

πpost
i (x, u, a) Pr(St+1 = x′.s|St = x.s, At = a)

× Pr(Upre
t+1 = x′.upre|St+1 = x′.s, St = x.s, At = a),

where (a) follows from the definitions of πpre
i and the transition function P , (b) follows from M ’s conditional

independence properties, and × denotes scalar multiplication split across two lines. The definition of conditional
probability allows us to combine the last two terms:

P i(x, u, x′) =
∑
a∈A

πpost
i (x, u, a) Pr(St+1 = x′.s, Upre

t+1 = x′.upre|St = x.s, At = a)

(a)
=
∑
a∈A

Pr(At = a|St = x.s, Upre
t = x.upre, Ut = u)

× Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u,At = a)

(b)
= Pr(St+1 = x′.s, Upre

t+1 = x′.upre|St = x.s, Upre
t = x.upre, Ut = u),

2

where (a) follows from the definition of πpost
i and the application of M ’s independence properties and (b) follows

from marginalization over a.

Property 4.

∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ R, Ri(x, u, x′, r)
= Pr(Rt = r|St = x.s, Upre

t = x.upre, Ut = u, St+1 = x′.s, Upre
t+1 = x′.upre).

Proof.

Ri(x, u, x′, r) :=
∑
a∈A

R(x.s, a, x′.s, r)
P (x.s, a, x′.s)πpost

i (x, u, a)∑
â∈A P (x.s, â, x′.s)πpost

i (x, u, â)

(a)
=
∑
a∈A

R(x.s, a, x′.s, r)P (x.s, a, x′.s)πpost
i (x, u, a)

÷
[∑
â∈A

Pr(St+1 = x′.s|St = x.s, At = â, Upre
t = x.upre, Ut = u)

× Pr(At = â|St = x.s, Upre
t = x.upre, Ut = u)

]
(b)
=

∑
a∈AR(x.s, a, x′.s, r)P (x.s, a, x′.s)πpost

i (x, u, a)

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

,

where (a) follows from the definitions of terms in the denominator and M ’s conditional independence properties
(applied to the first term in the denominator) and (b) follows from marginalization over â. Expanding the definitions
of the remaining terms, we get:

Ri(x, u, x′, r) =

∑
a∈A Pr(Rt = r|St = x.s, At = a, St+1 = x′.s) Pr(St+1 = x′.s|St = x.s, At = a)

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

× Pr(At = a|St = x.s, Upre
t = x.upre, Ut = u)

(a)
=

1

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

×
∑
a∈A

Pr(Rt = r|St = x.s, At = a, St+1 = x′.s, Upre
t = x.upre, Ut = u)

× Pr(St+1 = x′.s|St = x.s, At = a, Upre
t = x.upre, Ut = u)

× Pr(At = a|St = x.s, Upre
t = x.upre, Ut = u),

where (a) follows from M ’s conditional independence properties (applied to the Pr(Rt = r|...) and Pr(St+1 = x′.s|...)
terms). Rearranging and taking advantage of marginalization over a (the Pr(Rt = r|St+1 = x′.s, ...) and Pr(St+1 =
x′.s|...) terms can be viewed as a union), we get:

Ri(x, u, x′, r) =
Pr(St+1 = x′.s|St = x.s, Upre

t = x.upre, Ut = u)

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

× Pr(Rt = r|St = x.s, St+1 = x′.s, Upre
t = x.upre, Ut = u)

= Pr(Rt = r|St = x.s, St+1 = x′.s, Upre
t = x.upre, Ut = u)

(a)
= Pr(Rt = r|St = x.s, Upre

t = x.upre, Ut = u, St+1 = x′.s, Upre
t+1 = x′.upre),

where (a) follows from M ’s conditional independence properties.

Property 5.

∀s ∈ S ∀upre ∈ Upre
i , Pr(X̃t = (s, upre)) = Pr(St = s, Upre

t = upre).

Proof.
We present a proof by induction:

3

Base Case:

Pr(S0 = s, Upre
0 = upre) = Pr(S0 = s) Pr(Upre

0 = upre|S0 = s)

=d0(s)πpre
i (s, upre)

=di0((s, upre))

= Pr(X̃i
0 = (s, upre)).

