
Supplementary Material for SDE-Net: Equipping Deep Neural Networks with
Uncertainty Estimates

1. Proof of Theorem 1
Theorem 1 can be seen as a special case of the existence and uniqueness theorem of a general stochastic differential equation.
The following derivation is adapted from (Lalley, 2016). To prove Theorem 1, we first introduce two lemmas.

Lemma 1. Let y(t) be a nonnegative function that satisfies the following condition: for some T ≤ ∞, there exist constants
A,B ≥ 0 such that:

y(t) ≤ A+B

∫ t

0

y(s)ds <∞ for all 0 ≤ t ≤ T. (1)

Then

y(t) ≤ AeBt for all 0 ≤ t ≤ T. (2)

Proof. W.l.o.g., we assume that C =
∫ T

0
y(s)ds < ∞ and that T < ∞. Then, we can obtain that y(t) is bounded by

D ≡ A+BC in the interval [0, T ]. By iterating over inequality (1), we have:

y(t) ≤ A+B

∫ t

0

y(s)ds

≤ A+B

∫ t

0

(A+B)

∫ s

0

y(r)drds

≤ A+BAt+B2

∫ t

0

∫ s

0

(A+B

∫ r

0

y(q)dq)drds

≤ A+BAt+B2At2/2! +B3

∫ t

0

∫ s

0

∫ r

0

(A+B

∫ q

0

y(p)dp)dqdrds

≤ · · · .

(3)

After k iterations, the first k terms are the series for AeBt. The last term is a (k + 1)-fold iterated integral Ik. Because
y(t) ≤ D in the interval [0, T ], the integral Ik is bounded by BkDtk+1/(k + 1)!. This converges to zero uniformly for
t ≤ T as k →∞. Hence, inequality (2) follows.

Lemma 2. Let yn(t) be a sequence of nonnegative functions such that for some constants B,C <∞,

y0(t) ≤ C for all t ≤ T and

yn+1(t) ≤ B
∫ t

0

yn(s)ds <∞ for all t ≤ T and n = 0, 1, 2, · · · .
(4)

Then,

yn(t) ≤ CBntn/n! for all t ≤ T. (5)
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Proof.

y1(t) ≤ B
∫ t

0

Cds = BCt

y2(t) ≤ B
∫ t

0

BCsds = CB2t2/2!

y3(t) ≤ B
∫ t

0

CB2s2/2ds = CB3t3/3!

· · · .

(6)

After n iterations, we have yn(t) ≤ CBntn/n! for all t ≤ T .

Suppose that for some initial value x0 there are two different solutions:

xt = x0 +

∫ t

0

f(xs, s;θf )ds+

∫ t

0

g(x0;θg)dWs and

yt = x0 +

∫ t

0

f(ys, s;θf )ds+

∫ t

0

g(x0;θg)dWs.

(7)

Since the diffusion net g is uniformly Lipschitz,
∫ t

0
g(x0;θg)dWs is bounded in compact time intervals. Then, we substract

these two solutions and get:

xt − yt =
∫ t

0

(f(xs, s;θf )− f(ys, s;θf ))ds. (8)

Since the drift net f is uniformly Lipschitz, we have that for some constant B <∞,

|yt − xt| ≤ B
∫ t

0

|ys − xs|ds for all t <∞. (9)

It is obvious that yt − xt ≡ 0 from Lemma 1 by letting A = 0. Thus, the stochastic differential equation has at most one
solution for any particular initial value x0.

Then, we prove the the existence of the solutions. For a fix initial value x0, we define a sequence of adapted process xn(t)
by:

xn+1(t) = x0 +

∫ t

0

f(xn(s), s;θf )ds+ g(x0;θg)Wt (10)

The processes xn+1(t) are well-defined and have continuous paths, by induction on n. Because the drift net f is Lipschitz,
we have:

|xn+1(t)− xn(t)| ≤ B
∫ t

0

|xn(s)− xn−1(s)|ds. (11)

Therefore, Lemma 2 implies that for any T <∞,

|xn+1(t)− xn(t)| ≤ CBnTn/n! for all t ≤ T. (12)

It follows that the processes xn(t) converge uniformly in compact time intervals [0, T ]; thus the limit process x(t) has
continuous trajectories according to the dominated convergence theorem and the continuity of f .

