Meta-learning for Mixed Linear Regression

Appendix

We provide proofs of main results and technical lemmas.

A. Proof of Theorem 1
First we invoke Lemma 5.1 with ¢ = A/(10p) which outputs an orthonormal matrix U such that

[(UUT =) wil|, < A/20 (13)

with probability 1 — 4. This step requires a dataset with

d d
=0 (-%  min {A 52 A72\-2 1 JogB
nr1 (t min { Prin> mm} 0g pminA6

L1

i.i.d. tasks each with ¢;,; number of examples.

. . . . . ~ . 2
Second we invoke Lemma 5.2 with the matrix U estimated in Lemma 5.1 and € = min {QA—O, Alo\éE

} which outputs
parameters satisfying

[UT (Wi —wi)|], < A/20
2
@ < oo

This step requires a dataset with

tH pminA2

ng = Q(log(’“/é) (k+A‘2)>

i.i.d. tasks each with ty = Q (A‘Q\/Elog (ﬁ)) number of examples.

Finally we invoke Lemma 5.3. Notice that in the last step we have estimated each w; with error |[w; — w;||, <
|[UUTW; — UU"w;||, + [[UUTw; — w;||, < A/10. Hence the input for Lemma 5.3 satisfies || w; — w;[|, < A/10. It
is not hard to verify that

I,
A? _ 9 A?
(1 + 5(),02) 7> (512 + Wi *Wi\|2> > (1 - 50/)2> i

npe = Q<dbg2(k/6)>

t12Pmin€>

Hence, given

i.i.d. tasks each with ¢t = Q2 <log (pnﬁf 55) / A4) examples. We have parameter estimation with accuracy

[Wi —will, <esi,

s €
]s?—s? < —s?, and
d

|Di — pi| < e\/tr2/dpmin-
This concludes the proof.
A.1. Proof of Lemma 5.1

Proposition A.1 (Several facts for sub-Gaussian random variables). Under our data generation model, let c; > 1 denote a
sufficiently large constant, let § € (0,1) denote the failure probability. We have, with probability 1 — 6, for all i € [n],

t
1
t Zyi,sz',j —Bill <er-Vd-p-log(nd/s)-t=1/2.
i=1 ,
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Remark A.2. The above about is not tight, and can be optimized to log(-)/t + log'/?(-) /t'/2. Since we don’t care about
log factors, we only write log(-) /t'/? instead (note that t > 1).

Proof. For each i € [n],j € [t],k € [d], y; i, IS a sub-exponential random variable with sub-exponential norm

yi @ikl < /52 + 1Bill3 = pi.

By Bernstein’s inequality,

t
1 [ 2%t ot
N Zyi,jxi,j,k —Bik| 22| <2exp (—len {27 })
j=1

Pi Pi

for some ¢ > 0. Hence we have that with probability 1 — 25, Vi € [n],k € [d],

1< log (nd/é log (nd/é
gzyi,jxi,j,k_ﬁi,k <Pimax{ g (nd/ )7 g (nd/ )}»
j=1

ct ct

which implies

—_

t
n Z YijXij — Bi|| < Vdp; max { log (nd/é)’ log (nd/9) } . -
= 2

tj . ct ct

Proposition A.3. Forany v € S%!

t
<V, % Zyi,jxi,j - ﬁi>2 <O (pi/t).
j=1

Proof.
1< 2
<V7 m > igxig - 5i> =5 Z Z E v (yijxi; — B v’ (yijrxij — Bi)]
j=1 j=1j'=1
1 t t
.
i) > D V'E {(yz‘,sz‘,j = Bi) Wiy xiy — Bi) } v
j=1j=1
where

E { YiiXig — Bi) Wiy @‘)T}

E [xij (x50 + €ig) (B xig +€igr) Xpp = (%080 + €0g) Xig B — (%0585 + ei30) xi o B + BiB3 ]
E {wawﬁlﬂ Xi X g o+ g€ Xi X — (x Tjﬁi)Q - (XZj’ﬂi)Q + Bzﬂﬂ

= E [xi;%, 8:8 xiyx] j — BiB] ] + E [er i jrxix; ;1] -

Therefore, when j # j,

T
E {(yi,sz‘,j = Bi) (g% 5 — Bi) } =0
Plugging back we have

1L 2 1L
<V7 =D ii%i - 5i> =5 E [(VTXi,j)z (8 x15)" = (v 5) } + VT E 6 xi5%0;] v
j=1 j=1

< Z@ (I3 18:13) + O (v78:)* + 82 w113

S(’)(pi/t). O
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Proposition A .4.

t
1
E\l; Z yigXij— Bil| | <O (pid/t)
Jj=1 9
Proof.

t t
1 1
<; Z Yi,jXi 3 — z 5 t Z (yi,j’xi,j’ - ﬂz)>
Jj=1

J'=1

t t
1
Rz SO B [yigyeixixig — B vigxig — Bl yigxig + B Bi]

j=1j'=1

1 t t

j=15'=1

1 t t
=35> D E [(@TXM +eig) (B xig +eig) X xi g — ||5i|\§}

j=1j'=1
1 T T
= 500 D B Bl xigxd iyl joBi + e gengrx] g — 161l

The above quantity can be split into two terms, one is diagonal term, and the other is off-diagonal term.

If j # j/, then
[ﬁ XHXLXH/X” Bz+clj61j’xzjxl] ] HﬁzHg

and if j = j/, then

E IBTXZ JXzTJXw’Xz VG Bi + €z,J€z,J’X i Xi,j HBzH } (d ||ﬁz”g) + U?d =0 (p?d) .
Plugging back we get
2

t
1
E *Zyi,jxi,j*ﬂi < 7] -t 0 (p3d)
i=1 ,

~ | =

O (p7d/t) .