Inductive Step:

Pr(St+1 = s′, Upre
t+1 = u′pre)

(a)
=

∑
(s,upre)∈X

Pr(St = s, Upre
t = upre) Pr(St+1 = s′, Upre

t+1 = u′pre|St = s, Upre
t = upre)

(b)
=

∑
(s,upre)∈X

Pr(St = s, Upre
t = upre)

∑
u∈U

Pr(Ut = u|St = s, Upre
t = upre)

× Pr(St+1 = s′, Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u)

(c)
=

∑
(s,upre)∈X

Pr(X̃t = (s, upre))
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

× Pr(St+1 = s′, Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u),

where (a) follows from marginalization over (s, upre), (b) follows from marginalization over u, and (c) is through
application of the base case and Assumption 1. Notice that the last term is equivalent to P i by Property 3, which is
equivalent to the final term in the next step:

Pr(St+1 = s′, Upre
t+1 = u′pre) =

∑
(s,upre)∈X

Pr(X̃t = (s, upre))
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

× Pr(X̃t+1 = (s′, u′pre)|X̃t = (s, upre), Ũt = u)

(a)
=

∑
(s,upre)∈X

Pr(X̃t = (s, upre)) Pr(X̃t+1 = (s′, u′pre)|X̃t = (s, upre))

(b)
= Pr(X̃t+1 = (s′, u′pre)),

where (a) and (b) follow from marginalization over u and (s, upre), respectively.

Property 6.

∀s ∈ S,Pr(St = s) = Pr(X̃t.s = s).

Proof.

Pr(St = s) =
∑

upre∈Upre
i

Pr(St = s, Upre
t = upre)

(a)
=

∑
upre∈Upre

i

Pr(X̃t = (s, upre))

(b)
= Pr(X̃t.s = s),

where (a) follows from Property 5 and (b) follows from marginalization over upre.

Property 7. ∀s ∈ S ∀upre ∈ Upre
i , πpre

i (s, upre) = Pr(X̃t.upre = upre|X̃t.s = s).

Recall that πpre
i (s, upre) := Pr(Upre

t = upre|St = s).

4

Proof.

πpre
i (s, upre) = Pr(Upre

t = upre|St = s)

=
Pr(Upre

t = upre, St = s)

Pr(St = s)

(a)
=

Pr(X̃t.upre = upre, X̃t.s = s)

Pr(X̃t.s = s)

= Pr(X̃t.upre = upre|X̃t.s = s),

where (a) follows from properties 5 and 6.

Property 8.

∀s ∈ S ∀s′ ∈ S ∀upre ∈ Upre
i ∀u ∈ U ,

Pr(X̃t+1.s = s′|X̃t.s = s, X̃t.upre = upre, Ũt = u) = Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u).

Proof.

Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u)

(a)
=
∑
a∈A

πpost
i ((s, upre), u, a) Pr(St+1 = s′|St = s, Upre

t = upre, Ut = u,At = a)

(b)
=
∑
a∈A

πpost
i ((s, upre), u, a)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u,At = a)

× Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u,At = a, Upre

t+1 = u′pre)

(c)
=
∑
a∈A

πpost
i ((s, upre), u, a)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u,At = a, St+1 = s′)

× Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u,At = a)

(d)
=
∑
a∈A

πpost
i ((s, upre), u, a)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St+1 = s′) Pr(St+1 = s′|St = s,At = a),

where (a) follows from marginalization over a and the definition of πpost
i , (b) follows from marginalization over

u′pre, (c) follows from the fact that (abbreviating and leaving out the common givens) Pr(u′pre) Pr(s′|u′pre) =
Pr(u′pre|s′) Pr(s′), and (d) follows from M ’s conditional independence properties (applied to the second and third
terms). Notice that the second and third terms above are equivalent to P and πpre

i ; plugging those in and rearranging:

Pr(X̃t+1.s = s′|X̃t.s = s, X̃t.upre =
∑

u′
pre∈Upre

πpre
i (s′, u′pre)

∑
a∈A

P (s, a, s′)πpost
i ((s, upre), u, a)

(a)
=

∑
u′
pre∈Upre

P i((s, upre), u, (s′, u′pre))

(b)
=

∑
u′
pre∈Upre

Pr(X̃t+1.upre = u′pre|X̃t = (s, upre), Ũt = u)

× Pr(X̃t+1.s = s′|X̃t+1.upre = u′pre, X̃t = (s, upre), Ũt = u)

(c)
= Pr(X̃t+1.s = s′|X̃t.s = s, X̃t.upre = upre, Ũt = u),

where (a) follows from the definition of P i for the CoMDP, (b) follows from the definition of conditional probability,
and (c) follows from marginalization over u′pre.