2. Experimental Details
2.1. Classification Setup Details

Data preprocessing. As PN and SDE-Net both require OOD samples during the training process, we perturb training data
by Gaussian noise as pseudo OOD data by default. On both MNIST and SVHN, the mean of the Gaussian noise is set to
zero and the variance is set to 4.
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We have also experimented with using external data as OOD data for model training or test, which requires re-scaling
external data to match the target dataset. Specifically, for the classification task on MNIST, we used SEMEION and upscaled
the images to 28× 28; we also tried CIFAR10 and transformed images into greyscale and downsampled them to 28× 28
size.

Model hyperparameters. we use one SDE-Net block in replace of 6 residual blocks and set the number of subintervals
as N = 6 for fair comparison. We perform one forward propagation during training time and 10 forward propagations at
test time. To make the training procedure more stable, we use a smaller value of σmax during training. Specifically, we set
σmax = 1 during trainining and σmax = 50 at test time for both MNIST and SVHN.

The dropout rate for MC-dropout is set to 0.1 as in (Lakshminarayanan et al., 2017) (we also tested 0.5, but that setting
performed worse). For DeepEnsemble, we use 5 ResNets in the ensemble. For PN, we set the concentration parameter to
1000 for both MNIST and SVHN as suggested in the original paper. We use the standard normal prior for both BBP and
p-SGLD. The variances of the prior are set to 0.1 for BBP and 0.01 for p-SGLD to ensure convergence. We use 50 posterior
samples for MC-dropout, BBP and p-SGLD at test time.

For PGD attack, we set the perturbations size ε to 0.3 (16/255) and step size to 2/255 (0.4/255) on MNIST (SVHN).

Model optimization. On the MNIST dataset, we use the stochastic gradient descent algorithm with momentum 0.9, weight
decay 5 × 10−4, and mini-batch size 128. BBP and p-SGLD are trained with 200 epochs to ensure convergence while
other methods are trained with 40 epochs. The initial learning rate is set to 0.1 for for drift network, MC-dropout and
DeepEnsemble while 0.01 for PN. It then decreased at epoch 10, 20 and 30. The learning rate for drift network is initially
set to 0.01 and then decreased at epoch 15 and 30. The learning rate for BBP is initially set to 0.001 and then decreased at
epoch 80 and 160. We use an initial learning rate 0.0001 for p-SGLD and then decreased it at epoch 50. The decrease rate
for SGD learning rate is set to 0.1.

On the SVHN dataset, we again use the stochastic gradient descent algorithm with momentum 0.9 and weight decay
5× 10−4. BBP and p-SGLD are trained with 200 epochs to ensure convergence while other methods are trained with 60
epochs. The initial learning rate is set to 0.1 for for drift network, MC-dropout and DeepEnsemble while 0.01 for PN. It then
decreased at epoch 20 and 40. The learning rate for diffusion network is set as 0.005 initially and then decreased at epoch 10
and 30. p-SGLD uses a contant learning rate 0.0001. The learning rate for BBP is initially set to 0.001 and then decreased at
epoch 80 and 160.

2.2. Regression Setup Details

Data preprocessing. We normalize both the features and targets (0 mean and 1 variance) for the regression task. We repeat
the features of Boston Housing data 6 times and pad zeroes for the remaining entries to make the number of features of the
two datasets equal. We perturb training data by Gaussian noise (zero mean and variance 4) as pseudo OOD data.

Model hyperparameters. The neural net used in the baselines has 6-hidden layers with ReLU nonlinearity. For fair
comparison, we set the number of subintervals as 4 and then place two layers before and after the SDE-Net block
respectively. The dropout rate for MC-dropout is set to 0.05 as in (Gal & Ghahramani, 2016). We set σmax to 0.1 initially
and increase it to 0.5 at epoch 40. During training, we only perform 1 forward pass. The number of stochastic forward
passes is 10 for SDE-Net at test time. 20 posterior samples are used for MC-dropout, BBP and p-SGLD at test time. The
variance is set to 0.1 for both BBP and p-SGLD to ensure convergence.

