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Abstract

Normalizing flows are exact-likelihood generative
neural networks which approximately transform
samples from a simple prior distribution to sam-
ples of the probability distribution of interest. Re-
cent work showed that such generative models can
be utilized in statistical mechanics to sample equi-
librium states of many-body systems in physics
and chemistry. To scale and generalize these re-
sults, it is essential that the natural symmetries
in the probability density — in physics defined by
the invariances of the target potential — are built
into the flow. We provide a theoretical sufficient
criterion showing that the distribution generated
by equivariant normalizing flows is invariant with
respect to these symmetries by design. Further-
more, we propose building blocks for flows which
preserve symmetries which are usually found in
physical/chemical many-body particle systems.
Using benchmark systems motivated from molec-
ular physics, we demonstrate that those symmetry
preserving flows can provide better generalization
capabilities and sampling efficiency.

1. Introduction

Generative learning using exact-likelihood methods based
on invertible transformations has had remarkable success
in accurately representing distributions of images (Kingma
& Dhariwal, 2018), audio (Oord et al., 2017) and 3D point
cloud data (Liu et al., 2019b; Noé et al., 2019).

Recently, Boltzmann Generators (BG) (Noé et al., 2019)
have been introduced for sampling Boltzmann type distribu-
tions p'(x) o exp(—u(z)) of high-dimensional many-body
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problems, such as valid conformations of proteins.

This approach is widely applicable in the physical sciences,
and has also been employed in the sampling of spin lattice
states (Nicoli et al., 2019; Li & Wang, 2018) and nuclear
physics models (Albergo et al., 2019). In contrast to typical
generative learning problems, the target density p’(z) is
specified by definition of the many-body energy function
u(x) and the difficulty lies in learning to sample it efficiently.
BGs do that by combining an exact-likelihood method that
is trained to approximate the Boltzmann density p’(z), and
a statistical mechanics algorithm to reweigh the generated
density to the target density p’(z).

Physical systems of interest usually comprise symmetries,
such as invariance with respect to global rotations or permu-
tations of identical elements. As we show in experiments
ignoring such symmetries in flow-based approaches to den-
sity estimation and enhanced sampling, e.g. using BGs, can
lead to inferior results which can be a barrier for further
progress in this domain. In our work we thus provide the
following contributions:

e We show how symmetry-preserving generative models,
satisfying the exact-likelihood requirements of Boltz-
mann generators, can be obtained via equivariant flows.

e We show that symmetry preservation can be critical for
success by showing experiments on highly symmetric
many-body particle systems. Concretely, equivariant
flows are able to approximate the system’s densities
and generalize beyond biased data, whereas approaches
based on non-equivariant normalizing flows cannot.

e We provide a numerically tractable and efficient im-
plementation of the framework for many-body particle
systems utilizing gradient flows derived from a simple
mixture potential.

While this work focuses mostly on applications in the phys-
ical sciences the results could provide a takeaway towards a
greater ML audience: studying symmetries of target distri-
butions and considering them in the architecture of a density
estimation / sampling mechanism can lead to better general-
ization and can even be critical for successful learning.



Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

2. Related Work

Statistical Mechanics The workhorse for sampling
Boltzmann-type distributions p(x) o exp(—u(z)) with
known energy function u(x) are Molecular dynamics (MD)
and Markov-Chain Monte-Carlo (MCMC) simulations. MD
and MCMC take local steps in configurations x, are guar-
anteed to sample from the correct distribution for infinitely
long trajectories, but are subject to the rare event sampling
problem, i.e. the get stuck in local energy minima of u(z)
for long time. Statistical mechanics has developed many
tools to speed up rare events by adding a suitable bias energy
to u(z) and subsequently correcting the generated distribu-
tion by reweighing or Monte-Carlo estimators using the
ratio of true over generated density, e.g. (Torrie & Valleau,
1977, Bennett, 1976; Laio & Parrinello, 2002; Wu et al.,
2016). These methods can all speed up MD or MCMC
sampling significantly, but here we pursue sampling of the
equilibrium density with flows.

