
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

Supplementary Material

A. Proofs and derivations
A.1. Proof of thm. 1

Let V = Rn and ρ : V → R≥0 be a probability density on V . LetG be a group acting on V and letR : G→ GL(n), g → Rg
be a representation of G over V . As V is finite-dimensional every Rg is represented by a matrix and thus detRg is well-
defined. Furthermore, for a function f ∈ C1(Rn,Rm) let Jf (x) ∈ Rn×m denote its Jacobian evaluated at x and define the
push-forward density of ρ along a diffeomorphism f ∈ C1(V, V) by ρf (x) := ρ(f−1(x))

∣∣det Jf−1(x)
∣∣.

Lemma 1. Let A ∈ GL(n), if ρ(Ax) = ρ(x) for all x ∈ V , then detA ∈ {−1, 1}

Proof. Set a : V → V, x 7→ Ax. By substituting y = a−1x we get

1 =

∫
V

ρ(x)dx

=

∫
a−1(V)

ρ(a(y)) |detA| dy

=

∫
V

ρ(y) |detA| dy

= |detA|
∫
V

ρ(z)dy︸ ︷︷ ︸
=1

= |detA|

Let G > H and h ∈ H . From Lemma 1 we get detRh ∈ {−1, 1} for each h ∈ H . Define the transformation
Th : V → V, x 7→ Rhx. If f ∈ C1(V, V) is H-equivariant, it means f ◦Th = Th ◦ f for each h ∈ H . If ρ is an G-invariant
density it means ρ ◦ Tg = ρ. Together with the lemma we obtain

ρf (Rhx) = ρf (Th(x))

= ρf (Th(x)) |det JTh(x)|︸ ︷︷ ︸
=|detRh|=1

= ρTh−1◦f (x)

= ρf◦Th−1 (x)

= ρ((Th ◦ f−1)(x))
∣∣det JTh◦f−1(x)

∣∣
= (ρ ◦ Th ◦ f−1)(x)

∣∣det JTh(f−1(x))Jf−1(x)
∣∣

= (ρ ◦ f−1)(x)
∣∣det JTh(f−1(x))

∣∣ ∣∣det Jf−1(x)
∣∣

= ρ(f−1(x)) |detRh|
∣∣det Jf−1(x)

∣∣
= ρ(f−1(x))

∣∣det Jf−1(x)
∣∣

= ρf (x)

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

A.2. Proof of thm. 2

Proof. Let h ∈ H and Rh be its representation. Let v be an H-equivariant vector field. Then

Fv,T (Rhz) = Rhxv,z(0) +

∫ T

0

dt v(Rhxv,z(t), t)

= Rhxv,z(0) +

∫ T

0

dt Rhv(xv,z(t), t)

= Rh

(
xv,z(0) +

∫ T

0

dt v(xv,z(t), t)

)
.

This implies that the bijection Fv,T for each T ∈ [0,∞) given by solving

xv,z(0) = z

d

dt
x(t) = v(xv,z(t), t)

is H-equivariant.

A.3. Invariant prior density

Subtracting the CoM of a system x ∈ RN ·D and obtaining a CoM-free x̃, can be considered a linear transformation

x̃ = Ax

with
A = ID ⊗

(
IN − 1

N 1N1TN
)

where Ik is the k × k identity matrix and 1k the k-dimensional vector containing all ones.

A is a symmetric projection operator, i.e. A2 = A and AT = A. Furthermore rank [A] = (N − 1)D. Finally, we have
Ay = y for each y ∈ U .

If we equip Rn with an isotropic density ρ = N (0, In), this implies the subspace density ρ̃ = N (0, AInA
T) = N (0, AAT).

Thus, sampling from ρ and projecting by A achieves sampling from ρ̃ trivially. On the other hand, if we have y ∈ U , then
‖y‖22 = ‖Ay‖22 and thus ρ(y) = ρ̃(y).

If f is an equivariant flow w.r.t. symmetries (S1-3) we see that any CoM-free system is mapped onto another CoM-free
system and thus defines a well-defined flow on the subspace spanned by A.

A.4. Derivations for the RBF gradient field

We first show that v as defined in (1) is indeed a gradient field. Define

α(x, a, b) =

√
πab2

2
erf
(
x− b√

2a

)
− a exp

(
− (x− b)2

2a

)
, (2)

where erf denotes the Gaussian error function. Then we have

∂α(x, a, b)

∂x
= exp

(
− (x− b)2

2a

)
· x. (3)

Now by setting

κ(d) =
1

2

(
α(d, µ1, σ1) . . . α(d, µM , σM)

)
(4)

and

Φ̃(dij , t) = R(t)Wκ(dij) (5)

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

we obtain

∂Φ̃(dij , t)

∂xi
= R(t)W

∂κ(dij)

∂dij

∂dij
∂xi

(6)

= R(t)W
∂κ(dij)

∂dij

rij
dij

(7)

=
1

2
R(t)WK(dij)rij (8)

where

K(d) =
(

exp
(
− (d−µ1)

2

2σ1

)
. . . exp

(
− (d−µM)2

2σM

))
. (9)

Similarly, we have

∂Φ̃(dji, t)