Definition A.5. Let co > 1 denote a sufficiently large constant. We define event £ to be the event that
1<
Vie [Tl], ;Zymxm _/Bi < ey \/c?plog(nd/é)/\/f,
=1 )
and

Vi€ [n], Zy”x” Bi <cQ-\/g-p~log(nd/5)/\/E.

] =t+1

It has been shown in Proposition A.1 that event £ happens with probability 9.
Definition A.6. For each i € [n], define matrix Z; € R*>*? as

1 t 1 2t
T T
Ezyi,jxi,j 7 Z YijXij | — Bibs
j=1

j=t+1
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vector [3} as
t
/. E 1 T £
Bi = n Z YijXi ;
=1

and matrix Z!, € R4 as

¢ 2t
! 1 T T

Z; = ;Zyi,jxi,j n Z YijXi 5 — BiBi -
j=1 j=t+1

We can show that || 3] — ;]| is small.

Lemma A.7. With (3, defined in Definition A.6, it holds that

, Vap,
||6i—6i||2s0< ﬁ)

Proof. Notice that by the definition of ¢5 norm, it holds that

t
1
18: = il = max B | (v, 3 wigxis— B )|€
2— _]:1

lIvi2=1

t t
1 1
= Imax E <V7 E Zym-xi’j — ﬂz> ; Zyi’jxiﬁj — Bl g Cco - \/g -p- log(nd/(s)/\/l?
j=1 j=1 9

Notice that
L
P gzyi,jxi,j*ﬁi < g -Vd-p-log(nd/d)/Vt| <d/n
i=1 ,

. Define random variable z,, := <v7 % 22:1 Vi jXij — Bl> Applying Fact D.9 with the variance bound Proposition A.3, it

holds that
5/np; Vop;
i —Bill, = El[|€]]| <O | —r—F———=]=0 ,
18 = Bill, = 1E[2v[€]] < (u_d/n)ﬁ) (m
which concludes the proof. O

We can upper bound the spectral norm of matrix Z condition on event &,

Lemma A.8. Let Z; be defined as Definition A.6, let co > 1 denote some sufficiently large constant, let 6 € (0,1) denote
the failure probability. Then we have conditon on event £ happens,

Vieln], [Zill, < c2-d-pf-log*(nd/s)/t
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Proof. The norm of ||Z;||, satisfies

I1Zill, <

t
1
n D vigxig — B
=1

< erVdp; log(nd/5)t~ /2.

= ¢1Vdp; log(nd/8)t=1/? .

< 1 Vdp; log(nd/6)t /2 -

< erVdp; log(nd/5)t~ /2.
< O (1) - dp}log®(nd/5) /t

;o2& -
-
n E YijXij — Bi

2t

1 T
7 E , Yi,iXq,5
j=t+1 j=t+1

2 2

+ e1Vdp; log(nd/8)t—1/? - 18l

1 2t
n Z Yi,j i,

J=t+1 )

K

7 > wigxig|| + 1B
j=tt1

2

T

N Z vigXi; — Bill + 215l
j=tt1 )

(0(1)- Vipitog(na/s)=12 +2 |5,

where the second step follows from Proposition A.1, the fourth step follows from triangle inequality, the fifth step follows
from Proposition A.1, and the last step follows ||3;]|, < O (p;).

Rescaling the § completes the proof.

We can apply matrix Bernstein inequality under a conditional distribution.
Proposition A.9. Let Z; be defined as Definition A.6. Let £ be defined as Definition A.5. Then we have

n
E|Y zz] 51 = O (np'd/t).
=1 2
Proof.
= [z:z]]],
rr 2 2
1 L& B ,
= Joax B v’ ;Zyi,jxi,j " Z yigxigl| — (v 8:) 16l
i i Jj=1 j=t+1 9
rr 2
1< 1 & .
- VIEHS%)E1 E v E Yi,jXij — Bi " Z Yi,jXi,j +E (V ﬂz) Z Yi,jXi,j
Jj=1 j=t+1 9 ] =t+1

S (021 - (IBi5 + pid/t) + 11Bill3 (pid/t)
< (P} /t) - (07 + pFd/t) + pF - (p}d/t)

< 2ptd/t? + pld/t
< 3pid/t.

i

where the fourth step follows from || 5;]|2 < p;, the fifth step follows d/t > 1, and the last step follows from ¢ > 1.

Thus,

E i: Z:Z;
i=1

1

2

1
<7
P[€]

O (np*d/t).

o[ -

2

O
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where n comes from repeatedly applying triangle inequality. Since

E lzn: 7.7 5]
=1

=1

lZz z,"|e

E lz (z+ 887 — i) (2" + 587 - B8

1

2

(887 - BAT)

2

and

H (o7 =6 ) || =l o8| < ([} (87 = 8|, + [ o - 80 8:7]]) " < © (o)

by triangle inequality, it holds that

2

Zz’z’T

<0 (np4d/t)

O

Using the fact thathave E [Z/|€] = 0, we can apply matrix Bernstein inequality on Z;|£, which will imply the following
bounds on Z;:

Lemma A.10. Let Z; be defined as Definition A.6. For any € € (0,1) and 6 € (0,1), if

n = <tlog (nd/de) max{?, glog 56}) ,

then with probability at least 1 — 6,

Proof. Recall that £ is defined as Definition A.S.