Normalizing Flows Normalizing flows (NFs) are diffeo-
morphisms fp: R™ — R” which transform samples z ~ p
from a simple prior density p into samples z = fy(z) (Tabak
et al., 2010; Tabak & Turner, 2013; Rezende & Mohamed,
2015; Papamakarios et al., 2019). Denoting the density
of the transformed samples py,, we obtain the probability
density of any generated point via the change of variables
equation:

1
p1a(@) = p (17 (@) det (D).

Py, is also called the push-forward of p along fy.

While flows can be used to build generative models by max-
imizing the likelihood on a data sample, having access to
tractable density is especially useful in variational inference
(Rezende & Mohamed, 2015; Tomczak & Welling, 2016;
Louizos & Welling, 2017; Berg et al., 2018) or approximate
sampling from distributions given by an energy function
(Oord et al., 2017), which can be made exact using impor-
tance sampling (Miiller et al., 2018; Noé et al., 2019).

The majority of NFs can be categorized into two families:
(1) Coupling layers (Dinh et al., 2014; 2016; Kingma &
Dhariwal, 2018; Miiller et al., 2018), which are a subclass
of autoregressive flows (Germain et al., 2015; Papamakarios
etal., 2017; Huang et al., 2018; De Cao et al., 2019; Durkan
etal., 2019), and (2) residual flows (Chen et al., 2018; Zhang
et al., 2018; Grathwohl et al., 2018; Behrmann et al., 2018;
Chen et al., 2019).

Symmetries in flow models have been discussed in the con-
text of permutations in graphs (Liu et al., 2019a). A pre-
liminary account of equivariant normalizing flows has been
given in two recent workshop submissions (Rezende et al.,
2019; Kohler et al., 2019).

Boltzmann-Generating Flows While flows and other
generative models are typically used for estimating the
an unknown density p’ from samples and then generating
new samples from it, BGs know the desired target density
P () x exp(—u(x)) up to a prefactor and aim at learning
to efficiently sample it (Noé et al., 2019).

A BG combines two elements to achieve this goal:

1. An exact-likelihood generative model that generates
samples x;, from a density py, that approximates the
given Boltzmann-type target density p’.

2. An algorithm to reweigh the generated density to the
target density p’. For example, using importance sam-
pling the asymptotically unbiased estimator of the ex-
pectation value of observable O(x) is:

Epnp[O] = M,

2 (@)

where the importance weights

Tk ~ Pfos

w(zy) = exp(—u(z))/ps, (1)

can be computed from the trained flow.

The exact likelihood model is needed in order to be able to
conduct the reweighing step. When a flow is used in order
to generate asymptotically unbiased samples of the target
density, we speak of a Boltzmann-generating flow.

Boltzmann-generating flows are trained to match py, ~ p’
using loss functions that also appear in standard genera-
tive learning problems, but due to the explicit availabil-
ity of exp(—u(z)) their functional form and interpretation
changes:

1. KL-training We minimize the reverse Kullback-Leibler
divergence K L(py,||p’):

This approach is also known as energy-based train-
ing where the energy corresponding to the generated
density is matched with u(x).

0fo(2)

det 9%

Lxr =E., {u(fg(z)) —log

2. ML-training: If data {x,},_, , from a data distribu-
tion plj,., is given that at least represents one or a few
high-probability modes of p’, we can maximize the
likelihood under the model, as is typically done when
performing density estimation:

L = v, | <o (77 (0)

detWH.

—1
o8 ox




Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

The final training loss is then obtained using a convex sum
over both losses, where the mixing parameter A may be
changed from 0 to 1 during the course of training:

L= (1 — )\)EML + A\LkL.

