
Online Learning for Active Cache Synchronization

Andrey Kolobov 1 Sébastien Bubeck 1 Julian Zimmert 2

Abstract
Existing multi-armed bandit (MAB) models make
two implicit assumptions: an arm generates a pay-
off only when it is played, and the agent observes
every payoff that is generated. This paper intro-
duces SYNCHRONIZATION BANDITS, a MAB vari-
ant where all arms generate costs at all times, but
the agent observes an arm’s instantaneous cost
only when the arm is played. SYNCHRONIZATION

MABs are inspired by online caching scenarios
such as Web crawling, where an arm corresponds
to a cached item and playing the arm means down-
loading its fresh copy from a server. We present
MIRRORSYNC, an online learning algorithm for
SYNCHRONIZATION BANDITS, establish an adver-
sarial regret of O(T 2/3) for it, and show how to
make it practical.

1. Introduction
Multi-armed bandits (MAB) (Robbins, 1952) have been
widely applied in settings where an agent repeatedly faces
K choices (arms), each associated with its own payoff distri-
bution unknown to the agent at the start, and needs to eventu-
ally identify the arm with the highest mean payoff by pulling
a subset of arms at a time and observing a payoff sampled
from their distributions. MABs’ defining property is that
the agent observes an arm’s instantaneous payoff when and
only when the agent plays it. A key hidden assumption that
goes hand-in-hand with it in the existing bandit models is
that each arm generates reward when and only when it is
played, which, combined with the bandit feedback property,
also implies that the agent observes all generated payoffs.

In this paper, we go beyond these seemingly fundamental
assumptions by identifying a class of practical settings that
violate them and analyzing it using online learning theory.
Specifically, this paper formalizes scenarios that we call

1Microsoft Research, Redmond 2Google Research, Berlin.
Work on this paper partially done during a visit to Microsoft
Research, Redmond. Correspondence to: Andrey Kolobov
<akolobov@microsoft.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

SYNCHRONIZATION MABs. In these settings, the agent can
be thought of as holding copies of K files whose originals
come from different remote sources. As time goes by, the
files change at the sources, and their copies increasingly
differ from the originals, becoming stale. The agent’s task
is to refresh these files by occasionally downloading their
new copies from remote sources, under a constraint B on
the average number of downloads per time unit.

For each file, the agent is continually penalized for its stale-
ness. The expected penalty at each time step due to this file
is a non-decreasing function of the time since the file’s last
refresh. Playing arm k here corresponds to refreshing file
k: doing so temporarily reduces its staleness and thereby
diminishes the cost incurred due to it per time unit. The goal
is to find a synchronization policy that minimizes regret in
terms of the average staleness penalties by refreshing files
according to a well-chosen schedule.

Crucially, at any moment the agent doesn’t know how out-
dated its copy of a given file is, except at the time when
it downloads its fresh copy, and therefore most of the time
doesn’t know the penalties it is incurring. It observes the
penalty only when it plays an arm, i.e., refreshes a file, and
has a chance to see how different the cached copy was right
before the refresh. Even this action reveals only the instan-
taneous penalty due to this file, not the cumulative penalty
the file has brought on since its last refresh.

SYNCHRONIZATION MABs are inspired by problems such
as web crawl scheduling (Wolf et al., 2002; Cho & Garcia-
Molina, 2003a; Azar et al., 2018; Kolobov et al., 2019a;
Upadhyay et al., 2020) and database update management
(Gal & Eckstein, 2001; Bright et al., 2006). All these set-
tings involve a cache that must proactively initiate down-
loads to refresh its content. This is in contrast to, e.g., Web
browser caches that passively monitor a stream of download
requests initiated by another program. The few existing
works on policy learning for active caching (Kolobov et al.,
2019a; Upadhyay et al., 2020) apply only to specific penalty
functions. In contrast, the theoretical results in this paper
are independent of the penalties’ functional form, and come
with a practical online learning strategy for this model.

High-level analysis idea and paper outline. Online learn-
ing theory is a powerful tool for analyzing decision-making
models where an agent operates in discrete-time instanta-
neous rounds by playing a candidate solution (arm), imme-

Online Learning for Active Cache Synchronization

diately getting a feedback on it (a sample from the arm’s
payoff distribution), and using it to choose a candidate so-
lution for the next round. Unfortunately, online learning’s
traditional assumptions clash with the properties of our set-
ting. As Section 2 describes, SYNCHRONIZATION MAB is a
continuous-time model with non-stationary sparsely observ-
able costs. Its candidate solutions are multi-arm policies
(Section 3). Getting useful feedback on a policy, such as an
estimate of its cost function or gradient, isn’t instantaneous;
it requires playing the policy for a non-trivial stretch of time.

In Section 4, we present the MIRRORSYNC algorithm, which
continuously plays a candidate policy along with “ex-
ploratory” arm pulls, periodically updating it with online
mirror descent (Nemirovsky & Yudin, 1983; Bubeck, 2016).
It uses a novel unbiased policy gradient estimator that op-
erates in the face of sparse policy cost observations. Our
regret analysis of MIRRORSYNC in Section 5 critically relies
on the convexity of policy cost functions – a property we
derive in Section 3 from minimal assumptions on SYNCHRO-
NIZATION MABs’ payoffs. The regret analysis treats time
intervals between MIRRORSYNC’s policy updates as learn-
ing “rounds” and thereby brings online learning theory to
bear on SYNCHRONIZATION BANDITS. Section 6 introduces
ASYNCMIRRORSYNC, a practical MIRRORSYNC variant that
lifts MIRRORSYNC’s idealizing assumptions. In Section 8,
we compare the two algorithm empirically.

The contributions of this paper are thus as follows:

(1) We cast active caching as an online learning problem
with sparse feedback, enabling principled theoretical analy-
sis of this setting under a variety of payoff distributions.

(2) Based on this formulation, we propose a theoretic strat-
egy for active caching under unknown payoff distributions
and derive an adversarial regret bound of O(T 2/3) for it. In
doing so, we overcome the challenges of sparse and tem-
poral feedback inherent in this scenario that existing online
learning theory does not address.

(3) We present a practical variant of the above strategy that
lifts the latter’s assumptions and, as experiments demon-
strate, has the same empirical convergence rate.