Using matrix Bernstein inequality (Proposition D.5), we get for any z > 0,

42>l

Pll
nf

n
I

2.7

=1 2

>z

z*n/2
] < d-exp <_ prd/t + zedp? 10g2(nd/5)/t> |

For z = €p?, we get

> ep?

el <d-exp ( &ny2 ) (14)
- d/t + €cdlog®(nd/s) /t

for some ¢ > 0. If we want to bound the right hand side of Equation (14) by 4, it is sufficient to have

&n/2 n
—~ 2 2 logi
d/t + €cdlog®(nd/d)/t 4
11
or,n 2 glog2 (nd/é) max{?,,glog ndd} (15)

Therefore, if €log(nd/d) 2 1, we just need n 2 %logg (nd/s), else we need n > %logQ(nd/é) such that
P {H% Zzn H2 >ep? ’ E| < 4. Since

n n

%ZZ’F%ZZ,-

=1 i=1

d/nt,

= H;Z (.67 - 5:87)
2

i=1

2
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we have that
n

1
o

i=1

> (z+ 6/nt) 2

2

e| <o

which implies that

o

i=1

P

> (€+ 5/nt) p21 < 920,
2

Since /6 /nt < € for n defined in the statement of the lemma, we conclude the proof. O

n k
Lemma A.11. If X = % 3 BiB where B; = w; with probability p;, and M = " ijjoT as its expectation, then for
i=1 j=1

any d € (0,1) we have
PIX - M|, <ep’] >1-6. (16)

ifn=0Q <1°g32(27k/6)).

n k

Proof. Letp; = + ‘21]1 {w; =p;} Vj€lk],thenX = Zlﬁjij;r. Let S; = (p; — pj)w;w,; Vj € [k], then we have
= =
1j

the following for all j € [k],
E[S;]=0
log(k/é
IS;1l, < 0> 3log(k/9) (from Proposition D.7) 17)
n
k k
~ 2 2
STE[STS]| = | Y[ — 0] Iwsll wiw]
j=1 =t )
k
log(k/o
< 3p? Og(n/ ) ijijjT (from Proposition D.7)
=1 )
log(k/o
< 3,04M. (18)

n

Conditioning on the event £ := {|]'5j —-pil <3 log(k/é)/n}, from matrix Bernstein D.5 we have

b ] 2
—2%/2
P Zsj 22’5 < 2kexp
=, | 3P4W+”%\/@
k 3/2 T
1 k/6
— P Zsj §3p20g\/>(/)’5 >1-6 (19)
=t |, " |
Since P[£] > 1 — 6, we have
k
P ZSJ SEpQ 21—5 (20)
j=1

forn:Q(logi(zﬂ). O

€
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Lemma A.12. Given k vectors Xi1,Xs, - ,Xi € R% Foreach i € [k], we define X; = xixiT. For every v > 0, and every
PSD matrix M € R4 sych that

< 9 2D
2

k
‘ﬁ—ZXi
=1

let U € R¥* be the matrix consists of the top-k singular vectors of 1/\\/1, then for all i € [k],

. 1/3
IxI (= uun)|l, < min{lxillz/omn, V2l
where oy IS the smallest non-zero singular value of Zie[k] X;.

Proof. From the gap-free Wedin’s theorem in (Allen-Zhu & Li, 2016, Lemma B.3), it follows that
|@T-UU")V,|, <v/o;, (22)

where V; = [vy ... v,] is the matrix consisting of the j singular vectors of Zi,e[k] X, corresponding to the top j singular
values, and o is the j-th singular value. To get the first term on the upper bound, notice that x; lie on the subspace spanned
by V; where j is the rank of Zi’e[k] X. It follows that

[(T=U0U") V;Vix||, < lxill,v/05 < [illy 7/0min:

Next, we optimize over this choice of j to get the tightest bound that does not depend on the singular values.
2 2 2
IT-UUT) i, = [T-UUT) ViV ixi, + [(T-UUT) (T-V;V]) i,
< (/o) Ixill; + o541 -

for any j € [k] where we used || (I— V,; V) XlHE < 0j+1. This follows from

o1 = ||(T=V,V]) 30 Xe (1= ViV || 2 ([0 V) o] (T VoV ) |, = ([T ViV i
ire[k] )

Optimal choice of j minimizes the upper bound, which happens when the two terms are of similar orders. Precisely, we

choose j to be the largest index such that o; > v%/3 ||Xi||§/3 (we take j = 0 if oy < 4%/3 ||xiH§/3). This gives an upper
bound of 2v%/3 ||x;[|3/®. This bound is tighter by a factor of k2/3 compared to a similar result from (Li & Liang, 2018,
Lemma 5), where this analysis is based on. O

Proof of Lemma 5.1. We combine Lemma A.12 and Lemma A.10 to compute the proof. Let ¢ > 0 be the minimum positive
real such that for x; = /p;w;, v = €p2, Omin = Amin, WE have

Vi [[(T=UUT) wil, < min {&0® VBi/ Ain, V2 €/} *} < ep /i

The above equation implies that

~ { )\mine pmin63 }
€ = max , .
pr 2v/2

= k
2 * HM — i piwiw] 2 =

Since HZf:l piwiw, — Zle piwiw, @) (Ep2) for

n=Q <max{§2 log® (/) % log? (nd/s), %log?’ (nd/5)}>
from Lemma A.10 and Proposition A.11, we get
|(I-UU" ) wi|l,<ep  Vielk]
with probability at least 1 — . O
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A.2. Proof of Lemma 5.2

We start with the following two proposition which shows that the mean of our distance estimator is well separated between
the in-cluster tasks and the inter-cluster tasks.

Proposition A.13. Recall that matrix U satisfies Equation (8) with error €. If A > 4pe, then ¥ i, j € [n] such that B; # 3,
E [(3}” - B}”)T uuTuu’T (59 _ g]@))] S A%,
and Y i,j € [n] such that 3; = 3;,
E [(@(1) _ BJ@))T UuTuuT (@(2) _ 53(2))] _o
Proof. If B; # B;,
E {(@_(1) _ Bj(_l))T vuTuuT (@(2) B BJ(_Q)):|
= [[uUT (6 - 5;‘)”2

= |[UUTB,— B+ i - B+ B — UUT ||

2

(I18: = Billy — 2¢p)

A?/4.