3. Invariant Densities via Equivariant Flows

In this work we consider densities p, p’ over euclidean vec-
tor spaces R"™ which are invariant w.r.t. to symmetry trans-
formations e.g. given by rotations and permutations of the
space. In other words, we want to construct flows such
that both, the prior and the target density share the same
symmetries.

More precisely, let G be a group which acts on R” via a
representation R: G — GL(n), g — R, and assume that p
is invariant w.r.t. G,ie. Vg € G,z € R": p(Ryx) = p(x).
We first remark that for any g € G the matrix R, satisfies
det(R,) € {—1,1}'. This allows us to formulate our result:

Theorem 1. Let p is a density on R™ which is G-invariant
and G > H. If f is a H-equivariant diffeomorphism,
ie. Yh € Hyx € R™: f(Ryx) = Ry, f(x), then py is

H -invariant.

As a direct consequence if H < O(n), any push-forward of
an isotropic normal distribution along a H -equivariant dif-
feomorphism will result in a H-invariant proposal density.

4. Constructing Equivariant Flows

In general it is not clear how to define equivariant diffeo-
morphisms which provide tractable inverses and Jacobians.
We will provide a possible implementations based on the
recently introduced framework of continuous normalizing
flows (CNFs) (Chen et al., 2017).

Equviariant Dynamical Systems CNFs define a dynam-
ical system via a time-dependent vector field v: R™ X
[0,00) — R™. If v is globally Lipschitz, we can map
each z € R" onto the unique characteristic function
Ty 2 [0,00) — R™, which solves the Cauchy-problem

La(t) = v(@y (1), 1),

This allows us to define a bijection F;, 7: R™ — R" for
each T' € [0, c0) by setting

Zy,.(0) = 2.

F,r(2) = 2,..(0) +/0 dt v(zy 2 (t),1).

Given a density p on R", each T' defines a push-forward
pF, , along F, 7, which satisfies

% log pr, . (Tv,z(t)) = —div (v(wy 2 (1), 1)) -

! All proofs and derivations can be found in the Suppl. Material.

By following the characteristic this allows to compute the
total density change as

P, (@o:(T) [T i (v(
o e el | e v ol 0.0,

Equivariant flows can thus be constructed very naturally:

Theorem 2. Let v be a H-equivariant vectorfield on R™
(not necessarily bijective). Then for each T € [0,00) the
bijection I, 7 is H-equivariant.

Consequently, if p is a G-invariant density on R™ and
G > H, then each push-forward pp, .. is H-invariant.

Equivariant Gradient Fields There has been a sig-
nificant amount of work in recent years proposing G-
equivariant functions for different groups acting on R™. A
generic implementation however is given by a gradient flow:
if ®: R™ — R is a G-invariant function, the vector V,®
will transform G-equivariantly.

Gradient flows (not necessarily G-equivariant) can map any
ponto any p’ over R™ as long as both densities do not vanish
(Benamou & Brenier, 2000; McCann, 2001) and have been
discussed in the context of density estimation (Zhang et al.,
2018; Papamakarios et al., 2019).

Numerical Implementations While providing an elegant
solution, implementing equivariant flows using continuous
gradient flows is numerically challenging due to three as-
pects.

First, even if F), 7 is invertible assuming exact integration,
there are no such guarantees for any discrete-time approx-
imation of the integral, e.g. using Euler or Runge-Kutta
integration. Thus, Chen et al. propose adaptive-step solvers,
such as Dopri5 (Dormand & Prince, 1980), which can re-
quire hundreds of vector field evaluations to reach satisfying
numerical accuracy.