2. Model formalization
SYNCHRONIZATION BANDITS are a continuous-time MAB
model with K arms. Other than operating in continuous-
time it differs from existing MAB formalisms in the mecha-
nism by which arms generate costs/rewards and the observ-
ability of the generated costs from the agent’s standpoint. In
this section we detail both of these aspects, using the afore-
mentioned cache update scenario as an illustrating example.

Cost-generating processes. In SYNCHRONIZATION MABs,
every arm k incurs a stochastically generated cost ĉk,t at
every time instant t, whether the arm is played or not. How-

ever, the distribution of arm k’s possible instantaneous costs
at time t depends on how much time has passed since the
last time arm k was played to refresh the corresponding
cached item. We denote the length of this time interval as
τk(t) ∈ [0,∞). Thus, arm k’s cost generation process is de-
scribed by a family of random variables {ck(τk(t))|t ≥ 0}
as stated in the following assumption:
Assumption 1. (Cost generation) At time t, each arm incurs
a cost independently of being played by the agent. The
instantaneous cost ĉk,t due to arm k at time t is sampled
from a random variable ck,t = ck(τk(t)) s.t.: (1) τk(0) ,
0; (2) ck(0) = DiracDelta(0); (3) there exists a bound
U < ∞ s.t. supp(ck(τ)) ⊆ [0, U] for every arm’s cost
generation process ck and any time interval length τ ≥ 0.

By this assumption, for every arm and any amount of time
τ since its latest play, its cost expectation is well-defined:

ck(τ) , E[ck(τ)]

Agent’s knowledge and cost observability. While costs
are generated by all arms continually, in our model the agent
doesn’t observe most of them, with an important exception:
Assumption 2. (Cost knowledge and observability) For
each arm k, the agent observes a cost ĉk,t ∼ ck,t at time t
if and only if the agent plays arm k at that time. The agent
doesn’t know the distributions of random variables ck,t.

Assumption 2 is crucial in two ways. First, it means that our
model provides only bandit feedback. Namely, the agent
doesn’t see arms’ costs at all times, unlike in related models
such as maintenance scheduling (Bar-Noy et al., 1998). Sec-
ond, coupled with Assumption 1 it implies that there is no
causal relationship between playing an arm and incurring a
cost, which is an implicit assumption that standard bandit
strategies rely on.

Arm play modes. At any time t, any of SYNCHRONIZATION

MAB’s arms can be played in one of two modes:

Sync mode. Playing arm k in this mode at time t resets the
arm’s state, i.e., sets τk(t)← [0. In addition, per Assumption
2, the agent observes the arm’s instantaneous cost sample
ĉk,t immediately before τk(t) is reset to 0.

In the case of a cache, this means downloading a fresh
copy of file k, estimating the difference between k’s current
original and the cached copy, and overwriting the cached
copy with the new one.

Probe mode. By playing arm k allows in probe mode, the
agent observes the arm’s instantaneous cost, but the arm’s
state τk(t) is not reset.

In caching settings, this corresponds to downloading a fresh
copy of item k, but using it purely to estimate the difference
between k’s current original and the cached copy, without
overwriting the cached copy.

Online Learning for Active Cache Synchronization

Since, by Assumption 1, ck(0) = 0, playing an arm in
sync mode gives the agent a way to temporarily reduce the
expected rate at which the arm incurs costs. However, due
to the following assumption, after a sync play the arm’s cost
generation rate starts growing again:

Assumption 3. (Cost monotonicity) For every arm k, the
means ck(τk(t)) of instantaneous cost random variables
ck(τk(t)) are non-decreasing in time since the latest sync-
mode play τk(t). If arm k was played in sync mode at
time t0, then any sequence of arm k’s cost observations
ĉk,1, ĉk,2, . . . yielded by probe-mode plays after t0 and until
this arm’s next sync-mode play at time t′0 is non-decreasing.

Arm state τk(t) can be viewed as the amount of time that
has passed since the arm’s last sync by time point t; the
more time has passed, the more cost the arm is incurring per
time unit. Playing an arm in sync mode simply resets this
time counter. Thus, according to Assumption 3, not only
does the total cost generated by arm k since its previous
sync play grow as time goes by – which is to be expected –
but so does the rate at which it happens.

Note that probe-mode arm plays don’t help the agent reduce
running costs directly. Instead, as we show in Section 4,
they help the agent learn a good arm-playing policy faster.

Example. All of the above assumptions are natural in real-
world scenarios that inspired the SYNCHRONIZATION model.
For instance, in Web crawling each online web page accumu-
lates changes according to a temporal process Dk(t), which
is widely assumed to be Poisson (i.e., memoryless) in the
Web crawling literature (Wolf et al., 2002; Cho & Ntoulas,
2002; Cho & Garcia-Molina, 2003a;b; Azar et al., 2018;
Kolobov et al., 2019a;b; Upadhyay et al., 2020). For each
indexed page, the agent (the search engine) incurs a cost
Ck(d) due to serving outdated search results, as a function of
the total difference d between the indexed page copy and the
online original. From this perspective, ck(τ) , Ck(Dk(τ)),
but at least one other approach models ck(τ) directly as a
function of a web page copy’s age (Cho & Garcia-Molina,
2000). In either case, Assumption 3 holds: the more time
passes since the page’s last crawl, the higher the expected in-
stantaneous penalty. Moreover, penalties don’t decrease be-
tween two successive crawls of a page: e.g., in case changes
are generated by a Poisson process, their number can only
grow with time since last refresh, and so can the penalty.

3. Policies and their cost functions
In order to derive a learning strategy for SYNCHRONIZATION

BANDITS (Section 4) and its regret analysis (Section 5), we
first derive the necessary building blocks: the cost of an
arbitrary policy for this model, the class of policies that will
serve as our algorithm’s hypothesis space, and parameter-
ized cost functions for policies of this class.