Model optimization. We use the stochastic gradient descent algorithm with momentum 0.9, weight decay 5× 10−4, and
mini-batch size 128. The number of training epochs is 60. The learning rate for drift net is initially set to 0.0001 and then
deceased at epoch 20. The learning rate for the diffusion net is set to 0.01. The learning rate for BBP and p-SGLD is initially
set to 0.01 and then decreased at epoch 20. The learning rate for other baselines is initially set to 0.001 and then decreased
at epoch 20.

2.3. Active Learning Setup

Data preprocessing. We normalize both the features and targets (0 mean and 1 variance) for the active learning task. We
randomly select 50 samples from the original training set as the starting point.

Model hyperparameters. The network architecture and model hyperparameters are the same as those we used in the OOD
detection task for regression.
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Model optimization. We use the stochastic gradient descent algorithm with momentum 0.9, weight decay 5× 10−4, and
mini-batch size 50. The number of training epochs is 100. The learning rate for drift net and baselines is set to 0.0001. The
learning rate for the diffusion net is set to 0.01.

3. Additional Experiments
3.1. Visulization Using Synthetic Dataset

In this subsection, we demonstrate the capability of SDE-Net of obtaining meaningful epistemic uncertainties. For this
purpose, we generate a synthetic dataset from a mixture of two Gaussians. Then, we train the SDE-Net on this toy dataset.
Both the drift neural network and diffusion network have one hidden layer with ReLU activation .

Figure 1b shows the uncertainty obtained by SDE-Net. Specifically, it visualizes the epistemic uncertainty given by the
variance of the Brownian motion term. As we can see, the uncertainty is low in the region covered by the training data while
high outside the training distribution.
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(a) Training data distribution.
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(b) Epistemic Uncertainty estimated by SDE-Net.

Figure 1. Visualization of the epistemic uncertainty estimated by SDE-Net (darker colors represent higher uncertainties in the heat map).

3.2. Expected Calibration Error

In this subsection, we measure the expected calibration error (ECE, (Guo et al., 2017)) to see if the confidences produced by
the models are trustworthy. Fig. 2 shows the ECE of each method on MNIST and SVHN. On MNIST, SDE-Net can achieve
competitive results compared with DeepEnsemble and MC-dropout and outperforms other methods. On SVHN, SDE-Net
outperforms all the baselines.

3.3. Ablation Study

Robustness to different pseudo OOD data. In this set of experiments, we report additional experimental results for OOD
detection in classification tasks. We use MNIST as the in-distribution training dataset, and explore using other data sources
as OOD data beyond using in-distribution data perturbed by Gaussian noise. The results are shown in Table 1. As we can
see, the performance of PN is very poor when using Gaussian noise and training data perturbed by Gaussian noise. When
using SVHN as OOD data during training, its performance is good. This suggests that PN is easy to be overfitted by the
OOD data used in training. Our SDE-Net can achieve good performance in all settings, which shows its superior robustness.

Is the OOD regularizer necessary? Our loss objective includes an OOD regularization term which allows us to explicitly
train the epistemic uncertainty for each data point. This regularizer can be interpreted as our parameter belief from the data
space. That is we want our model to give uncertain outputs for OOD data. To verify the necessity of this regularization term,
we test the uncertainty estimates of SDE-Net trained without the regularizer. As we can see from Table. 2, the performance
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Figure 2. Expected calibration error (ECE) vs number of forward passes/ensembles. PN is outside the range and not shown

Table 1. Additional Results for OOD detection. MNIST is used as in-distribution training data. The OOD data used during training is
in the bracket beside each model. Gaussian means directly sampling from N (0, 1) as pseudo OOD data. Training+Gaussian means
perturbing training data by Gaussian noise (0 mean and variance 4) as pseudo OOD data. SVHN means directly use the training set of
SVHN as pseudo OOD data. We report the average performance and standard deviation for 5 random initializations.