The proof is trivial for 5; = 3;. O

AV,

Proposition A.14.
. T ~ ~
Var [(@(” - f}](”) uuTuu’ (5§2> f 5§2>)] <Ot (t+k)/12).

Proof. If B; # B;, then

Var {(@(1) B Bj(;))T vuTuuT (352) B @(2))}

. o\ T . N 2 2
=FE [((@(1) _ 6}(1)) uu’ (652) _ BJ@))) ] _ ((ﬁi —3,)TUUT (5 - ﬁj))
t,2t
T D E[(MiaXia = Yia%a) OUT (Wisxin = 56%50)) (WiarXia — YjaXsa) OO (yipXip —y50%0))]

a,a’=1
b,b'=t+1

—(B: = ;) TUUT(Bi = ;) (B = 8;) "UUT (B = ;).
For each term in the summation, we classify it into one of the 3 different cases according to a, b,a’, b’
1. Ifa # o’ and b # V', the term is 0.
2. Ifa = a’ and b # V', the term can then be expressed as:
E [((yi,a%i,0 — YiaXja) UUT (yiXip — yjoXip)) ((Yi,arXisar — YiaXja) UUT (yiyxXip — YivXin))]
— (8 = B;)TUUT(B; — B;)(B: — 5;) ' UUT(B; = ;)
= B[ ((gh.0%ia — jaXia) UUT (8 = ;)] = (8 = 8;)TOUT (8, - 8))°
= B [(4.0x[,UUT (3 - 5,))"] - (87 UUT (5, - ;)
+E [(yj,anT,aUUT(ﬁi - 53‘))2} - (BjUUT (B - 51‘))2
=0 (p").
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The last equality follows from the sub-Gaussian assumption of x.

2 .2

3. If a # o’ and b = ¥/, this case is symmetric to the last case and 30,0, is an upper bound.

4. If a = a’ and b = V', the term can then be expressed as:
2 2
E [((yi,axi,a — YiaXsa) UUT (yipXin — yj6%50)) } — ((Bi = 8;)TUUT(B: - B)))
= E [173((4iaXiia = ¥j.aXja) | UU ' %:0)°] +E [0 (4i.0Xia — YjaXja) UUx;5)°]
—2E [(4ia%i0 — Yj.aXja) UUT (4i6%i0) (WiaXia — YjaXja) UU (y50%;0)]
2
= ((B: = 8;)TUUT (B = B)))"-
First taking the expectation over X; p, ¥s,, X;.b, Y5, Wwe get the following upper bound
2
csp”E [H(yi,uxi,a — YjaXja) UUT ||2} —2E [(¢,0Xi,0 — YjaXja) | UUT Bi(Yi0Xisa — Yj.aXja) | UU' 3]
for some c3 > 0. Since
2
E [(yﬁaxi,a - yj,axj,a)TUUTBi(yi,axi,a - yj,axj,a)TUUTﬁj] S p2 E |:H(yi,axi,a - yj,axj,a)TUUT H2i| )
we have the following upper bound:
2
SE [H(yi,axi,a - yj,axj,a)TUUTHQ}
2 2
SE [||(yi,axi,a)TU||2} +E {H(yj,axj,a)TUHz} :
Since E [((y,—,axiya)Tul)ﬂ < O (p?) V1 € [k], we finally have a O (k) upper bound for this case.
The final step is to sum the contributions of these 4 cases. Case 2 and 3 have O (t3) different quadruples (a, b, a’,’). Case
4 has O (¢?) different quadruples (a, b, a’,b’"). Combining the resulting bounds yields an upper bound of:

O (p*- (t+k)/t?). O
We now have all the required ingredients for the proof of Lemma 5.2

Proof of Lemma 5.2. For each pair 7, j, we repeatedly compute
~ ~ T ~ ~
(B -5V) vuTuuT (B -5

log(n/§) times, each with a batch of new sample of size p>v/k /A2, and take the median of these estimates. With probability
1 — 4, it holds that for all 3; # f3;, the median is greater than cA?, and for all 3; = j3; the median is less than cA? for some
constant ¢ > 0. Hence the single-linkage algorithm can correctly identify the k clusters.

Conditioning on the event of perfect clustering, the cluster sizes are distributed according to a multinomial distribution,
which from Proposition D.7 can be shown to concentrate as

~ 3log(k/d
IENETUON
n

lpi — pi| < i < pif2

with probability at least 1 — § by our assumption that n = Q) (loi(k/ %) ) , which implies that p; > p; /2.

min

For each group, we compute the corresponding average of UTB;— as

t
1

T 11T

U'w; = —n,ﬁlt E g Yi; U X5,

iDBi=w; j=1
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which from Proposition A.1 would satisfy

U7 (8w, < Vipimax { log(k2/) __log(k2/9) }

npit npt

< ep;.

The last inequality holds due to the condition on n.

The estimate for 17 == s? + ||w; — W;||2 V1 € [k] is

Z Z X5 Wl Wl)+6171)

23ﬁz—wl 7=1

where x; j and y; ; are fresh samples from the same tasks. The expectation of 77 can be computed as

E[7}] = Z ZE[ V~Vl)+6i,j)2]
Bﬂl—wu 1

:812+||Wz — W5 = r?