Policy costs. Our high-level aim is finding a SYNCHRONIZA-
TION policy π that has a low expected average cost over
an infinite time horizon. Whether a policy π is history-
dependent, stochastic, or neither, executing it produces a
schedule σk = ((t1, l1), (t2, l2), . . .) for each arm k, a pos-
sibly infinite sequence of time points tnk when the arm is to
be played and corresponding labels lnk specifying whether
the arm should be played in probe or sync mode at that time.
For convenience, WLOG assume that t0 always refers to
t = 0, let τnk , tnk − tnk−1, and for any finite horizon H
let Nk(H) be the index of schedule σk’s largest time point
not exceeding H:

Nk(H) ,

{
argmaxn∈N{tn ∈ σk|tn ≤ H} if such n exists
∞ otherwise

(1)
Given this definition, let tNk(H)+1 , H .

Recalling that each arm has a specific time-dependent cost
distribution ck(τk(t)) with mean ck(τk(t)), we define the
average infinite-horizon cost Jσkk of arm k’s schedule σk as

Jσkk , lim inf
H→∞

E

 1

H

Nk(H)+1∑
nk=1

∫ τnk

0

ck(τ)dτ

= lim inf

T→∞

1

H

Nk(H)+1∑
nk=1

∫ τnk

0

ck(τ)dτ (2)

Letting

Ck(τ ′) ,
∫ τ ′

0

ck(τ)dτ, (3)

we can rewrite Jσkk ’s definition as

Jσkk = lim inf
H→∞

1

H

Nk(H)+1∑
nk=1

Ck(τnk) (4)

Here, Ck(τnk) is the total cost that arm k is expected to
incur between (nk − 1)-th and nk-th plays according to
schedule σk. Thus, Jσkk is just the average of these costs
over the entire schedule. If the schedule stops playing arm
k forever after some time t, Jσkk may be infinite.

Running a policy π amounts to sampling a joint schedule
σ = {σk}Kk=1. Therefore, we define policy cost Jπ as

Jπ , E
σ∼π

[
1

K

K∑
k=1

Jσkk

]
(5)

= E
σ∼π

 1

K

K∑
k=1

lim inf
H→∞

1

H

Nk(H)+1∑
nk=1

Ck(τnk)

Target policy class. Instead of considering all possible SYN-
CHRONIZATION policies as potential solutions, in this paper
we focus on those whose sync-mode plays are periodic, with
equal gaps between every two consecutive such plays of a

Online Learning for Active Cache Synchronization

given arm. For arm k, we denote the length of these gaps as
1/rk > 0 length, rk being a policy parameter for this arm
and r , (rk)Kk=1 being the joint parameter vector for all
arms. Importantly, our policies do allow probe-mode arm
plays but don’t restrict how the time points for these plays
are chosen. In particular, they may be chosen stochastically,
as long the timings of sync-mode plays are deterministically
periodic.

Formally, for a scheduled arm pull time point tnk in sched-
ule σk, let NextSyncσk(tnk) be the next sync-mode play
of arm k in σk, i.e., tn′

k
= NextSyncσk(tnk) if tnk =

min{tn′′
k
| n′′k > nk, (tn′′

k
, ln′′

k
) ∈ σk, ln′′

k
= sync}. Then

our target policy class is

Π = {π(r) | ∀[σ ∼ π(r), k ∈ [K], and (tnk , lnk) ∈ σk
s.t. lnk = sync and tn′

k
= NextSyncσk(tnk)]

tn′
k
− tnk =

1

rk
for rk ∈ r} (6)

Parameters r can be interpreted as rates at which arms are
played in sync mode. For π ∈ Π, policy costs are uniquely
determined by sync-mode play rates r: although these pa-
rameters ignore the timing of probe plays, probe plays don’t
affect cost generation and therefore policy cost.

We let J(r) denote π(r) ∈ Π’s policy cost. Equation 5
implies that its cost functions J(r) have a special form
critical for our regret analysis in Section 5 – they are convex:

Lemma 1. For any policy π(r) ∈ Π,

J(r) =
1

K

K∑
k=1

rkCk

(
1

rk

)
. (7)

J(r) and Jk(rk) , rkCk
(

1
rk

)
for each k ∈ [K] is convex

and monotonically decreasing for r > 0.

Proof. See the Appendix. �

The convexity of the cost functions plays a crucial role
in obtaining the regret bounds (Section 5) for the policy
learning algorithm presented in Section 4.

Policy constraints. Naturally, we would like to find a
π(r) ∈ Π that minimizes J(r) (Equation 7). As described,
however, Π has no such policy: note that limr→∞ J(r) =
0, but no finite r attains this limit. However, in practical ap-
plications the rates rk cannot be arbitrarily high individually
or in aggregate, and are subject to several constraints. There-
fore, in this paper we regard feasible rk as bounded from
above for all k by a universal bound rmax. Moreover, we
assume that the sum of all arms’ play rates may not exceed
some value B > 0. E.g., in Web crawling B is commonly
interpreted as a limit on crawl rate imposed by physical net-
work infrastructure (Azar et al., 2018; Kolobov et al., 2019a;
Upadhyay et al., 2020). Last but not least, valid rk values
may not be 0, since this implies never playing this arm after

a certain time point. In applications such as Web crawling,
this means abandoning a cached item (e.g., an indexed web-
page) to grow arbitrarily stale, which is unacceptable, so we
impose a minimum sync-mode play rate rmin on every arm.
Note that since, by Assumption 1, every ck(τ) is bounded
for τ ≥ 0, every Jk(rk) (Lemma 1) is bounded as well.

Policy optimization. Thus, if we knew cost processes ck(.),
we could use them to compute Ck(.) for all arms and would
face the following optimization problem:
Problem 1 (SYNCHRONIZATION BANDIT instance).

Minimize: J(r) =
1

K

K∑
k=1

rkCk

(
1

rk

)
(8)

subject to: r ∈ K ,
{
r′ ∈ [rmin, rmax]K | ||r′||1 = B

}
Notice that this formulation implicitly assumes that the en-
tire bandwidth B will be used for sync-mode arm plays –
indeed, if the model is known, there is no need for probes.

As a side note, we remark that the class of periodic policies
Π doesn’t restrict Problem 1’s solution quality compared to
broader the class of deterministic open-loop policies. We
state it here informally as a proposition, which we reformu-
late more precisely and prove in the Appendix A:
Proposition 1. For a given K-armed SYNCHRONIZATION

BANDIT instance (Problem 1), the optimal periodic policy
π∗ ∈ Π has the same cost J∗ as the optimal general deter-
ministic open-loop policy under the same constraints.