Property 9.

∀s ∈ S ∀s′ ∈ S ∀upre ∈ Upre
i ∀u′pre ∈ U

pre
i ∀u ∈ U ,

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′) = Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u).

5

Proof.

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u)

=
Pr(X̃t+1.upre = u′pre, X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)

Pr(X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)

(a)
=

P i((s, upre), u, (s′, u′pre))

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)

=
πpre
i (s′, u′pre)

∑
a∈A P (s, a, s′)πpost

i ((s, upre), u, a)

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)
,

where (a) follows from Property 8 applied to the denominator. Expanding the P term and applying M ’s conditional
independence properties:

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u)

=
πpre
i (s′, u′pre)

∑
a∈A Pr(St+1 = s′|St = s, Upre

t = upre, Ut = u,At = a)πpost
i ((s, upre), u, a)

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)

(a)
=
πpre
i (s′, u′pre) Pr(St+1 = s′|St = s, Upre

t = upre, Ut = u)

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)

= Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′),

where (a) follows from marginalization over a.

Property 10.

∀r ∈ R, Pr(Rt = r) = Pr(R̃it = r).

Proof.

Pr(Rt = r) =
∑
s∈S

Pr(St = s)
∑

upre∈Upre

Pr(Upre
t = upre|St = s)

∑
u∈U

Pr(Ut = u|St = s, Upre
t = upre)

×
∑
s′∈S

Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u)

×
∑

u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u, St+1 = s′)

× Pr(Rt = r|St = s, Upre
t = upre, Ut = u, St+1 = s′, Upre

t+1 = u′pre),

by repeated marginalization. Applying M ’s conditional independence properties to the Pr(Upre
t+1...) term:

Pr(Rt = r) =
∑
s∈S

Pr(St = s)
∑

upre∈Upre

Pr(Upre
t = upre|St = s)

∑
u∈U

Pr(Ut = u|St = s, Upre
t = upre)

×
∑
s′∈S

Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St+1 = s′)

× Pr(Rt = r|St = s, Upre
t = upre, Ut = u, St+1 = s′, Upre

t+1 = u′pre)

(a)
=
∑
s∈S

Pr(X̃t.s = s)
∑

upre∈Upre

Pr(X̃t.upre = upre|X̃t.s = s)
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

×
∑
s′∈S

Pr(X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)
∑

u′
pre∈Upre

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′)

× Pr(R̃it = r|X̃t = (s, upre), Ũt = u, X̃t+1 = (s′, u′pre)),

where (a) follows from properties that show various equivalences between the two MDP’s. Specifically: Property 6
(first term), Property 7 (second and fifth terms), Assumption 1 (third term), Property 8 (fourth term), and Property

6

4 (last term). Next, we apply Property 9 to the fifth term:

Pr(Rt = r) =
∑
s∈S

Pr(X̃t.s = s)
∑

upre∈Upre

Pr(X̃t.upre = upre|X̃t.s = s)
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

×
∑
s′∈S

Pr(X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)

×
∑

u′
pre∈Upre

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u)

× Pr(R̃it = r|X̃t = (s, upre), Ũt = u, X̃t+1 = (s′, u′pre))

(a)
=(1)(1)(1)(1)(1) Pr(R̃it = r)

= Pr(R̃it = r),

where (a) follows from repeated marginalization.

Lemma 1. M i is a Markov decision process.

Proof. Having defined X i as the state set, U i as the action set, Ri as the reward set, P i as the transition function,
Ri as the reward function, di0 as the initial state distribution, and γi as the discount parameter, all that remains is to
ensure that P i, Ri, and di0 satisfy their necessary requirements. That is, we must show that these functions are always
non-negative and that ∀x ∈ X ,∀u ∈ U ,

∑
x′∈X P

i(x, u, x′) = 1, ∀x ∈ X ,∀u ∈ U ,∀x′ ∈ X ,
∑
r∈Ri Ri(x, u, x′, r) = 1,

and
∑
x∈X d

i
0(x) = 1.