OOD Data (test) Model
TNR

at TPR 95%
AUROC

Detection
accuracy

AUPR
in

AUPR
out

SVHN

SDE-Net(SVHN) 99.9± 0.0 99.9± 0.0 99.8± 0.1 99.9± 0.0 99.9± 0.0
SDE-Net(Gaussian) 99.4± 0.1 99.9± 0.0 98.5± 0.2 99.7± 0.1 100.0± 0.0

SDE-Net(training+Gaussian) 97.8± 1.1 99.5± 0.2 97.0± 0.2 98.6± 0.6 99.8± 0.1
PN(SVHN) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

PN(Gaussian) 89.0± 2.9 92.9± 1.2 92.3± 2.2 68.1± 6.5 97.6± 0.7
PN(training+Gaussian) 90.4± 2.8 94.1± 2.2 93.0± 1.4 73.2± 7.3 98.0± 0.6

SEMEION

SDE-Net(SVHN) 100.0± 0.0 99.9± 0.0 99.9± 0.0 100.0± 0.0 99.0± 0.2
SDE-Net(Gaussian) 99.9± 0.1 100.0± 0.0 99.0± 0.3 100.0± 0.0 99.8± 0.1

SDE-Net(training+Gaussian) 99.6± 0.2 99.9± 0.1 98.6± 0.5 100.0± 0.0 99.5± 0.3
PN(SVHN) 98.0± 0.8 98.7± 0.3 97.3± 1.2 99.6± 0.1 95.7± 2.3

PN(Gaussian) 91.0± 2.3 94.9± 2.6 93.2± 1.5 97.8± 0.6 86.5± 3.5
PN(training+Gaussian) 93.4± 2.2 96.1± 1.2 94.5± 1.1 98.4± 0.7 88.5± 1.3

CIFAR10

SDE-Net(SVHN) 100.0± 0.0 99.9± 0.0 99.7± 0.1 99.9± 0.1 99.8± 0.1
SDE-Net(Gaussian) 99.8± 0.1 100.0± 0.0 98.9± 0.4 100.0± 0.0 100.0± 0.0

SDE-Net(training+Gaussian) 99.7± 0.2 99.9± 0.0 98.3± 0.4 99.9± 0.0 99.9± 0.0
PN(SVHN) 100.0± 0.0 100.0± 0.0 99.8± 0.1 100.0± 0.0 100.0± 0.0

PN(Gaussian) 96.8± 1.2 97.7± 0.7 96.5± 0.6 94.3± 1.2 98.2± 0.3
PN(training+Gaussian) 97.6± 0.7 98.3± 0.8 97.0± 1.2 96.0± 1.7 97.3± 1.2

of SDE-Net deteriorates to the same level of traditional NNs without the regularizer term. In Bayesian neural network, the
principle of Bayesian inference implicitly enables larger uncertainty in the region that lacks training data. Such inference
can be costly and we choose to view the DNNs as stochastic dynamic systems. The benefit of such design is that we can
directly model the epistemic uncertainty level for each data point by the variance of the Brownian motion.

3.4. Full Results of Table. 2 and Table. 3 of the main paper

Table. 3 shows the full results of Table. 2 of the main paper.
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Table 2. Classification and out-of-distribution detection results on MNIST and SVHN. All values are in percentage, and larger values
indicates better detection performance. We report the average performance and standard deviation for 5 random initializations.

ID OOD Model
TNR

at TPR 95%
AUROC

Detection
accuracy

AUPR
in

AUPR
out

MNIST SEMEION SDE-Net w.o. reg 93.7± 1.1 97.9± 0.4 95.2± 0.9 99.8± 0.1 89.8± 1.2
SDE-Net 99.6± 0.2 99.9± 0.1 98.6± 0.5 100.0± 0 99.5± 0.3

MNIST SVHN SDE-Net w.o. reg 90.3± 1.3 96.6± 1.3 92.2± 1.2 90.0± 2.2 98.2± 0.4
SDE-Net 97.8± 1.1 99.5± 0.2 97.0± 0.2 98.6± 0.6 99.8± 0.1

SVHN CIFAR10 SDE-Net w.o. reg 68.2± 2.4 93.9± 0.7 90.3± 0.9 97.2± 0.7 85.2± 1.2
SDE-Net 87.5± 2.8 97.8± 0.4 92.7± 0.7 99.2± 0.2 93.7± 0.9

SVHN CIFAR100 SDE-Net w.o. reg 65.2± 1.3 92.9± 0.9 88.7± 0.6 97.2± 0.3 83.4± 0.7
SDE-Net 83.4± 3.6 97.0± 0.4 91.6± 0.7 98.8± 0.1 92.3± 1.1

Table. 4 shows the full results of Table. 3 of the main paper.