4. Online learning for cache synchronization
In reality we don’t know the cost generation processes and
can’t solve the above optimization problem directly. Instead,
we adopt an online perspective on SYNCHRONIZATION ban-
dits. A key contribution of this paper that we present in
this section is MIRRORSYNC (Algorithm 1), an algorithm
that treats a SYNCHRONIZATION MAB as an online learning
problem. A MIRRORSYNC agent can be viewed operates
in rounds T = 1, 2, . . . Tmax, in each round “playing” a
candidate policy parameter vector rT , suffering a “loss”
ĴT ∼ JT (rT), and updating rT to a new vector rT +1 as
a result. As we show in Section 5, MIRRORSYNC has an
adversarial regret of O(T 2/3

max).

MIRRORSYNC’s novelty is due to the fact that, despite super-
ficial similarities to standard online learning, our setting is
different from it in crucial ways, and MIRRORSYNC circum-
vents these differences:

(1) Although the agent can be viewed as suffering loss ĴT , it
doesn’t observe this loss. By SYNCHRONIZATION MAB’s as-
sumptions, it observes only samples of instantaneous costs
ck(.), and only when it plays arms. Existing techniques
don’t offer a way to estimate the gradient ∇J in this case.
Moreover, even these impoverished observations take real-

Online Learning for Active Cache Synchronization

world time to collect. (2) In online learning, regret analysis
normally assumes ∇J to be bounded. This isn’t quite the
case in our model. While we could assume a bound on
∇J linear in 1/rmin, it would be detrimental to the regret
bound when 1/rmin is large. We show how MIRRORSYNC

addresses challenge (1) in this section, and circumvent chal-
lenge (2) in Section 5.

A note on infinite vs. finite-horizon policies. The policy
cost functions we derived in Section 3 describe the steady-
state performance of a policy over an infinite time horizon.
However, MIRRORSYNC’s rounds are finite. Thus, the cost
function J (Equation 7) that MIRRORSYNC uses as a basis
for policy improvement is a proxy measure for the average
costs that running MIRRORSYNC incurs in each round.

MIRRORSYNC operation. At a high level, MIRRORSYNC’s
main insight is allocating a small fraction of available band-
width B, determined by input parameter ε (Algorithm 1),
to probe-mode arm plays, while using the bulk

(
1

1+ε

)
B of

the bandwidth (line 2) to play in sync mode according to the
current rates r. MIRRORSYNC uses instantaneous cost sam-
ples obtained from both to estimate the gradient ∇J (lines
11 - 19) by individually estimating its partial derivatives
(lines 23-25), which we denote as

∂kJ ,
∂J

∂rk
for short. At the end of each epoch, it does online mirror
descent on these estimates to get a new sync-mode policy r
(lines 20, 42-43).

In more detail, in the spirit of online learning, MIRRORSYNC

assumes that at the start of each round all arms’ cost gen-
eration processes have just been reset to ck(0), and restarts
the time counter at t = 0 for every arm (line 9). (In prac-
tice, this assumption is unrealistic, and we lift it in another
variant of MIRRORSYNC in Section 6.) Then, for every arm
k, it schedules sync-mode plays at intervals 1/rk (lines 29,
37-38) until the end of the current round, and attempts to
insert one probe-mode play into each such interval (lines
33-36) independently with probability ε (line 32), at a point
chosen uniformly at random over the interval’s length (line
34). Executing the constructed schedule (line 13) yields
cost samples that are used in the aforementioned gradient
estimation, which, crucially, is unbiased:

Lemma 2. For a rate vector r = (rk)Kk=1 and a probability
ε, suppose the agent plays each arm in sync mode 1/rk
time after that arm’s previous sync-mode play, observing
a sample of instantaneous cost ĉk ∼ ck(1/rk). Suppose
also that in addition, with probability ε independently for
each arm k, the agent plays arm k in probe mode at time
t ∼ Uniform[0, 1/rk] after that arm’s previous sync-mode
play, observing a sample of instantaneous cost ĉ(ε)k ∼ ck(t).

Algorithm 1: MIRRORSYNC

Input: rmin – lowest allowable arm play rate
rmax – highest allowable arm play rate
B – bandwidth
ε – probability of probe-mode arm play
η – learning rate
Tmax – number of rounds

Output: r – arm play rates.

1 Tround ←[1/rmin // Round length

2 Kε ← [
{
x ∈ [rmin,

rmax
1+ε

]K
∣∣∣∣||r||1 = B

1+ε

}
3 r ←[argminx∈Kε BarrierF(x) // Initialize play rates
4 foreach round T = 1, . . . , Tmax do
5 // At the start of each round, all arms are assumed
6 // to be synchronized and time re-starts at 0.
7 foreach arm k ∈ [K] do
8 // Construct a schedule σTk for the T -th round.
9 tprev,k ←[0

10 σTk , tprev,k ←[
ScheduleArmPlays(tprev,k, rk, Tround)

11 foreach arm k ∈ [K] simultaneously do
12 // Sample costs by playing according to σTk
13 (ĉk,t1 , . . . , ĉk,t|σT

k
|
)← [Play(σk)

14 foreach n = 1, . . . , |σTk | and (tn, ln) ∈ σTk do
15 if ln == sync then ĉ(ε) ←[none, ĉ← [ĉk,tn
16 else ĉ(ε) ← [ĉk,tn , ĉ← [ĉk,tn+1 , n←[n+ 1

17 ĝk ←[GradJSample(ĉ(ε)
k

,ĉk,rk,ε)

K

18 break

19 ĝT ←[(ĝ1, . . . , ĝK)
20 r ←[MirrorDescentStep(η,Kε, ĝT , r)

21 Return r
22

23 GradJSample(ĉ(ε)k , ĉk, rk, ε):
24 if ĉ(ε)k == none then Return 0

25 else Return 1
εrk

(ĉ
(ε)
k − ĉk)

26
27 ScheduleArmPlays(tprev,k, rk, interval len):
28 σk ←[(), nk ←[0, t0 ← [tprev,k
29 while tnk + 1/rk < interval len do
30 tprev sync ←[tnk
31 nk ←[nk + 1
32 Probe ∼ Bernoulli(ε)
33 if Probe then
34 tnk ∼ Uniform(tnk−1, tnk−1 + 1/rk)
35 σk ←[Append(σk, (tnk , probe))
36 nk ← [nk + 1

37 tnk ← [tprev sync + 1/rk
38 σk ←[Append(σk, (tnk , sync))

39 tprev,k ←[tnk
40 Return σk, tprev,k
41
42 MirrorDescentStep(η,K, g, r) :
43 Return argminx∈K{η〈x, g〉+ DivF(x, r)}
44

45 DivF(x, r) : Return
∑K

k=1− log(xk/rk) + xk/rk − 1
46

47 BarrierF(r) : Return
∑K

k=1− log(rk)

Online Learning for Active Cache Synchronization

Then for each k,

gk ,

{
0 if ¬Bernoulli(ε)

1
εrkK

(ĉ
(ε)
k − ĉk) if Bernoulli(ε)

is an unbiased estimator of ∂kJ(rk).