We can compute the variance of 77 like

R o (CATE

71961 =w; j=1

Ly Sl wzw»wﬂ<sf+'w-w%>1

zaﬁl—wz Jj=1

. T ~ 2. . . - . .
Since (xi (Wi —wyp) + ei’j) is a sub-exponential random variable, we can use Bernstein’s concentration inequality to get

9 ~ ~
P[|?Q—rl|>z}<2exp{ n{znflt,zn];lt}}

L L]
log t log
= |?? — r12| < r? max %‘s , %5 with probability at least 1 — 4,
npit - npt
<ri—
=7 \/E
where the last inequality directly follows from the condition on n. O
A.3. Proof of Lemma 5.3

Before proving Lemma 5.3, we first show that with the parameters w;, 7 estimated with accuracy stated, for all i € [k] in
the condition of Lemma 5.3, we can correctly classify a new task using only Q (log k) dependency of k on the number of
examples oyt

Lemma A.15 (Classification). Given estimated parameters satisfying |W; — w;ll, < A/10, (1 — A?/50)72 < s? +
Wi — w; H; < (1+ A?/50)72 for all i € [k], and a new task with ton, > © (log(k/8)/A*) samples whose true regression
vector is 3 = wy, our algorithm predicts h correctly with probability 1 — 6.

Proof. Given a new task with ¢, training examples, X;, y; = w'x; ¢ forie [tout] Where the true regression vector
is 3 = wy, and the true variance of the noise is % = s7. Our algorithm compute the the following “log likelihood” like
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quantity with the estimated parameters, which is defined to be

tout

L==> (=% )7 / (272) + tou - log (1/7) 23)
j=1
tout

— > (e %] (W =)/ (272) + Lo - log(1/7),

and output the classification as arg max;¢ ) li.

Our proof proceeds by proving a lower bound on the likelihood quantity of the true index lAh, and an upper bound on the
likelihood quantity of the other indices [; for ¢ € [k]\{h}, and we then argue that the [}, is greater than the other /;’s for
i € [k]\{h} with high probability, which implies our algorithm output the correct classification with high probability.

The expectation of lAh is
E[Ih] = ~tow - (53 + Iwh = Wall3) / (272) + tous -Tog(1/7).

Since (e; + x;»'— (wp, — v~vh))2 / (272) is a sub-exponential random variable with sub-exponential norm at most
(@) ((s,% + |lwn — v~vh||§) /?Qh) = O (r?/77), we can apply Bernstein inequality (Vershynin, 2018, Theorem 2.8.1) to T
and get

~ ~ 22 z
IP’HZ —E[z]>}<2 —emind —= 2 _{L
h h z| < 2expq —cmin oy oy
which implies that with probability 1 — 6/,
]Th ) [Th] ‘ <2/ . max { Vo log(k/3), log(k /5)} .
Using the fact that ¢, > C'log(k/d) for some C' > 1, we have that with probability 1 — d/k,

o> - (tom + /Tt 1og(k/5)) 12/ (272) + tous - log(1/7)

for some constant ¢ > 0.

For i # h, the expectation of lAz is at most
7 2 =~ 2 ~2 ~
E [l,] < —tout - (5z + (A — [Jw; —wly) ) / (277) + tous - log (1/75) .

. ~ \\2 . . . . .
Since (eierjT (wp, fwi)) / (2@) is a sub-exponential random variable with sub-exponential norm at most

@ ((sf + (A4 ||w; — v~vi|\2)2) /ﬁ) Again we can apply Bernstein’s inequality and get with probability 1 — &

~

S = tow - (524 (B = [[wy = Will9)?) / (272) + tous log (1/7%)
+ ev/lou Tog(k/8) - (52 + (A + [[wi = Will,)*) / (27%)

for a constant ¢ > 0.

Using our assumption that ||w; — w;||, < A/10 for all i € [k], we get
i < (~tow + ¢ Vo 108(/8)) - (52 + 0.542) / (272) + 0.5ty log (1/72)

for some constant ¢’ > 0. We obtain a worst case bound by taking the maximum over all possible value of 7; as

1o < = 0.5tut — 0.5tous log ((1 _ c’\/log(k/é)/tout) (s2+ 0.5A2)) ,
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where we have taken the maximum over all possible values of 7.
Using the assumption that

ri/Th < 14 A*/50
and toy, > C'log(k/d) for some constant C' > 1, we obtain that

—tous - 77 /(27%) + 0.5t ous > tousA%/100, and
— o\/tout 10g(k/0) - 72/ (272) + 0.5t ous log (1-c' log(k/é)/tmn) ::C)(\/tmnlog(k/é)).

Further notice that ) )

1+ A2/5
since s2 < 1, and A < 2. Plugging in these facts into I, — 7; and applying the assumption that (st +A%)2) /72 >
(1+ A?/5) we get

Th = Ti > 0.5tous log (1 + A2/5) — 0y, A2/100 — O ( fout 1og(k/5))
By the fact that log (1 + A?/5) — A?/50 > A? /5000 for all A < 50, the above quantity is at least

6 (towe?) — O (Viow oa(k/3)) (24)

Since tour > O (log(k/6)/A%), we have that with probability 8, for all i € [k]\{h}, it holds that 7, — I; > 0, which implies
the correctness of the classification procedure. O

Proof of Lemma 5.3. Given n i.i.d. samples from our data generation model, by the assumption that n = 2 (%) =

Q (loi(ﬂ) and from Proposition D.7, it holds that the number of tasks such that 8 = w; is np; > %npi with probability

min

at least 1 — §. Hence, with this probability, there exists at least np; /10 i.i.d. examples for estimating w; and s?. By
Proposition D.10, it holds that with probability 1 — &, for all ¢ € [k], our estimation satisfies

2
% —wil2 = 0 (" <d“"g(’“/5”) . and

np;t
@ 2|=0 (kfp(i/ f>ds§> |
By Proposition D.7, it holds that
[pi —pil < 31%(16/5)1%