Second, in order to train v via the adjoint method as sug-
gested by Chen et al., gradients of the loss w.r.t. parameters
are obtained via backward integration. However, in gen-
eral, there are no guarantees that this procedure is stable,
which therefore can result in very noisy gradients, leading to
long training times and inferior final results (Gholami et al.,
2019). In contrast to this optimize-then-discretize (OTD)
approach, Gholami et al. suggest to unroll the ODE into a
fixed-grid sequence and backpropagate the error using clas-
sic automatic differentation (AD). Such a discretize-then-
optimize (DTO) approach will guarantee that gradients are
computed correctly, but might suffer from inaccuracy due
to the discretization errors as mentioned before. Through-
out our experiments, we rely on the latter approach during
training and show that for our presented architecture OTD
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and DTO will yield similar results, while the latter offers a
significant speedup per iteration, more robust training and
faster convergence.

Finally, computing the divergence of v using off-the-shelf
AD frameworks requires O(n) backpropagation passes,
which would result in an infeasible overhead for high-
dimensional systems (Grathwohl et al., 2018). Thus, Grath-
wohl et al. suggest an approximation via the Hutchinson-
estimator (Hutchinson, 1989). This is an unbiased rank-
1 estimator of the divergence where variance scales with
O(n). As we show in our experiments, even for small
particle systems, relying on such an estimator will render
importance weighing and thus the benefits of Boltzmann
generating flows useless, e.g. when used in downstream
sampling applications. Another approach relies on design-
ing special dynamics functions, in which input dimensions
are decoupled and then combine the det ach-operator with
one backpropagation pass to compute the divergence exactly
(Chen & Duvenaud, 2019). For general symmetries as stud-
ied in this paper such a decoupling is not possible, without
either destroying equivariance of the dynamics function, or
enforcing it to be trivial. Our proposed vector field based on
a simple mixture of Gaussian radial basis functions (RBF)
allows computing the divergence numerically exact as one
vectorized operation and without relying on AD backward
passes.

Relation to Hamiltonian Flows If our space decomposes
as R" = R™ @ R™ where each element is written as
x = (q,p) and where we call g the generalized position
and p the generalized momentum, we can define a time-
dependent Hamiltonian H : R™ xR™ x [0, 00) — R, which
defines the Hamiltonian system

OH(q,p,t) OH(q,p,t)
op dq '

v(Qapa t) =

If H factorizes as H(q, p,t) = V(g,t) + 1||p[|* a numeri-
cally stable and finite-time invertible solution of the system
is given by Leapfrog-integration. Furthermore, due to the
symplecticity of v, each F, 7 will be volume preserving.
Unrolling the Leapfrog-integration in finite time, will result
in a stack of NICE-layers (Dinh et al., 2014) with equivariant
translation updates.

We can always create an artificial Hamiltonian version of
any density estimation problem, by augmenting a density
p(q) on R™ to p(q,p) = p(q) - p(plg) on R™ x R™. Due to
the interaction between g and p within the flow, we cannot
expect that both p(p|q) = p(p) and p'(p|q) = p'(q) within
a finite number of steps. Thus, if an isotropic normal distri-
bution is used for p(p, ¢), having only access to p’(g) will
require a variational approximation of p’(p|q) (Toth et al.,
2019).

If H is G-invariant, i.e. H(Ryq, Ryp,t) = H(g,p,t) for
all g € G,(¢,p) € R™ x R™,t € [0,00), we see that
v will be G-equivariant. This results in the recently pro-
posed framework of Hamiltonian Equivariant Flows (HEF)
(Rezende et al., 2019), which we thus see as a special case
of our framework for densities with linearly represented
symmetries defined over R™. On the other hand, HEFs can
handle more general spaces or symmetries with nonlinear
representations — in contrast to the presented framework —
hence the two approaches are complementary.

For completeness, we note that Hamiltonian flows do not
suffer from those numerical complications in the former
paragraph, due to symplectic integration and volume preser-
vation. However, in order to compute unbiased estimates of
target densities which is essential for physics applications, a
variational approximation of p’(p|q) cannot be applied.