Proof. See the Appendix. �

In one round, MIRRORSYNC may get several gradient esti-
mates for a given arm, in which case it takes the first one
(line 18). To get a regret bound, however, it is crucial to
ensure that for each arm MIRRORSYNC receives at least one
such estimate per round, even if the estimate is 0 (line 18).
This is why we set the length of each round to be 1/rmin
(line 1) — the largest value 1/rk and hence the longest time
that MIRRORSYNC may have to wait in order to get a cost
sample at 1/rk.

5. Regret analysis
We generalize our stochastic setting to an adversarial prob-
lem and prove an adversarial regret bound of orderO

(
T

2
3

)
.

This means that the cost distributions ck and all derived
quantities (c̄k, C̄k, Jk) need not be non-stationary from one
round to the next. The cost distributions and derived func-
tions at round T are denoted by cTk , c̄Tk , C̄Tk , JTk and can
be chosen by an oblivious adversary ahead of time.

Regret. We define the regret with respect to a fixed schedule
r ∈ [0,∞)d by

Reg(r) , E

[Tmax∑
T =1

JT (rT)

]
−
Tmax∑
T =1

JT (r) ,

where the expectation is over the randomness of observed
costs ĉk and rT is the choice of the algorithm in round T .
Our goal is to compete with the best possible schedule r∗

using the full available budget:

Reg = Reg(r∗) , where r∗ , min
r∈K0

Tmax∑
T =1

JT (r),

where K0 is Kε (line 2 of Algorithm 1) with ε = 0.

Since we are not be able to obtain any information on the
function value or gradient of JT without an allocated explo-
ration, we also define the best possible schedule r∗ε given an
exploration constrained by ε (lines 32 - 34 of Algorithm 1):

r∗ε , arg min
r∈Kε

Tmax∑
T =1

JT (r) .

The regret can be decomposed into

Reg = Reg(r∗ε)︸ ︷︷ ︸
in-policy regret

+

Tmax∑
T=1

(JT (r∗ε)− JT (r∗))︸ ︷︷ ︸
exploration gap

,

which we bound separately.

In-policy regret. The problem is an instance of online
learning, but online learning literature typically assumes that
the gradients of the objective functions∇JT are uniformly
bounded w.r.t. some norm. Our setting differs in a key
aspect: the gradients ∂kJ(r) scale proportionally to r−1k .

A naive solution would be to bound ∂kJ(r) . r−1min and
use gradient descent. However, the regret would scale with
r−1min, which might be prohibitively large.

We show that mirror descent with a carefully chosen poten-
tial, namely the log barrier F (r) =

∑K
k=1 log(rk), adapts

to the geometry of the gradients and replaces the polynomial
dependency on r−1min by a log dependency.

Theorem 5.1. For any sequence of convex functions
(JT)TmaxT=1 and learning rate 0 < η < Kε

2U , the in-policy
regret of MIRRORSYNC is bounded by

Reg(r∗ε) ≤ K

η
log

(
B

rminK

)
+ η

U2

εK
Tmax .

Proof. See the Appendix. �

Exploration Gap. We show that the exploration gap scales
proportionally to ε and is independent of r−1min. On first
sight, this bound is surprising because the exploration gap
should be approximately 〈

∑Tmax
T =1 ∇JT (r∗), r∗ − r∗ε〉 and

the gradients ∇JTk (r∗) could be unbounded (i.e. of order
r−1min). The high-level idea behind the following lemma is
the observation that at the optimal point r∗, the gradients in
all coordinates must coincide and hence the gradient cannot
be of order r−1min even if r∗k = rmin.

Lemma 3. The exploration gap is bounded by
Tmax∑
T =1

(JT (r∗ε)− JT (r∗)) ≤ 2εUTmax .

Proof. See the Appendix. �

Finally we are ready to present the main result.

Corollary 1. The regret of MIRRORSYNC with η =

K
U

√
log
(

B
rminK

)
ε
Tmax and ε = T −

1
3

max log
1
3

(
B

rminK

)
is

bounded for any Tmax > 8 log
(

B
rminK

)
by

Reg ≤ 3UT
2
3
max log

1
3

(
B

rminK

)
. (9)

Proof. The choice of η, ε and the bound on Tmax ensure
that we can apply Theorem 5.1 to bound the in-policy regret.
The in-policy regret simplifies to

Reg(r∗ε) ≤ 2U

√
Tmax
ε

log

(
B

rminK

)
.

Online Learning for Active Cache Synchronization

Adding the exploration gap from Lemma 3 and substituting
the value for ε completes the proof. �

6. Making MIRRORSYNC practical
Although MIRRORSYNC lends itself to theoretical analysis,
several design choices make its vanilla version impractical.
(1) MIRRORSYNC assumes that all arms are synchronized
“for free” at the start of each round so that each round starts
in the same “state”, which is unrealistic. (2) MIRRORSYNC

waits until the end of each 1/rmin-long round to update all
arms’ play rates simultaneously, which could be months in
applications like Web crawling. (3) MIRRORSYNC’s further
source of inefficiency is that even if arm k has produced
several ∂kJ(rk) samples in a given round, MIRRORSYNC

uses only one of them. ASYNCMIRRORSYNC (Algorithm
2), which can be viewed as a practical implementation of
MIRRORSYNC, mitigates these weaknesses of MIRRORSYNC.