Since n = Q (M) , we finally get for all 7 € [k]

Pmin€2t

2
‘ o 2| < ESi J
S S an
7 1| = \/&7
|pi — pi| < min {pmin/1076pn/t/d}. O

B. Proof Theorem 2

We first bound the expected error of the maximum a posterior (MAP) estimator.
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Lemma B.1. Given estimated parameters satisfying |W; — w;ll, < A/10, (1 —A2?/50)52 < s? + ||W; — will3 <
(1+ A2/50) 52 for all i € [k], and a new task with T > © (log(k/5)/A*) samples D = {x;,y;}_,. Define the maximum
a posterior (MAP) estimator as R

Pumap (D) = w;

where
. T (y; — W x;)
i = argmax Z — =00 4 7log (1/5;) + log (Pi)
ekl \ o 20;

Then, the expected error of the MAP estimator is bound as

~ 2
E E E ( T D) — ) ]
Trew P(T) DT 0ew {x’y}NTW{ x fuap(P) -y

k k
<0+ Zpi [wi —Will; + Zpisf
i=1 i=1

Proof. The proof is very similar to the proof of Lemma A.15. The log of the posterior probability given the training data D
under the estimated parameters is

==Yy —x] W)/ (282) +7-log (1/3;) + log (5i), (25)
j=1

which is different from Equation 23 just by a log(1/ pl) additive factor. Hence, given that the true regression vector of the
new task 7"V is wy, it follows from Equation 24 that 0 h— l with probability at least 1 — § is greater than

O(rA?) — 6 (V/71og(k/3) ) +log (n/5i)
which under the assumption that |p; — p;| < p;/10 is greater than
O(rA%) — 6 ( Tlog(k/5)) ~log(1/pp) — log(10/9). (26)

If p;, > &/k, by our assumption that 7 > © (log(k/8)/A*), it holds that I, —1; > 0 for all i # h, and hence the MAP
estimator output wy, with probability at least 1 — §. With the remaining less than § probability, the MAP estimator output
BMAP = w; for some other ¢ # h which incurs ¢35 error ||5MAP —wpll2 < HBMAPHQ + |lwrll2 < 2.

If p;, < §/k, we pessimistically bound the error of ﬁMAp by ||BMAP —wp| <2

To summarize, notice that

~ 2
E E E ( iy D) )
Tnew wP(T) DTReY {x,y}~Trew [ x Buar(P) —y

-~ 2
S (R
Tuew SP(T) DT mew l: Brar(D) — wy ) + s3,

k k k
<3 (V= /01 (45 + (1= 6w = Wil13) ) + D" 4pit {pi < /81 + > pis?
i=1 i=1 i=1

k k
<46 + ZPz‘HWi —Wi|* + 40 + szsf
i=1 i=1

k k
i=1 =1

Replacing 86 by ¢ concludes the proof. O
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Next, we bound the expected error of the posterior mean estimator.

Lemma B.2. Given estimated parameters satisfying |[W; — wil, < A/10, 2 + |[W; — w3 < (1 4+ A2/50)82, s2 +
A%/2 > (14 A?/5)5? for all i € [k, and a new task with 7 > © (log(k/8)/A*) samples D = {x;,y;}1_,. Define the
posterior mean estimator as

where

T wlx 2
-—eXP< Z Qaé i) +Tlog(1/02)+10g(pz)>-

i=1 g

Then, the expected error of the posterior mean estimator is bound as

~ 2
E7uew wp(1) Epagnew Bix yygnew |:(XT5BayeS(D) - y) }

k k
<o+ Zpi [wi = ®il5 + Zpisf
i=1 i=1
Proof. This proof is very similar to the proof of Lemma B.1. Notice that

~ 2
E E E (XT (D) — )
Toew ~P(T) DT 1ew {x gy}~ T new [ ﬁB y ( ) Yy
2
: o = 0]+
TnewNP(T) DNTnew |: ﬁBaye — Wy, ) + sy,

where wy, is defined to be the true regression vector of the task 7™V,

| Bses(D) — wi

2
< W = wall, + (1 - ) Iwhll, + Z = Iwill,
Zz:l _]7$h i= 1L
~ 2

<= l,+2(1 Ln
S Wph — Wp 2 - =

Zf:l Li

2

< | I¥n = wally +2> Li/Ln 27)

i#h
Notice that
Li/Ln = exp(li — 1n)
where [; is the logarithm of the posterior distribution as defined in Equation 25. Therefore we can apply Equation 26 and
have that with probability 9,
li =l < —log(k/0)/A% < —log(k/d)
for 7 = Q(log(k/d)/A*), which is equivalent to
L;/Ly <0/k.
Plugging this into Equation 27 yields for a fixed 7%, with probability 1 — 4,
2

~ 2 R ~
| Boayes(P) = wi| < {190 = wally + 2" Li/ Lo
2 i#h
< [1Wh — w3 +45% + 46 [Wh — wal,

< [[%n — wa % + 86,



Meta-learning for Mixed Linear Regression

and the error is at most 4 for the remaining probability §. Hence we get for a fixed 7"V

3 L2 - 2 2

Ep~ues || Boayes(D) = wi [ + 57| < [n = will} + 57 + 126.
Finally taking the randomess of 7™V into account, we have
T 2
Ernew op(T)Ep~gnew By yygnew {(X BBayes(D) — y) }
k k
<1204+ pillwi = Wills + > pis?