The functions are always non-negative because each term in each definition is always non-negative. Next, we
show that the sum over the transition function is 1:

∀x ∈ X ,∀u ∈ U ,∑
x′∈X

P i(x, u, x′)
(a)
=
∑
x′∈X

Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u)

=
∑
x′.s∈S

∑
x′.upre∈Upre

Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u)

=1,

where (a) follows from Property 3. Next, we show that the sum over the reward function is 1:

∀x ∈ X , ∀u ∈ U , ∀x′ ∈ X ,∑
r∈Ri

Ri(x, u, x′, r)
(a)
=
∑
r∈R

Pr(Rt = r|St = x.s, Upre
t = x.upre, Ut = u, St+1 = x′.s, Upre

t+1 = x′.upre)

=1,

where (a) follows from the fact that Ri := R and from Property 4.
Finally, we show that the sum of the initial state distribution is 1:∑

x∈X
di0(x)

(a)
=
∑
x∈X

d0(x.s) πpre
i (x.s, x.upre)︸ ︷︷ ︸

=Pr(Upre
0 =x.upre|S0=x.s)

=
∑
x.s∈S

∑
x.upre∈Upre

Pr(S0 = x.s, Upre
0 = x.upre)

=1,

where (a) follows from the definition of di0 for the CoMDP.
Therefore, M i is a Markov decision process.

Lemma 2. For all M, i, πpre
i , πpost

i , and θ̄i, and given a policy parameterized by θi, the corresponding CoMDP M i

satisfies:

• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ R, P i(x, u, x′)
= Pr(St+1 = x′.s, Upre

t+1 = x′.upre|St = x.s, Upre
t = x.upre, Ut = u).

7

• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ R,
Ri(x, u, x′, r) = Pr(Rt=r|St=x.s, Upre

t =x.upre, Ut=u, St+1=x′.s, Upre
t+1=x′.upre).

• ∀s ∈ S ∀upre ∈ Upre, Pr(St = s, Upre
t = upre) = Pr(X̃t = (s, upre)).

• ∀s ∈ S, Pr(St = s) = Pr(X̃t.s = s).

• ∀r ∈ R, Pr(Rt = r) = Pr(R̃it = r).

Proof. This follows immediately from properties 3, 4, 5, 6, and 10.

Property 11. For all coagents i, for all θi, given the same θ = (θi, θ̄i), J(θ) = Ji(θi).

Proof.

J(θ) =E

[∞∑
t=0

γtRt|θ

]

=E

[∞∑
t=0

γtiR
i
t|θi, θ̄i,

]
=Ji(θi),

where the second step follows directly from Property 10 and the definition of γi.

Lemma 3. For all coagents i, for all θi,
∂Ji(θi)
∂θi

= ∆i(θi).

Proof. In Lemma 1, we proved that the ith CoMDP is an MDP. In Lemma 2, we proved that the ith CoMDP
correctly models the ith coagent’s environment. Lemma 3 follows directly from these results and the fact that ∆i is
the policy gradient for M i (Sutton, 2000).

Theorem 1.
∇J(θ) = [∆1(θ1)ᵀ,∆2(θ2)ᵀ, . . . ,∆m(θm)ᵀ]

ᵀ
, where m is the number of coagents, and ∆i is the local policy gradient

of the ith coagent.

Proof.

∇J(θ) =

[
∂J(θ)

∂θ1

ᵀ

,
∂J(θ)

∂θ2

ᵀ

, . . . ,
∂J(θ)

∂θm

ᵀ]ᵀ
(a)
=

[
∂J1(θ1)

∂θ1

ᵀ

,
∂J2(θ2)

∂θ2

ᵀ

, . . . ,
∂Jm(θm)

∂θm

ᵀ]ᵀ
(b)
=

[
∆1(θ1)

∂θ1

ᵀ

,
∆2(θ2)

∂θ2

ᵀ

, . . . ,
∆m(θm)

∂θm

ᵀ]ᵀ
,

where (a) follows directly from Property 11 and where (b) follows directly from Lemma 3.

Corollary 1. If αt is a deterministic positive stepsize,
∑∞
t=0 αt =∞,

∑∞
t=0 α

2
t <∞, additional technical assumptions

are met (Bertsekas & Tsitsiklis, 2000, Proposition 3), and each coagent updates its parameters, θi, with an unbiased

local policy gradient update θi ← θi + αt∆̂i(θi), then J(θ) converges to a finite value and limt→∞∇J(θ) = 0.