In contrast to MIRRORSYNC, which performs updates in
rigidly defined rounds, ASYNCMIRRORSYNC updates policy
according to a user-specified schedule S (see Algorithm
2’s inputs). The length of inter-update periods is unim-
portant for ASYNCMIRRORSYNC, unlike for MIRRORSYNC

(line 1, Alg. 1), due to a major difference between the two
algorithms. MIRRORSYNC aims to update all arms’ param-
eters synchronously at the end of each round and makes
the rounds very long to guarantee that each arm has gener-
ated at least one gradient estimate by the end of each round.
In the meantime, ASYNCMIRRORSYNC does updates asyn-
chronously, performing mirror descent at an update time
t
(upd)
i ∈ S only on those arms that happen to have gener-

ated at least one new gradient sample since the previous
update time t(upd)i−1 (lines 26-33). ASYNCMIRRORSYNC does
these local updates while respecting the global constraint
B by using the sum of current play rates or arms that are
about to be updated as a local constraint (line 32). Thus,
ASYNCMIRRORSYNC doesn’t need to make inter-update in-
tervals excessively long and doesn’t suffer from issue (1).

As a side note, the reason MIRRORSYNC’s regret bound in
Corollary 1 has no linear dependence on 1/rmin is because
it characterizes regret in terms of the number of rounds,
not wall-clock time. Nonetheless, this dependency matters
empirically, and obtaining a wall-clock-time regret bound
that is free from it is an interesting theoretical problem.

ASYNCMIRRORSYNC’s asynchronous update mechanism
also removes the need for “free” simultaneous sync-mode
play of all arms after each round (2). Recall that before
each sync-mode play of arm k with probability ε we can
play arm k another time, and so far we have chosen to do so
in probe mode. The ScheduleArmPlays routine (line 27,
Alg. 1) that both MIRRORSYNC and ASYNCMIRRORSYNC

rely on attempts this (lines 32-33, Alg. 1) for every sync-
mode arm play except the first arm play of each round.
ASYNCMIRRORSYNC takes advantage these unused chances

Algorithm 2: ASYNCMIRRORSYNC

Input: rmin – lowest allowable arm play rate
rmax – highest allowable arm play rate
B – bandwidth
ε – probability of probe-mode arm play
η – learning rate
Tmax – (wall-clock) time horizon
S = (t

(upd)
1 , t

(upd)
2 , ...) – update schedule

Output: r – arm play rates.

1 Kε ← [
{
x ∈ [rmin,

rmax
1+ε

]K
∣∣∣∣||r||1 = B

1+ε

}
2 r ←[argminx∈Kε BarrierF(x) // Initialize play rates
3 tnow ← [0 // current time
4 // Extend arms’ schedules σk until the next update time

foreach arm k ∈ [K] do
5 tprev,k ← [tnow

6 σk, tprev,k ← [
ScheduleArmPlays(tprev,k, rk, t(upd)1)

7 // tnow is incremented continuously
8 while tnow ≤ Tmax do
9 // Play each arm k’s current σk, record cost samples

10 foreach arm k ∈ [K] simultaneously do
11 (ĉk,t1 , . . . , ĉk,t|σk|)←[Play(σk)

12 // If now is the next update time i ...
13 if tnow==t(upd)i for some t(upd)i ∈ S then
14 Ai ← [∅ // Set of arms that will be updated now
15 // Collect cost samples since prev. update time
16 foreach arm k ∈ [K] do
17 foreach n, (tn, ln) ∈ σk | tn ≥ t(upd)i−1 do
18 if ln == sync then
19 ĉ(ε) ← [none, ĉ←[ĉk,tn
20 else // This was a probe play
21 ĉ(ε) ← [ĉk,tn , ĉ← [ĉk,tn+1

22 n← [n+ 1

23 // Estimate ∂kJ per Lemma 2 (Alg. 1,
24 // lines 23-25) using collected samples
25 ĝn,k ← [GradJSample(ĉ(ε)k , ĉk, rk, ε)

26 if we got at least one ĝn,k for arm k then
27 Ai ← [Ai ∪ {k}
28 gk ←[Avg({ĝn,k | tn ≥ t(upd)i−1 })

29 // Normalize new grad. estimates
30 gi ←[1

|Ai|
(gk)k∈Ai

31 // Now, update play rates only for arms in Ai

32 Kε,i ←[{
x ∈ [rmin,

rmax
1+ε

]|Ai|
∣∣∣∣||r||1 =

∑
k∈Ai

rk

1+ε

}
33 rAi ← [MirrorDescentStep(η,Kε,i, gi, rAi)
34 foreach arm k ∈ [K] do
35 // Extend sched. σk until next update time.
36 if Bernoulli(ε) then tprev,k ← tnow

37 else tprev,k ← max{tprev,k + 1
rk
, tnow}

38 σk ← Append(σk, (tprev,k, sync))
39 σ′k, tprev,k ← [

ScheduleArmPlays(tprev,k, rk, t(upd)i+1)

σ′k ← [Append(σk, σ
′
k)

40 Return r

Online Learning for Active Cache Synchronization

to schedule sync-mode plays, which reset cost generation for
some fraction of arms (line 36, Alg. 2). For the remaining
arms, it simply waits until their next sync-mode play (line
37, Alg. 2) to start estimating the new gradient.

Last but not least, ASYNCMIRRORSYNC improves the ef-
ficiency of updates themselves. It employs all gradient
samples we get for an arm between updates, and averages
them to reduce estimation variance (lines 25, 28), thereby
rectifying MIRRORSYNC’s weakness (3).

7. Related work
There are several existing models superficially related to but
fundamentally different from SYNCHRONIZATION MABs.

In maintenance job scheduling (Bar-Noy et al., 1998), as
in our setting, each machine (arm) has an associated oper-
ating cost per time unit that increases since the previous
maintenance, and performing a maintenance reduces this
cost temporarily. However, the agent knows all arms’ cost
functions and always observes the machines’ running costs.

Upadhyay et al. (2018) describe a model for maximizing a
long-term reward that is a function of two general marked
temporal point processes. This model is more general than
SYNCHRONIZATION MAB in some ways (e.g., not assuming
cost process monotonicity) but allows controlling the policy
process’s rate only via a policy cost regularization term and
provides no performance guarantees.