i=1 i=1

Replacing 124 by ¢ concludes the proof. O

C. Proof of Remark 4.6

We construct a worst case example and analyze the expected error of the Bayes optimal predictor. We choose s; = o,
pi = 1/k, and w; = (A/v/2) e; forall i € [k]. Given a new task with 7 training examples, we assume Gaussian input
x; ~ N(0,1,) € R? and Gaussian noise y; = 8%, + ¢; € R with ¢; ~ N(0,0?) i.i.d. for all j € [7]. Denote the true
model parameter by 5 = wy, for some h € [k], and the Bayes optimal estimator is

E L7W77
i=1

k

D L

i=1

B=

where L; = exp (‘2%2 > (Y — wiij)Q). The squared /5 error is lower bounded by

2 k - ’
HB—WhH2 > 1D L Liwp,
i=1 i€[k]\{h} 9
2
2 )
A% (e pny Li/In )
_ ; (28)
2 (1 + D icimn} Lz‘/Lh)
Let us define I; = log L;, which is
1 < 2
ll——@ (y]—xj wl)
j=1
1 < 2
— ﬁ (ej + X;-r(Wh — Wz))

Notice that for all i € [k] \ {h}, E[l;] = —% (1 + 4%/5%). Using Markov’s inequality and the fact that /; < 0, we have that
for each fixed i € [k] \ {h},

Pl 23E[L]] > 2/3.

For each i € [k] \ {h}, define an indicator random variable I; = 1 {l; > 3E[;]}. The expectation is lower bounded by

(k—1).

Wl

E Zliz

ie[k]\{r}
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The expectation is upper bounded by

E| > LI<P| > I>T1 (k—1)

ie[k]\{r} ic[k\{h}
k—1
1-P I, > et
+ Z 3 3
€lkI\{r}

Combining the above two bounds together, we have

k—1

P L>""=| >1/2

2 Lz 2y
i€\ (k)

Hence with probability at least 1/2,

Z l =y > Z Z I; edE

ie[k]\{r} i€[k]\{h} ze[k \{r}

> Bl g (1eare)
- 3 )

which implies that Eq. (28) is greater than A?/8. Hence the expected f, error of the Bayes optimal estimator is

E..|@-1)°| =E [( G —B)Tx+e)2] = HB —EHz +02=A?/8+ 0%

D. Technical definitions and facts

Definition D.1 (Sub-Gaussian random variable). A random variable X is said to follow a sub-Gaussian distribution if there
exists a constant K > 0 such that

P[|X]|>t] < 2exp (—t*/K?) Vit>0.

Definition D.2 (Sub-exponential random variable). A random variable X is said to follow a sub-exponential distribution if
there exists a constant K > 0 such that

P[|X] > t] <2exp(—t/K) Vit>0.
Definition D.3 (Sub-exponential norm). The sub-exponential norm of a random variable X is defined as

_ 1
1X],, = supp~* (E[IXP)"7.
peN

A random variable is sub-exponential if its sub-exponential norm is finite.

Fact D.4 (Gaussian and sub-Gaussian 4-th moment condition). Let v and u denote two fixed vectors, we have

T N2 (. T 2}7 2 2 2
o )7 (0T =l - VB + 20,9

If x is a centered sub-Gaussian random variable with identity second moment, then
2 2
E[(vTx)" (u%)’] = 0 ([l - IVI13) -

Proposition D.5 (Matrix Bernstein inequality, Theorem 1.6.2 in (Tropp et al., 2015)). Let S1,...,S,, be independent,
centered random matrices with common dimension dy X ds, and assume that each one is uniformly bounded E [Sy] = 0 and
ISklls <LVEk=1,...,n
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Introduce the sum .
Z = Z Sk
k=1

and let v(Z) denote the matrix variance statistic of the sum:

v(Z) = max{HE [ZZT} ||2 7 ||IE [ZTZ] Hz}
Then
PWﬂbZﬂSWHﬁﬂWPLﬂJXZﬁ}
forallt > 0.

Fact D.6 (Hoeffding’s inequality (Hoeffding, 1963)). Ler Xy, ..., X,, be independent random variables with bounded
interval 0 < X; < 1. Let X = %ZLI X;. Then
P HY— E [Y] | > z} < 2exp {—27122} .

Proposition D.7 (¢, deviation bound of multinomial distributions). Let p = {p1,...,px} be a vector of probabilities (i.e.
p; > 0 foralli € [k] and Zle p; = 1). Let x ~ multinomial(n, p) follow a multinomial distribution with n trials and
probability p. Then with probability 1 — 4, for all i € [k],

1 3log(k/o
—T; —Pi| < Mpi,
n n
which implies
‘ 1X_pH < /310g(k/5)'
n . n
foralli € [k].
Proof. For each element x;, applying Chernoff Bound D.§ with z = 3 :);([%5) and taking a union bound over all ¢, we get
lxi ol < 310%(]“3/5)1%.
n n
for all ¢ € [k]. O

Fact D.8 (Chernoff Bound). Let X1, ..., X, be independent Bernoulli random variables. Let X = % S Xi. Then for
all0< o6 <1

}P’HYfE [YH >zE m} < eXp{szTLE [Y] /3}

Fact D.9 (e-tail bound for distributions with bounded second moment). Suppose random variable z with probability density
function p (-), satisfies E [z%] < o2, then for any event € with P[] > 1 — ¢, it holds that

B [z] - P[E]E [2]€]] < Veo.
Proof. Notice that

[E[] - PEJE -]
=[P [E]E [=|€]]

:’/Z]l{zeé_’}zp(z)dz

<\// 1{z €&} p(z)dz- / 22p(2)dz  (Using Cauchy-Schwarz)

<Veo.
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Proposition D.10 (High probability bound on the error of random design linear regression). Consider the following linear
regression problem where we are given n i.i.d. samples

XiNDyyizﬁTer—émie["]

where D is a d-dimensional (d < n) sub-Gaussian distribution with constant sub-Gaussian norm, E [x;] = 0, E [xix;'—] =

14, and €; is a sub-Gaussian random variable and satisfies E [¢;] = 0, E [eﬂ = o2,

1. Then, with probability 1 — 6, the ordinary least square estimator B ‘= argming, Z?:l (yl — wai)Q satisfies

o%(d + 10g(1/5))> .

n

ool <o
2

2. Define the estimator of the noise G* as

2

1 n
~2 AT,
o '_ndi_zl(yl ﬂxz)
Then with probability 1 — ¢, it holds that
log(1/4)

|02 — 0% < —==L=02,

T Vn—d

Proof. (Hsu et al., 2012, Remark 12) shows that in the setting stated in the proposition, with probability 1 — exp(—t), it
holds that the least square estimator

[p-s],<0 "

n

o* (a+ 2Vt +2t) +0(1>.