Proof. Corollary 1 follows directly from the CPGT, Proposition 3 from Bertsekas & Tsitsiklis (2000), and the
assumption that the discounted sum of rewards over an episode is finite (this last assumption prevents J(θ) from
diverging to ∞).

8

C Asynchronous Coagent Networks: Supplementary Proofs

C.1 Synchronous Network Correctness

Our goal is to show that the synchronous, acyclic reduction of our original asynchronous, cyclic network behaves
identically to our original network. That is, for all s ∈ S, u ∈ Uall, a ∈ A, e ∈ {0, 1}m, π̀((s, u), (a, u′, e)) = Pr(At =
a, Uall

t = u′, Et = e|St = s, Uall
t−1 = u). Because of the large number of variables, if we use one of these lowercase

symbols in an equation, assume that it holds for all values in its respective set.

Proof. We present a proof by induction. We assume a topological ordering of the coagents, such that for any j < i,
the jth coagent executes before the ith coagent. We perform induction over i, with the inductive assumption that
the outputs of all the previous coagents, as well as their decisions whether or not to execute, correspond to the
original network. The inductive hypothesis is that for all j < i:

Pr(Àt.u
all
j = u′j , Àt.ej = ej |S̀t = (s, u)) = Pr(Uall

t .uj = u′j , E
j
t = ej |St = s, Uall

t−1 = u). (1)

Consider the base case, i = 1. `Upre
1 and Upre

1 are both the empty set, because no coagents produce an output
before the first coagent in either network. As a result, the distribution over the execution probability is trivially the
same in both networks, that is, Pr(E1

t = 1|St = s, Uall
t−1 = u) = β1((s,∅, u)) = Pr(Àt.e1 = 1|S̀t = (s, u)). Next, we

consider the action. If the coagent executes, Pr(U1
t = u′1|E1

t = 1, St = s, Uall
t−1 = u) = π1((s,∅, u), u′1) = Pr(Àt.u

all
1 =

u′1|At.e1 = 1, S̀t = (s, u)). If the coagent does not execute, the action is trivially u1 in both cases. Therefore,
Equation (1) holds for j = 1.

Next we consider the inductive step, where we show that Equation (1) holds for the ith coagent given that it
holds for j < i. First we consider the execution function, the output of which is represented in the synchronous
setting by Àt.ei, and in the asynchronous setting by Et. In the asynchronous setting, the probability of the ith

coagent executing at time step t is βi((St, U
pre
t , Uall

t−1)). Since we are not given Upre
t , we must sum over possible

values:
Pr(Eit = 1|St = s, Uall

t = u) =
∑

upre∈Upre
i

βi((s, upre, u)) Pr(Upre
t = upre|St = s, Uall

t−1 = u).

In the reduced setting, we instead have a coagent, such that Pr(Àt.ei = 1|S̀t = (s, u)) = βi((s, Ù
pre
t , u)). Again, we

sum over possible values of Ùpre
t :

Pr(Àt.ei = 1|S̀t = (s, u)) =
∑

upre∈Upre
i

βi((s, upre, u)) Pr(Ùpre
t = upre|S̀t = (s, u)).

Recall the reduced setting was defined such that for all j < i, Àt.u
all
j = Ùpre

t .uj , and in the asynchronous setting,

Upre
t .uj = Uall

t .uj . We therefore can conclude from (1) and by substitution that for all j < i,Pr(Ùpre
t .uj = u|S̀t =

(s, u)) = Pr(Upre
t .uj = u|St = s, Uall

t−1 = u). Substituting this into the above equations:

Pr(Àt.ei = 1|S̀t = (s, u)) =
∑

upre∈Upre
i

βi((s, upre, u)) Pr(Upre
t = upre|St = s, Uall

t−1 = u)

= Pr(Eit = 1|St = s, Uall
t = u).

Note also that from the perspective of π̀i, Àt.ei = Ùpre
t .ei. Next we consider the output of the ith coagent, given in

the asynchronous setting as U it , and in the reduced setting by Àt.u
all
i . In the original setting, U it was given such that

for all ui ∈ U i:

Pr(U it = u′i|St = s, Uall
t−1 = u, Upre

t = upre, E
i
t = ei) =


πi((s, upre, u), u′i), if ei = 1

1, if ei = 0 and u′i = ui

0, otherwise.