5. Sampling of Coupled Particle Systems

We evaluate the importance of incorporating symmetry into
flows when aiming to sample from symmetric densities, by
applying the theoretic framework to the problem of sampling
coupled many-body systems of interchangeable particles.
Such systems have states x € R™, n = N - D consisting of
N particles z; with D € [2, 3] degrees of freedom, which
are coupled via a potential energy u(z). In thermodynamic
equilibrium such a system follows a Boltzmann-type dis-
tribution p’(x) x exp(—u(x)). Assuming interchangeable
particles in vacuum without external field, we obtain three
symmetries (S1-3): u (and thus p’) does not change if we
permute particles (S1), rotate the system around the center
of mass (CoM) (S2), or translate the CoM by an arbitrary
vector (S3).

Due to the simultaneous occurrence of (S1) and (S2) no
autoregressive decomposition / coupling layer can be de-
signed to be equivariant. Either a variable split has to be
performed among particles or among spatial coordinates,
which will break permutation and rotation symmetry respec-
tively. Thus, residual flows are the only class of flows which
can be applied here. In this work we will rely on CNFs,
design an equivariant vector field by taking the gradient
field of an invariant potential function, and then combine
theorems 1 and 2 to conclude the symmetry of the proposal
density.

Invariant Prior Density We first start by designing an
invariant prior. By only considering systems with zero CoM
symmetry (S3) is easily satisfied. The set of CoM-free
systems forms a (N — 1) - D-dimensional linear subspace
U < R™. Equipping R™ with an isotropic normal density
p, implicitly equips U with a normal distribution p. We
can sample it, by sampling z ~ p and projecting on U, and
evaluate its likelihood for z € U, by computing p(z).
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Equivariant Vector Field We design our vector field as
the gradient field v(z(t)) = V) ®(x(t)) of a potential
®: R™ — R. If ® is invariant under symmetry transforma-
tions (S1-3) it directly implies equivariance of v.

Our invariant potential ¢ is given as a sum of pairwise
couplings over particle distances:

D(x(t)) = Z‘f(dij(t),ﬂ

with 75 (t) = x;(t) — x;(t), di;(t) = ||ri;(¢)]]. This yields
per-particle updates

vi(z(t)) = Z vij(x(1)).

For a well-chosen coupling potential é(dij, t) we can ex-
press

vij(2(t)) = R(t)TW K (dij(t)) 745 (t), (1
#(di;)

where K: R — R™ and R: R — R” are vector-valued
functions, each component is given by a Gaussian RBF and
W € RT*M g a trainable weight matrix (see Figure 1).

Using this architecture, the divergence becomes:

Be(t) < 00(diy(0).1)
div ot —Z Bd;; (1)

dij(t) + D - ¢(dyj(t)).

ij

Thus, the gradient and the divergence can be computed
exactly and as one vectorized operation (see Suppl. Material
for details).

During training we optimize W and RBF means and band-
widths simultaneously. By keeping weights small and band-
widths large we can control the complexity of the dynamics.
As we show in our experiments even a small amount of
weight-decay is sufficient to properly optimize the flow with
a fixed-grid solver introducing a negligible amount of error
during the integration.

Other Invariant Potential Functions While ® could be
modeled by any kind of invariant graph neural networks,
such as SchNet (Schiitt et al., 2017), this would require
us to 1) use AD in order to compute V) ®(x(t)) and 2)
compute A, ) P(x(t)) at every function evaluation while
integrating v. This implies the numerical challenges as
mentioned before. As we show in the Suppl. Mat. our
simple couplings are considerably faster, have a fraction of
parameters while consistently outperforming neural network
approaches to modeling ¢ for the studied target systems.

b)
tg B B R

a) t-'—
R ‘
% v;
Vij p
G “zi h
Ry (t) Ry(t) Rs(t)
dij R(t) [ |
(poec= e > *
gy — x(a) [
- — & (d) [l
2 i * dij,t
M—.A K;3(dij) ¢( i )
Ri— b T Ka(di)

Figure 1. a) Each particle x; is updated by a weighted sum of radial
forces depending on distances and the integration time. b) Time
and distances are expanded in a RBF basis and mixed together
with a shared weight matrix.