Recharging bandits (Immorlica & Kleinberg, 2018), like
SYNCHRONIZATION MABs, have arms with non-stationary
payoffs: the expected arm reward is a convex increasing
function of time since the arm’s last play. In spite of this
similarity, recharging bandits and other MABs with time-
dependent payoffs (Heidari et al., 2016; Levine & Crammer,
2017; Cella & Cesa-Bianchi, 2020) make the common as-
sumptions that a reward is generated only when an arm is
played and that the agent observes all generated rewards.
As a result, their analysis is different from ours. In general,
payoff non-stationarity has been widely studied in two broad
bandit classes. Restless bandits (Whittle, 1988) allow an
arm’s reward distributions to change, but only independently
of when the arm is played. Rested bandits (Gittins, 1979)
also allow an arms’ reward distribution changes, but only
when the arm is played. SYNCHRONIZATION MABs belong
to neither class, since their arms’ instantaneous costs change
both independently and a result of arms being played.

8. Empirical evaluation
The goal of our experiments was to evaluate (1) the rela-
tive performance of MIRRORSYNC and ASYNCMIRRORSYNC,
given that MIRRORSYNC assumes “free” arm resets at the
beginning of each round and ASYNCMIRRORSYNC doesn’t,
and (2) the relative performance of ASYNCMIRRORSYNC

and its version with projected stochastic gradient descent
(PSGD) instead of mirror descent, which we denote as
ASYNCPSGDSYNC. The choice of mirror descent instead
of PSGD was motivated by the intuition that with mirror
descent MIRRORSYNC would achieve lower regret than with
PSGD (see Section 5). In the experiments, we verify this
intuition empirically. Before analyzing the results, we de-
scribe the details of our experiment setup.

Problem instance generation. Our experiments in Figures
1 and 2 were performed on SYNCHRONIZATION MAB in-
stances generated as follows. Recall from Sections 2 and 3
that a SYNCHRONIZATION MAB instance is defined by:

• rmin, the lowest allowed arm play rate
• rmax, the highest allowed arm play rate
• B, the highest allowed total arm play rate
• K, the number of arms
• {ck(τ)}Kk=1, a set of cost-generating processes — time-

dependent distributions of instantaneous costs, one pro-
cess for each arm k.

For all problem instances in the experiments, rmin, rmax, B,
and K were as in Table 1 in Appendix B. The set
{ck(τ)}Kk=1 of cost-generating processes was constructed
randomly for each instance. In all problem instances, each
arm had a distribution over time-dependent cost functions in
the form of polynomials ck(τ) = akτ

pk , where pk ∈ (0, 1)
was chosen at instance creation time and ak sampled at run
time as described in Appendix B. Note that MIRRORSYNC’s
regret (Equation 9) depends on the cost cap U . While our
polynomial cost functions are unbounded in general, they
are bounded within the [rmin, rmax] constraint region we
are using (Table 1 in Appendix B). Within this constraint re-
gion, these cost functions are equivalent to min{akτpk , U},
where U = 40.

In Appendix C we also describe a different, Poisson process-
based family of cost-generating processes, and present ex-
perimental results obtained on it in Figures 3 and 4 in that
section. Despite that process family being very distinct from
the polynomial one, the results are qualitatively similar to
those in Figures 1 and 2.

Implementation details. We implemented MIR-
RORSYNC, ASYNCMIRRORSYNC, and ASYNCPSGDSYNC,
along with a problem instance generator that con-
structs SYNCHRONIZATION MAB instances as above,
in Python. The implementation, available at
https://github.com/microsoft/Optimal-Freshness-Crawl-
Scheduling, relies on scipy.optimize.minimize
for convex constrained optimization in order to update the
play rates r (lines 20, 42 of Alg. 1, line 33 of Alg. 2). Other
convex optimizers are possible as well. The experiments
were performed on a Windows 10 laptop with 32GB RAM
with 8 Intel 2.3GHz i9-9980H CPU cores.

Hyperparameter tuning. Running the algorithms required

https://github.com/microsoft/Optimal-Freshness-Crawl-Scheduling
https://github.com/microsoft/Optimal-Freshness-Crawl-Scheduling

Online Learning for Active Cache Synchronization

0 50 100 150 200

0.56

0.58

0.6

0.62

Equivalent number of MIRRORSYNC rounds

J
(r
)

(l
ow

er
is

be
tte

r) MIRRORSYNC
ASYNCMIRRORSYNC
Optimal policy cost with ε-exploration, ε = 0.05

Figure 1. MIRRORSYNC’s and ASYNCMIRRORSYNC’s conver-
gence. The two algorithms exhibit nearly identical con-
vergence behavior using tuned hyperparameters. However,
ASYNCMIRRORSYNC works without assuming the “free” arm
resets after arms’ parameter updates that MIRRORSYNC relies on.

0 50 100 150 200

0.56

0.58

0.6

0.62

Equivalent number of MIRRORSYNC rounds

J
(r
)

(l
ow

er
is

be
tte

r) ASYNCPSGDSYNC
ASYNCMIRRORSYNC
Optimal policy cost with ε-exploration, ε = 0.05

Figure 2. Asynchronous version of MIRRORSYNC with mirror
descent vs. with projected SGD. The use of mirror descent
with the log barrier function in MIRRORSYNC was key to con-
structing the regret bounds in Section 5. Empirically, although
ASYNCMIRRORSYNC and ASYNCPSGDSYNC eventually con-
verge to similar-quality policies, ASYNCMIRRORSYNC discovers
good policies faster, as MIRRORSYNC’s theory predicts.

choosing values for the following parameters:

• Learning rate η. As in other learning algorithms, choos-
ing a good value for η for each of the three algorithms
was critical for their convergence behavior.

• Length lupd round of intervals between
ASYNCMIRRORSYNC’s and ASYNCPSGDSYNC’s play
rate updates. Recall that unlike MIRRORSYNC, which
updates all play rates simultaneously after every 1/rmin
time units, ASYNCMIRRORSYNC and ASYNCPSGDSYNC

update the model parameters according to a user-provided
schedule. While the schedule doesn’t necessarily have
to be periodic, in the experiments it was, with lupd round
being the inter-update interval length. Intuitively,
lupd round influences the average number of arms updated
during each update attempt and the variance of gradient
estimates: the larger lupd round, the more gradient
samples ASYNCMIRRORSYNC and ASYNCPSGDSYNC can
be expected to average for the upcoming update (line 28
of Alg. 2). In this respect, lupd round’s role resembles
that of minibatch size in minibatch SGD.