In the synchronous setting, we are given:

Pr(Àt.u
all
i = u′i|S̀t = (s, u), Ùpre

t .u = upre, Ù
pre
t .ei = ei) = π̀i(((s, u), upre), u)

=


πi((s, upre, u), u′i), if ei = 1

1, if ei = 0 and u′i = ui

0, otherwise.

9

Since we were given s and u, assumed through the inductive hypothesis that Pr(Ùpre
t .u = upre|S̀t = (s, u)) =

Pr(Upre
t = upre|St = s, Uall

t−1 = u), and showed that Pr(Ùpre
t .ei = ei|S̀t = (s, u)) = Pr(Eit = ei|St = s, Uall

t−1 = u), we
know that the distributions over the variables we conditioned on are equal. Since we also showed that the conditional
distributions are equal, we conclude that Pr(Àt.u

all
i = u′i|S̀t = (s, u)) = Pr(U it = u′i|St = s, Uall

t−1 = u).

This completes the inductive proof that Pr(Àt.u
all = u′, Àt.e = e|S̀t = (s, u)) = Pr(Uall

t = u′, Et = e|St =
s, Uall

t−1 = u). We still must consider Àt.a. This is given by the output of some predefined subset of coagents, which
is the same subset in both the synchronous and asynchronous network. We showed that the distribution over
outputs was the same for corresponding coagents in the two networks, and therefore can conclude immediately that
Pr(Àt.a = a|S̀t = (s, u)) = Pr(At = a|St = s, Uall

t−1 = u). Finally:

Pr(At = a, Uall
t = u′, Et = e|St = s, Uall

t−1 = u) = Pr(Àt.a = a, Àt.u
all = u′, Àt.e = e|S̀t = (s, u))

= Pr(Àt = (a, u′, e)|S̀t = (s, u))

= π̀((s, u), (a, u′, e)).

C.2 Equivalence of Objectives

In both settings, the network depends on the same parameter vector, θ. In this section, we show that for all settings
of this parameter vector the resulting sum of rewards is equivalent in both settings. That is, J(θ) = J̀(θ).

Proof. We begin by showing that the distribution over the “true” states and actions is equal in both settings, that
is, for all s ∈ S, a ∈ A, Pr(S̀t.s = s, Àt.a = a) = Pr(St = s,At = a). Once this is shown, we show that the reward
distributions are the same, that is, for all r, Pr(R̀t = r) = Pr(Rt = r). Finally, we show J(θ) = J̀(θ).

C.2.1 Equivalence of State Distributions

First, we show that Pr(S̀t = (s, u)) = Pr(St = s, Uall
t−1 = u), by induction over time steps. The base case is the initial

state, S̀0. We assumed in the problem setup for the asynchronous setting that for all i and j, the random variables
S0, U i−1, and U j−1 are independent. For all s and u:

Pr(S̀0 = (s, u)) = d̀0((s, u))

= d0(s)

m∏
i=1

hi0(ui)

= Pr(S0 = s)

m∏
i=1

Pr(U i−1 = ui)

= Pr(S0 = s, Uall
−1 = u)

= Pr(S0 = s, Uall
−1 = u).

Thus, we’ve proven the base case. Next we consider the inductive step:

Pr(S̀t+1 = (s′, u′)|S̀t = (s, u))

=
∑

(a,u′′,e)∈À

Pr(S̀t+1 = (s′, u′)|S̀t = (s, u), Àt = (a, u′′, e)) Pr(Àt = (a, u′′, e)|S̀t = (s, u))

=
∑

(a,u′′,e)∈À

P̀ ((s, u), (a, u′′, e), (s′, u′))π̀((s, u), (a, u′′, e))

=
∑

a∈A,u′′∈Uall,e∈E

{
P (s, a, s′)π̀((s, u), (a, u′′, e)) if u′ = u′′

0 otherwise,

The case statement comes from the definition of P̀ . Clearly, we can eliminate all of the parts of the summation
where u′ 6= u′′. Therefore:

Pr(S̀t+1 = (s′, u′)|S̀t = (s, u)) =
∑

a∈A,e∈E
P (s, a, s′)π̀((s, u), (a, u′, e)).

10

Next, we can apply the equivalence shown in section C.1 and the definition of P :∑
a∈A,e∈E

P (s, a, s′)π̀((s, u), (a, u′, e))

=
∑

a∈A,e∈E
Pr(St+1 = s′|At = a, St = s) Pr(At = a, Uall

t = u′, Et = e|St = s, Uall
t−1 = u).