6. Benchmark Systems

We study two systems where all symmetries (S1), (S2), (S3)
are present (Figure 2):

DW-2 / DW-4 The first system is given by N € [2,4]
particles with a pairwise double-well potential acting on
particle distances

1
= o > a(dij—do)+b(dij—do)*+c (dij—do)*
1,J

UDW ( l’)
for D = 2, which produces two distinct low energy modes
separated by an energy barrier. By coupling multiple par-
ticles with such double-well interactions we can create a
frustrated system with multiple metastable states. Here
a, b, c and dj are chosen design parameters of the system
and 7 the dimensionless temperature.

LJ-13 The second system is given by the Lennard-Jones
(LJ) potential with N = 13, D = 3. L] is a model for solid-
state models and rare gas clusters. LJ clusters have complex
energy landscapes whose energy minima are difficult to find
and sample between. These systems have been extensively
studied (Wales & Doye, 1997) and are good candidates for
benchmarking structure generation methods. In order to
prevent particles to dissociate from the cluster at the finite
sampling temperature, we add a small harmonic potential
to the CoM. The LJ potential with parameters € and r,,, at
dimensionless temperature 7 is defined by
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Figure 2. The two model systems: shown are the energy contribu-
tions per distance a) for the double-well and b) the Lennard-Jones
potential.

7. Experiments
7.1. Computation of Divergence

In a first experiment we show that fast and exact divergence
computation can be critical especially when the number of
particles grows. We compare different ways to estimate the
change of log-density: (1) using brute-force computation
relying on AD (2) using the Hutchinson estimator described
by Grathwohl et al., and (3) computing the trace exactly in
close form.

Brute-force computation quickly yields a significant over-
head per function evaluation during the integration, which
makes it impractical for online computations (Figure 3 c),
such as using the flow within a sampling procedure or just
for training. If we use Hutchinson estimation, the error
grows quickly with the number of particles (Figure 3 a)
and renders reweighing, even for the very simple DW-2
system, impossible (Figure 3 b). By having access to an
exact closed-form trace, we obtain the best of both worlds:
fast computation and the possibility for exact reweighing
(Figure 3 b+c).

7.2. DTO vs. OTD Optimization

In this experiment we show that by simply regularizing W,
e.g. using weight decay, OTD and DTO based optimization
of the flow barely shows any difference (Figure 4 a), while
the former quickly results in a significant overhead due to the
increasing number of function evaluations required to match
the preset numerical accuracy (Figure 4 b). We compare
the OTD implementation presented in (Chen et al., 2018;
Grathwohl et al., 2018) using the dopri5-option (atol =
1071% rt o1 = 1075) to the DTO implementation given by
Gholami et al. using a fixed grid of 20 steps and 4th-order
Runge-Kautta as solver.

7.3. Statistical Efficiency for Density Estimation

We compare the proposed equivariant flow to a non-
equivariant flow where v(z(t), t) is given by a simple fully-
connected neural network. As brute-force computation of
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Figure 3. a) Error of divergence estimates introduced by the
Hutchinson estimator with growing number of particles. b) Free-
energy profile of a DW-2 potential and importance-weighed esti-
mates. ¢) Wall-clock time of evaluating v(z(t), t) with growing
number of particles.
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Figure 4. a) Log-likelihood on test data after training with
DTO/OTD for the DW-4 system b) Number of function evalua-
tions increase significantly during training using the OTD approach.
The curve for DTO remains flat.

the divergence quickly becomes prohibitively slow for the
LJ-13 system, we rely on Hutchinson-estimation during
training and compute the exact divergence only during eval-
uation.