Table 3. Out-of-distribution detection for regression on Year Prediction MSD + Boston Housing. We report the average performance and
standard deviation for 5 random initializations.

Model # Parameters RMSE
TNR

at TPR 95%
AUROC

Detection
accuracy

AUPR
in

AUPR
out

DeepEnsemble 14.9K×5 8.6± NA 10.9± NA 59.8± NA 61.4±NA 99.3±NA 1.3± NA
MC-dropout 14.9K 8.7± 0.0 9.6± 0.4 53.0± 1.2 55.6± 1.2 99.2± 0.1 1.1± 0.1

BBP 30.0K 9.5± 0.2 8.7± 1.5 56.8± 0.9 58.3± 2.1 99.0± 0.0 1.3± 0.1
p-SGLD 14.9K 9.3± 0.1 9.2± 1.5 52.3± 0.7 57.3± 1.9 99.4± 0.0 1.1± 0.2
SDE-Net 12.4K 8.7± 0.1 60.4± 3.7 84.4± 1.0 80.0± 0.9 99.7± 0.0 21.3± 4.1

Table 4. Misclassification detection performance on MNIST and SVHN. We report the average performance and standard deviation for 5
random initializations.

Data Model
TNR

at TPR 95%
AUROC

Detection
accuracy

AUPR
succ

AUPR
err

MNIST

Threshold 85.4± 2.8 94.3± 0.9 92.1± 1.5 99.8± 0.1 31.9± 8.3
DeepEnsemble 89.6±NA 97.5± NA 93.2±NA 100.0± NA 41.4± NA

MC-dropout 85.4± 4.5 95.8± 1.3 91.5± 2.2 99.9± 0.0 33.0± 6.7
PN 85.4± 2.8 91.8± 0.7 91.0± 1.1 99.8± 0.0 33.4± 4.6

BBP 88.7± 0.9 96.5± 2.1 93.1± 0.5 100.0± 0.0 35.4± 3.2
P-SGLD 93.2± 2.5 96.4± 1.7 98.4± 0.2 100.0± 0.0 42.0± 2.4
SDE-Net 88.5± 1.3 96.8± 0.9 92.9± 0.8 100.0± 0.0 36.6± 4.6

SVHN

Threshold 66.4± 1.7 90.1± 0.3 85.9± 0.4 99.3± 0.0 42.8± 0.6
DeepEnsemble 67.2±NA 91.0± NA 86.6± NA 99.4± NA 46.5± NA

MC-dropout 65.3± 0.4 90.4± 0.6 85.5± 0.6 99.3± 0.0 45.0± 1.2
PN 64.5± 0.7 84.0± 0.4 81.5± 0.2 98.2± 0.2 43.9± 1.1

BBP 58.7± 2.1 91.8± 0.2 85.6± 0.7 99.1± 0.1 50.7± 0.9
P-SGLD 64.2± 1.3 93.0± 0.4 87.1± 0.4 99.4± 0.1 48.6± 1.8
SDE-Net 65.5± 1.9 92.3± 0.5 86.8± 0.4 99.4± 0.0 53.9± 2.5
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4. Network Architecture
4.1. Classification Task

Downsampling layer:

self.downsampling_layers = nn.Sequential(
#change the in planes to 3 for SVHN

nn.Conv2d(1, dim, 3, 1),
norm(dim),
nn.ReLU(inplace=True),
nn.Conv2d(dim, dim, 4, 2, 1),
norm(dim),
nn.ReLU(inplace=True),
nn.Conv2d(dim, dim, 4, 2, 1),

)

Drift neural network:

class Drift(nn.Module):
def __init__(self, dim):

super(Drift, self).__init__()
self.norm1 = norm(dim)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv2d(dim, dim, 3, 1, 1)
self.norm2 = norm(dim)
self.conv2 = ConcatConv2d(dim, dim, 3, 1, 1)
self.norm3 = norm(dim)

def forward(self, t, x):
out = self.norm1(x)
out = self.relu(out)
out = self.conv1(t, out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(t, out)
out = self.norm3(out)
return out