By the law of total probability, we can eliminate Et from the expression:∑
a∈A

Pr(St+1 = s′|At = a, St = s) Pr(At = a, Uall
t = u′|St = s, Uall

t−1 = u).

Next, St+1 is conditionally independent of Uall
t and Uall

t−1 given St and At, so we can rewrite the expression as a sum
over a single probability:∑

a∈A
Pr(St+1 = s′|At = a, Uall

t = u′, St = s, Uall
t−1 = u) Pr(At = a, Uall

t = u′|St = s, Uall
t−1 = u)

=
∑
a∈A

Pr(St+1 = s′, At = a, Uall
t = u′|St = s, Uall

t−1 = u).

Finally, by the law of total probability, we eliminate At:∑
a∈A

Pr(St+1 = s′, At = a, Uall
t = u′|St = s, Uall

t−1 = u) = Pr(St+1 = s′, Uall
t = u′|St = s, Uall

t−1 = u).

Thus, the inductive hypothesis holds. We have therefore shown that for all t, Pr(S̀t = (s, u)) = Pr(St = s, Uall
t−1 = u).

C.2.2 Equivalence of Reward Distributions

It follows immediately from the above equality and C.1 that Pr(Àt = (a, u, e)) = Pr(At = a, Uall
t = u,Et = e). We

turn our attention to the reward distribution:

Pr(R̀t = r)

=
∑

(s,u)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′)∈S̀

Pr(R̀t = r|S̀t = (s, u), Àt = (a, u′, e), S̀t+1 = (s′, u′′))

× Pr(S̀t = (s, u), Àt = (a, u′, e), S̀t+1 = (s′, u′′))

=
∑

(s,u)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′)∈S̀

R̀((s, u), (a, u′, e), (s′, u′′)) Pr(S̀t = (s, u), Àt = (a, u′, e), S̀t+1 = (s′, u′′))

=
∑

(s,u)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′)∈S̀

R(s, a, s′) Pr(S̀t = (s, u), Àt = (a, u′, e), S̀t+1 = (s′, u′′))

=
∑

(s,u)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′)∈S̀

R(s, a, s′) Pr(St = s, Uall
t−1 = u,At = a, Uall

t = u′, Et = e, St+1 = s′)

=
∑
s∈S

∑
a∈A

∑
s′∈S

R(s, a, s′) Pr(St = s,At = a, St+1 = s′)

=
∑
s∈S

∑
a∈A

∑
s′∈S

Pr(Rt = r|St = s,At = a, St+1 = s′) Pr(St = s,At = a, St+1 = s′)

= Pr(Rt = r).

C.2.3 Equivalence of Objectives

Finally, we show the objectives are equal:

J̀(θ) = E[

T∑
t=0

γ̀tR̀t] = E[

T∑
t=0

γtRt] = J(θ),

11

Figure 5: The average (across coagents) cosine distance between the gradient estimates of the finite difference method
and the CPGT (vertical axis) versus the number of episodes used for the CPGT estimate (horizontal axis). This
data is drawn from 20 trials. Error bars represent standard error. 5× 108 episodes are used for each finite difference
estimate. As the amount of data used for the CPGT gradient estimate increases, the cosine distance approaches
zero, indicating that the two gradient estimates converge to the same value as the amount of data increases.

by linearity of expectation.

D Experimental Details of Finite Difference Comparison

To empirically test the Asynchronous Coagent Policy Gradient Theorem (ACPGT), we compare the gradient (∇J)
estimates of the ACPGT and a finite difference method. Finite difference methods are a well-established technique
for computing the gradient of a function from samples; they serve as a straightforward baseline to evaluate the
gradients produced by our algorithm. We expect these estimates to approach the same value as the amount of data
used approaches infinity. For the purposes of testing the ACPGT, we use a simple toy problem and an asynchronous
coagent network. The results are presented in Figure 5; this data provides empirical support for the ACPGT.