The training data is generated by taking 10/ 100/ 1,000 /
10, 000 samples from a long MCMC trajectory (throwing
away 1, 000 burn-in samples to enforce equilibration). Af-
ter training we evaluate the likelihood of the model on an
independent 10,000 trajectory. We train both flows using
Adam with weight decay (Kingma & Ba, 2014; Loshchilov
& Hutter) until convergence. For the non-equivariant flow
we tested both: data augmentation by applying random
rotations and permutations, and no data augmentation.

Our results show that an equivariant flow generalizes well
to the unseen trajectory even in the low data regime. When
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applying data augmentation, the non-equivariant flow sig-
nificantly performs worse (DW-4) or even fails to fit the
data at all and remains close to the prior distribution (LJ-13).
Without data augmentation yet using strong regularization
we observe strong over-fitting behavior: the DW-4 system
can only be fitted if trained on amount of data that is close to
the full equilibrium distribution, the LJ-13 system cannot be
fitted sufficiently at all (Figure 5). It is worth to remark that
the equivariant flow only requires 620 trainable parameters
in order to achieve this result compared to the 5256 (DW-4)
/21671 (LJ-13) parameters of the black-box model.

-%-- neq nODE (train) -¥-- aug neq nODE (train)
neq nODE (test) -¥-- aug neq nODE (test)

a) b) 5
30

-®-- eq nODE (train)
-®- eq nODE (test)

40

20
4
=z 10

0

101 107 10° 10
# traing data

10! 107 10° 10
# traing data

Figure 5. Log-likelihood on train and test data for both a) the DW-
4 and b) the LJ-13 system after training on an increasing number of
data points. eq nODE: proposed equivariant flow, neq nODE: non-
equivariant baseline without data augmentation, aug neq nODE:
non-equivariant baseline with data augmentation.

7.4. Equivariance in Boltzmann-Generating Flows

In a fourth experiment we compare how equivariance affects
normalizing flows when used in the context of Boltzman
generators (see section 2 or (Noé et al., 2019)). For the
DW-4 system we compare our equivariant flow to a non-
equivariant one when being trained using both: maximizing
likelihood on data and minimizing reverse KL-divergence
w.r.t. the target density (for details see Suppl. Material). For
the non-equivariant flow we tested both: data augmentation
and no data augmentation.

The equivariant flow achieves a significant overlap with the
target distribution. This allows the target energies to be
reweighed to the ground-truth distribution (see Figure 6 ¢)
and thus to draw asymptotically unbiased samples. The non-
equivariant flow without data augmentation quickly samples
low-energy states. However, as indicated by the reweighted
distribution and the high train and test likelihood (10.85 and
11.40 respectively), this is due to collapsing to one mode of
the distribution (see Figure 6 a). As a result asymptotically
unbiased sampling will not be possible. The non-equivariant
flow after being trained with data augmentation falls short
in both: producing accurate low energy states and thus
reweighing to the ground-truth (see Figure 6 b).

a) neq nODE b) aug neq nODE
1.4 samples 0.8 samples
1.2 test data test data
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Figure 6. Energy histograms for samples from the DW-4 system
with different models. a) non equivariant nODE, b) non equivariant
nODE with data augmentation, and ¢) proposed equivariant flow.

7.5. Discovery of Meta-Stable States

In our final experiment, we evaluate to which extend these
models help discovering new meta-stable states, which have
not been observed in the training data set. Here we charac-
terize metastable states as the set of configurations x that
minimize to the same local minimum on the energy surface.
Finding new meta-stable states is especially non-trivial for
LJ systems with many particles.

Counting Distinct Meta-Stable States Let 1) be the func-
tion mapping a state x onto its next meta-stable state
¥(x). We implement it by minimizing  w.r.t. u(z) us-
ing a non-momentum optimizer until convergence and fil-
tering out saddle-points. Then we equate two minima
Y(x) ~ 1p(z"), whenever they are identical up to rotations
and permutations. To avoid computing the orthogonal Pro-
crustes problem between all minimized structures, we com-
pute the all-distance matrix My(¢(x)) of each minimum
state, sort it in ascending order to obtain My sored(¢(x))
and equate two structures () ~approx ¢(2’), When-
ever || My sorted(2) — My sorea(z')]] < €, where € < 1 is
a threshold depending on the system. This ensures that
P(x) ~ P(a’) = Y(x) ~approx Y(x'), however the in-
verse direction might not hold. Thus, reported numbers on
the count of unique minima found remain a lower bound.