Diffussion neural network for MNIST:

class Diffusion(nn.Module):
def __init__(self, dim_in, dim_out):

super(Diffusion, self).__init__()
self.norm1 = norm(dim_in)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv2d(dim_in, dim_out, 3, 1, 1)
self.norm2 = norm(dim_in)
self.conv2 = ConcatConv2d(dim_in, dim_out, 3, 1, 1)
self.fc = nn.Sequential(norm(dim_out), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d

((1, 1)), Flatten(), nn.Linear(
dim_out, 1), nn.Sigmoid())

def forward(self, t, x):
out = self.norm1(x)
out = self.relu(out)
out = self.conv1(t, out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(t, out)
out = self.fc(out)
return out

Diffusion network for SVHN:
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class Diffusion(nn.Module):
def __init__(self, dim_in, dim_out):

super(Diffusion, self).__init__()
self.norm1 = norm(dim_in)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv2d(dim_in, dim_out, 3, 1, 1)
self.norm2 = norm(dim_in)
self.conv2 = ConcatConv2d(dim_in, dim_out, 3, 1, 1)
self.norm3 = norm(dim_in)
self.conv3 = ConcatConv2d(dim_in, dim_out, 3, 1, 1)
self.fc = nn.Sequential(norm(dim_out), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d

((1, 1)), Flatten(), nn.Linear(
dim_out, 1), nn.Sigmoid())

def forward(self, t, x):
out = self.norm1(x)
out = self.relu(out)
out = self.conv1(t, out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(t, out)
out = self.norm3(out)
out = self.relu(out)
out = self.conv3(t, out)
out = self.fc(out)
return out

ResNet block architecture:

class ResBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):

super(ResBlock, self).__init__()
self.norm1 = norm(inplanes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.conv1 = conv3x3(inplanes, planes, stride)
self.norm2 = norm(planes)
self.conv2 = conv3x3(planes, planes)

def forward(self, x):
shortcut = x

out = self.relu(self.norm1(x))

if self.downsample is not None:
shortcut = self.downsample(out)

out = self.conv1(out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(out)

return out + shortcut

For BBP, we use an identical Residue block architecture and a fully factorised Gaussian approximate posterior on the
weights.

4.2. Regression Task

The network architecture for DeepEnsemble, MC-dropout and p-SGLD:

class DNN(nn.Module):
def __init__(self):
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super(DNN, self).__init__()
self.fc1 = nn.Linear(90, 50)
self.dropout1 = nn.Dropout(0.5)
self.fc2 = nn.Linear(50, 50)
self.dropout2 = nn.Dropout(0.5)
self.fc3 = nn.Linear(50, 50)
self.dropout3 = nn.Dropout(0.5)
self.fc4 = nn.Linear(50, 50)
self.dropout4 = nn.Dropout(0.5)
self.fc5 = nn.Linear(50, 50)
self.dropout5 = nn.Dropout(0.5)
self.fc6 = nn.Linear(50, 2)

def forward(self, x):
x = self.dropout1(F.relu(self.fc1(x)))
x = self.dropout2(F.relu(self.fc2(x)))
x = self.dropout3(F.relu(self.fc3(x)))
x = self.dropout4(F.relu(self.fc4(x)))
x = self.dropout5(F.relu(self.fc5(x)))
x = self.fc6(x)
mean = x[:,0]
sigma = F.softplus(x[:,1])+1e-3
return mean, sigma

For BBP, we use an identical architecture with a fully factorised Gaussian approximate posterior on the weights.

For SDE-Net:

Drift neural network:

class Drift(nn.Module):
def __init__(self):

super(Drift, self).__init__()
self.fc = nn.Linear(50, 50)
self.relu = nn.ReLU(inplace=True)

def forward(self, t, x):
out = self.relu(self.fc(x))
return out

Diffusion neural network:

class Diffusion(nn.Module):
def __init__(self):

super(Diffusion, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.fc1 = nn.Linear(50, 100)
self.fc2 = nn.Linear(100, 1)

def forward(self, t, x):
out = self.relu(self.fc1(x))
out = self.fc2(out)
out = F.sigmoid(out)
return out
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