We use a simple 3× 3 Gridworld. The network structure used in this experiment consists of three coagents with
tabular state-action value functions and softmax policies: Two coagents receive the tabular state as input, and each
of those two coagents have a single tabular binary output to the third coagent, which in turn outputs the action (up,
down, left, or right). This results in two coagents with 18 parameters each, and one coagent with 16 parameters,
resulting in a network with 52 parameters. The coagents asynchronously execute using a geometric distribution;
the environment updates every step and each coagent has a 0.5 probability of executing each step. The gradient
estimates appear to converge, providing empirical support of the CPGT. The data is drawn from 20 trials. 5× 108

episodes were used for each finite difference estimate. For each trial, five training episodes were conducted before the
parameters were frozen and the two gradient estimation methods were run. The coagents were trained with Sutton
& Barto’s (2018) actor-critic with eligibility traces algorithm and shared a single critic. Note that the critic played
no role in the gradient estimation methods, only in the initial training episodes. Hyperparmaters used: critic step
size = 0.024686, γ = 1, input agent step size = 0.02842, output agent step size = 0.1598, and all agents’ λ = 0.8085.

Note that, while a large amount of data is required to reduce the cosine distance to near 0, this does not reflect
how long the network takes to learn near-optimal behavior. Figure 6 depicts the mean episodic return of 10,000 trials
of 200 episodes each (the same environment, algorithms, network structure, hyperparameters, etc. described above).
Despite its handicap of only having a coagent execute with a 0.5 probability at each time step (a rather significant
handicap for this network structure in a gridworld), the network achieves near-optimal returns relatively quickly.

E Option-Critic

E.1 Option-Critic Complete Description

In this section, we adhere mostly to the notation given by Bacon et al. (2017)’s, with some minor changes used
to enhance conceptual clarity regarding the inputs and outputs of each policy. In the option-critic framework, the

12

Figure 6: The mean learning curve from 10,000 trials of coagent network described in Section D (without freezing
the parameters after 5 episodes). While a large amount of data is required to reduce the cosine distance to near 0,
note that this fact does not reflect how long the network takes to learn near-optimal behavior.

agent is given a set of options, Ω. The agent selects an option, ω∈Ω, by sampling from a policy πΩ : S × Ω →
[0, 1]. An action, a∈A, is then selected from a policy which considers both the state and the current option:
πω : (S ×Ω)×A → [0, 1]. A new option is not selected at every time step; rather, an option is run until a termination
function, β : (S × Ω)× {0, 1} → [0, 1], selects the termination action, 0. If the action 1 is selected, then the current
option continues. πω is parameterized by weights θ, and β by weights ϑ.

E.2 Option-Critic Gradient Equivalence

The APCGN expression gives us ∂J
∂ϑ =

∑
x∈(S×Ω) d

π
Ω(x)

∑
u∈{0,1}

∂β(x,u)
∂ϑ Qβ(x, u). We will show that this is equivalent

to Bacon et al. (2017)’s expression for ∂J
∂ϑ . Note that we only have two actions, whose probabilities must sum to

one. Therefore, the gradients of the policy are equal in magnitude but opposite in sign. That is, for all x ∈ (S × Ω):

β(x, 0) + β(x, 1) = 1, so ∂β(x,0)
∂ϑ = −∂β(x,1)

∂ϑ . Additionally, we know that Qβ(x, 1) is the expected value of continuing
option x.ω in state x.s, given by QΩ(x.s, x.ω). Qβ(x, 0) is the expected value of choosing a new action in state x.s,
given by VΩ(x.s), and therefore, Qβ(x, 1)−Qβ(x, 0) = AΩ(x.s, x.ω). The full derivation is:

∂J

∂ϑ
=
∑

x∈(S×Ω)

dπΩ(x)

[
∂β(x, 0)

∂ϑ
Qβ(x, 0)+

∂β(x, 1)

∂ϑ
Qβ(x, 1)

]

=−
∑

x∈(S×Ω)

dπΩ(x)
∂β(x, 0)

∂ϑ
(Qβ(x, 1)−Qβ(x, 0))

=−
∑

x∈(S×Ω)

dπΩ(x)
∂β(x, 0)

∂ϑ
AΩ(x.s, x.ω).

We see that the result is exactly equivalent to the expression for ∂J/∂ϑ derived by Bacon et al. (2017).

13

	Conjugate Markov Decision Process (CoMDP)
	Complete CPGT Proofs
	Asynchronous Coagent Networks: Supplementary Proofs
	Synchronous Network Correctness
	Equivalence of Objectives
	Equivalence of State Distributions
	Equivalence of Reward Distributions
	Equivalence of Objectives

	Experimental Details of Finite Difference Comparison
	Option-Critic
	Option-Critic Complete Description
	Option-Critic Gradient Equivalence