• Exploration parameter ε. Theory provides a horizon-
dependent guidance for setting ε for MIRRORSYNC

(Corollary 1) but not for ASYNCMIRRORSYNC and
ASYNCPSGDSYNC. For comparing relative convergence
properties of MIRRORSYNC, ASYNCMIRRORSYNC, and
ASYNCPSGDSYNC, we fixed ε = 0.05 for all of them.

ASYNCMIRRORSYNC’s and ASYNCPSGDSYNC’s perfor-
mance is determined by a combination of η and lupd round,
so we optimized them together using grid search. Please see
Appendix B for more details.

Experiment results. Figures 1 and 2 compare the per-
formance of MIRRORSYNC vs. ASYNCMIRRORSYNC and
ASYNCMIRRORSYNC vs. ASYNCPSGDSYNC, respectively.
The figure captions highlight important patterns we ob-
served. The plots were obtained by running the respective
pairs of algorithms on 150 problem instances generated as
above, measuring the policy cost J after every update, and

averaging the resulting curves across these 150 trials.

In each trial, all algorithms were run for the amount of
simulated time equivalent to 240 MIRRORSYNC rounds
(see Figure 1’s and 2’s x-axis). However, note that the
number of updates performed by ASYNCMIRRORSYNC and
ASYNCPSGDSYNC was larger than 240. Specifically, a MIR-
RORSYNC’s update round is always of length 1/rmin time
units, but for ASYNCMIRRORSYNC and ASYNCPSGDSYNC it
is lupd round units, so for every MIRRORSYNC update round,
they perform (1/rmin)/lupd round updates. Although more
frequent model updates is itself a strength of the asyn-
chronous algorithms, their main practical advantage is inde-
pendence of MIRRORSYNC’s “free arm resets” assumption.

9. Conclusion
This paper presented SYNCHRONIZATION MABs, a bandit
class where all arms generate costs continually, indepen-
dently of being played, and the agent observes an arm’s
stochastic instantaneous cost only when it plays the arm.
We proposed an online learning approach for this setting,
called MIRRORSYNC, whose novelty is in estimating the pol-
icy cost gradient without directly observing the policy cost
function and without having a closed-form expression for it.
Moreover, we derived an O(T

2
3) adversarial regret bound

for MIRRORSYNC without explicitly requiring the gradients
to be bounded. We also presented ASYNCMIRRORSYNC,
a practical version of MIRRORSYNC that lifts the latter’s
idealizing assumptions. The key insight behind all these
contributions is that the use of mirror descent for policy
updates in SYNCHRONIZATION MABs enables much faster
convergence than gradient descent would. Our experiments
confirmed this insight empirically.

Acknowledgements. We would like to thank Nicole Im-
morlica (Microsoft Research) and the anonymous reviewers
for their helpful comments and suggestions regarding this
work.

Online Learning for Active Cache Synchronization

References
Azar, Y., Horvitz, E., Lubetzky, E., Peres, Y., and Shahaf, D.

Tractable near-optimal policies for crawling. Proceedings
of the National Academy of Sciences (PNAS), 2018.

Bar-Noy, A., Bhatia, R., Naor, J., and Schieber, B. Minimiz-
ing service and operation costs of periodic scheduling. In
SODA, pp. 11–20, 1998.

Bright, L., Gal, A., and Raschid, L. Adaptive pull-based
policies for wide area data delivery. ACM Transactions
on Database Systems (TODS), 31(2):631–671, 2006.

Bubeck, S. Convex Optimization: Algorithms and Com-
plexity. Foundations and Trends in Machine Learning,
2016.

Cella, L. and Cesa-Bianchi, N. Stochastic bandits with
delay-dependent payoffs. In AISTATS, 2020.

Cho, J. and Garcia-Molina, H. Synchronizing a database
to improve freshness. In ACM SIGMOD International
Conference on Management of Data, 2000.

Cho, J. and Garcia-Molina, H. Effective page refresh poli-
cies for web crawlers. ACM Transactions on Database
Systems, 28(4):390–426, 2003a.

Cho, J. and Garcia-Molina, H. Estimating frequency of
change. ACM Transactions on Internet Technology, 3(3):
256–290, 2003b.

Cho, J. and Ntoulas, A. Effective change detection using
sampling. In VLDB, 2002.

Gal, A. and Eckstein, J. Managing periodically updated data
in relational databases. Journal of ACM, 48:1141–1183,
2001.

Gittins, J. C. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society. Series B
(Methodological), 41(2), 1979.

Heidari, H., Kearns, M., and Roth, A. Tight policy regret
bounds for improving and decaying bandits. In AISTATS,
2016.

Immorlica, N. and Kleinberg, R. Recharging bandits. In
FOCS, 2018.

Kolobov, A., Peres, Y., Lu, C., and Horvitz, E. Staying up
to date with online content changes using reinforcement
learning for scheduling. In NeurIPS, 2019a.

Kolobov, A., Peres, Y., Lubetzky, E., and Horvitz, E. Op-
timal freshness crawl under politeness constraints. In
SIGIR, 2019b.

Levine, N. and Crammer, K. Rotting bandits. In NIPS,
2017.

Nemirovsky, A. and Yudin, D. Problem complexity and
method efficiency in optimization. Wiley, 1983.

Robbins, H. Some aspects of the sequential design of exper-
iments. Bulletin of the American Mathematical Society,
58(5):527–535, 1952.

Upadhyay, U., De, A., and Gomez-Rodriguez, M. Deep re-
inforcement learning of marked temporal point processes.
In NeurIPS, 2018.

Upadhyay, U., Busa-Fekete, R., Kotlowski, W., Pal, D., and
Szorenyi, B. Learning to crawl. In AAAI, 2020.

Whittle, P. Restless bandits: Activity allocation in a chang-
ing world. Applied Probability, 25(A):287–298, 1988.

Wolf, J. L., Squillante, M. S., Yu, P. S., Sethuraman, J., and
Ozsen, L. Optimal crawling strategies for web search
engines. In WWW, 2002.