T'his implies that with probability 1 — 4, it holds that
~ 2 o?(d +1log(1/8
HB—ﬁHQ ——O<( g1/ ))>

n

To prove the second part of the proposition, we first show that 52 is an unbiased estimator for o2 and then apply Hanson-
Wright inequality to show the concentration. Define vector y = (y1,...,yn), € = (€1,...,€,) and matrix X =

[x1,..., %] " Notice that

2= L[S (- 7
1

n—dE
1

L :tr [In _X (XTx)”XTH =0,

where the last equality holds since X (XTX) “'XT has exactly d eigenvalues equal to 1 almost surely. For a fixed X with
rank d, by Hanson-Wright inequality (Vershynin, 2018, Theorem 6.2.1), it holds that

P[|3° — 0°| > 2] < 2exp {—cmin {(n —d)z*/0*, (n — d)z/0”}},

which implies that with probability 1 — §

52— o) :o(%&). 0
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E. Simulations

We set d = 8k, p = 1 /k, s = 1, and Py and P, are standard Gaussian distributions.

E.1. Subspace estimation

We compute the subspace estimation error p‘1 max;c ] || (UUT — I) win for various (t11,nr1) pairs for k = 16 and
present them in Table 2.

Table 2. Error in subspace estimation for k = 16, varying nr1 & tr1.

(tLhnLl) H 214 215 216 217 218 219 220

2! 0.652 0.593 0.403 0.289 0.195 0.132 0.101
22 0.383 0.308 0.194 0.129 0.101 0.069 0.05
23 0.203 0.153 0.099 0.072 0.052 0.034 0.03

E.2. Clustering

Given a subspace estimation error is ~ 0.1, the clustering step is performed with ng = max {k3/ 2 256} tasks for various
ty. The minimum ¢y such that the clustering accuracy is above 99% for at-least 1 — § fraction of 10 random trials is
denoted by tmin(1 — §). Figure 4, and Table 3 illustrate the dependence of k on ¢.,;, (0.5), and 1, (0.9).

tmiu 0.9 A tmin 0.5
* hn(09) (05)
X
2100 i
<90
80 x
X
70
60
Y
501 &
16 32 64 128 256
k

Figure 4. tin(0.9) and ¢min (0.5) for various k

Table 3. tmin for various k, for 99% clustering w.h.p.

|16 32 64 128 256
tmin(0.9) [[ 55 81 101 133 184
tmin(0.5) || 49 74 94 129 181

E.3. Classification and parameter estimation

Given a subspace estimation error is ~ 0.1, and a clustering accuracy is > 99%, the classification step is performed on
Nnro = max {5127 k3/ 2} tasks for variour {72 € N. The empirical mean of the classification accuracy is computed for
every tr9, and illustrated in Figure 6. Similar to the simulations in the clustering step, tyin(1 — 0) is estimated such that
the classification accuracy is above 99% for at-least 1 — § fraction times of 10 random trials, and is illustrated in Table 4.
With t19 = t1in(0.9), and various nyo € N, the estimation errors of \/7\\/', S, and p are computed as the infimum of e
satisfying (12), and is illustrated in Figure 5.



Meta-learning for Mixed Linear Regression

Table 4. tmin for various k, for 99% classification w.h.p.

—_

|16 32 64 128
tmin(0.9) || 31 34 36 38
(0.5) 28 34

28 36

tmin

"l -4- W 8§ k- B
109 et=i=t s
Nk ‘%_~~~
w e T
P T N S A X~
3 B FOU S B et
g el %
T30
21071 B
E
=
[£a)
1072
10° 10%

nra

Figure 5. Estimation errors for k = 32.

E.4. Prediction

As a continuation of the simulations in this section, we proceed to the prediction step for £k = 32 and d = 256. We use both
the estimators: Bayes estimator, and the MAP estimator and illustrate the training and prediction errors in Figure 2. We also
compare the prediction error with the vanilla least squares estimator if each task were learnt separately to contrast the gain
in meta-learning.

E.5. Comparison for parameter estimation against Expectation Maximization (EM) algorithm

For fair comparisons, we consider our meta dataset for k = 32, and d = 256 to jointly have n tasks with ¢, examples,
ny tasks with £z examples, and n o tasks with ¢72 examples as were used in Section E.3. We observe that the convergence
of EM algorithm is very sensitive to the initialization, thus we investigate the sensitivity with the following experiment. We
initialize W(®) = Pp, 0.1) (W + Z), where Z; ; ~ N'(0,7%) Vi € [d],j € [k], s = |q], where g ~ N (s,0.11}), and
p® = |z|/||z||, where z ~ N (p,I)/k). Px(-) denotes the projection operator that projects each column of its argument
on set X'. We observe that EM algorithm fails to converge for v2 > 0.5 for this setup unlike our algorithm. When EM
converges, we observe similar estimation errors as in Figure 5.
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Figure 6. Classification accuracies for various k