DW-4 For this system, we can fully enumerate those five
meta-stable minima between which the system jumps in
equilibrium. We train both an equivariant flow and a non-
equivariant flow on a single minimum state perturbed by a
tiny amount of Gaussian noise until convergence. Then we
sample 10, 000 structures from both models and compute
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the set of unique minima. While the non-equivariant flow
model can only reproduce the minimum state it has been
trained on, the equivariant flow discovers all minimum states
of the system (see Figure 7 a).

LJ-13 Finding meta-stable minima with low energies is
a much more challenging task for the LJ system. Here we
compare the proposed equivariant flow to standard sampling
by (1) training on a short equilibrium MCMC trajectory con-
sisting of 1, 000 samples, (2) sampling 1,000 samples from
the generator distribution after training, and (3) counting
the amount of unique minima states found according to the
procedure described above. The amount of unique minima
found is compared to sampling an independent equilibrium
MCMC trajectory having the same amount of samples as
the training set and a long trajectory with 100, 000 samples.

As can be seen from Table 1 the equivariant flow model
clearly outperforms naive sampling in finding low-energy
meta-stable states compared to the short MCMC trajectory
which had access to the same amount of target energy eval-
uations. Furthermore, in contrast to the latter, it consistently
finds the global minimum state, which has not been present
in the training trajectory. It performs closely as good as
the long trajectory which had access to 100x more evalua-
tions of the target function. Figure 7 b shows structures of
low-energy minima generated by the equivariant flow.

Table 1. Count of unique minima states discovered: displayed are
means and standard deviation over 10 independent rounds.

u()
METHOD (=70, —60) (—80,—70)  (—o0,—80)
TRAINING 0 7 0
SHORT 2.70 4+ 3.80 7.70+£3.23  0.90 £ 0.30
LONG 64.60 =6.11 48.60 +=4.13 1.00 £ 0.00
EQ-FLow 38.30 +£2.49 41.504+2.50 1.00 4 0.00

8. Discussion

We presented a construction principle to incorporate sym-
metries of densities defined over R™ into the structure of
normalizing flows. We further demonstrated the superior
generalization capabilities of such symmetry-preserving
flows compared to non-symmetry-preserving ones on two
physics-motivated particle systems, which are difficult to
sample with classic methods. Our proposed equivariant
gradient field utilizing a simple mixture potential has sev-
eral structural advantages over black box CNFs, such as
an analytically computable divergence, explicit handling of
numerical stability and very few parameters.

a) -25.67 -25.22 -24.24 -23.41 -20.98
° ® .
[ ] ° . L] o0 [}
.' °® e o LY ..
-25.79 -25.31 -24.35 -23.47 -21.07
2343 o || % [|e o] eo|]e,"
.' °® o o L) o
o ®
e ©
-23.36 23.36 -23.36 23.36 -23.36
L] L] L] L ] L]
L] L] L] L] L]
L] L ] L ] L ] L]
L ] L ] L] L] L ]
-23.47 23.47 23.47 23.47 -23.47
° ° . ° .
° ° °
L] L ] L] L] L ]
° . ° ° .

Figure 7. a) On the left: Minimum state used for training in the
DW-4 system. Upper rows: samples from equivariant flow (blue)
and corresponding minimum states (red). Bottom rows: samples
from non-equivariant flow (blue) and corresponding minimum
states (red)., b) Exemplary unique minima states from the LJ-13
system generated within the three given energy intervals. The
top state marks the global minimum, which consists of a perfect
icosahedron with one particle in the center.
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