∂xi
= −1

2
R(t)WK(dji)rji (10)

=
1

2
R(t)WK(dij)rij . (11)

Thus, we obtain

(∇xΦ(x, t))i =
∂Φ(x, t)

∂xi
(12)

=
∑
lj

∂Φ̃(dlj , t)

∂xi
(13)

=
∑
j

R(t)WK(dij)rij (14)

=
∑
j

φ(dij)rij (15)

Finally, by using v(x, t) = ∂x(t)
∂t = ∇xΦ(x, t) we can compute the divergence as

div v(x, t) = tr
[
∂v(x, t)

∂x

]
(16)

=
∑
i

tr
[
∂vi(x, t)

∂xi

]
(17)

=
∑
ij

tr

[
∂φ(dij)

∂dij
rij
∂dij
∂xi

T

+ φ(dij)
∂rij
∂xi

]
(18)

=
∑
ij

∂φ(dij)

∂dij
tr
[
rij

rij
dij

T
]

+ φ(dij)tr [ID×D] (19)

=
∑
ij

∂φ(dij)

∂dij

rTijrij

dij
+ φ(dij)D (20)

=
∑
ij

∂φ(dij)

∂dij
dij + φ(dij)D. (21)

B. Additional experiments
B.1. Comparison with other equivariant gradient flows

Next to the equivariant flow as proposed in the main text (furthermore referred to as Kernel Flow) we experimented with
two neural-network-based equivariant flow architectures relying on the CNF framework. Both performed inferior in terms
of accuracy and execution time.

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

One ad-hoc way to model a rotation and permutation invariant potential Φ matching the given target systems could be given
by only feeding pairwise particle distances to Φ. Similarly to the architecture presented in the main text, we can model
Φ̃(dij(t), t), where Φ(x(t)) =

∑
ij Φ̃(dij(t), t) and then take its gradient field for the CNF. To this end we embed the

distances with Gaussian RBF-kernels and use a simple multi-layer perceptron to obtain a scalar output for each embedded
distance. We refer to this flow as simple gradient flow.

Another invariant, possibly more complex, potential Φ can be obtained by using a molecular message passing architecture
similar to SchNet (Schütt et al., 2017). We refer to this flow as gradient flow with SchNet. For the implementation details see
C.2.

As before, the Hutchinson estimator is used during training, while sampling and reweighing is done brute-force.

In this first additional experiment we compare training / sampling wall-clock-times for the equivariant gradient flows and the
kernel flow. To this end we measure the time per iteration for training / sampling with a batch / sample size of 64. Our results
show that kernel flows are considerably faster during training and at least one order of magnitude faster during sampling
(Table 2). The speedup during training is manly rooted in AD required to calculate ∇x(t)Φ(x(t)). The overhead during
sampling is a consequence of brute-force computing ∆x(t)Φ(x(t)).

Table 2. Training and sampling wall-clock-times in seconds: displayed are means and standard deviation over 10 epochs with 10 iterations
each and a batch size of 64.

TRAINING SAMPLING
MODEL DW-4 LJ-13 DW-4 LJ-13

KERNEL FLOW 0.879± 0.012 0.498± 0.010 0.222± 0.003 0.178± 0.002
SIMPLE GRADIENT FLOW 2.58± 0.091 1.760± 0.056 4.18± 0.112 6.670± 0.269
GRADIENT FLOW WITH SCHNET 6.140± 0.583 4.770± 0.500 7.690± 0.018 25.400± 3.690

B.2. Density estimation with coupling flows and other equivariant gradient flows

In a second additional experiment we compare density estimation of the equivariant flow as proposed in the main text to
other equivariant gradient flows and flows based on non-equivariant coupling layers. For the coupling layers we use real
NVP (rNVP) transformations as introduced by (Dinh et al., 2016) and used for Boltzmann Generators in (Noé et al., 2019).
The experiment follow section 7.3. As coupling layers do not conserve the CoM we add a Gaussian distributed CoM to the
training data. We further use a Gaussian prior with the same CoM in the latent space. Equivariant / CoM-preserving flows
will not change the CoM. Thus running an equivariant flow on the CoM-free system and then adding then energy of the
CoM perturbation yields the negative log-likelihood corresponding to running the rNVP flow on the perturbed system.

The other equivariant gradient flows achieve similar albeit slightly larger log-likelihoods on the training and test set (Figure 8).
The non equivariant flow based on rNVP achieves a log-likelihood on the test similar to the non equivariant nODEs (Figure 9)
when data augmentation is applied. Without data augmentation the log-likelihood of the rNVP between train and test set
differs in the range of ∼ 200.

B.3. Energy based training for the DW-4 system

This experiment follows a similar training procedure as done in (Noé et al., 2019). The models are pretrained with ML-
training on 1000 samples from a long MCMC trajectory. Then the we use a combination of ML- and KL-training (see sec 2
bottom or (Noé et al., 2019)), where we increase the proportion of the KL-loss from λ = 0 to λ = 0.5 over the course of
training. Aftwerwards we sample 10, 000 samples and compare their energy and reweighted energy to the expected energy
of the samples from the long MCMC trajectory (Figure 10). The non-equivariant models without data augmentation are
capable of producing samples with low energies, but the reweighing fails in these cases (Figure 10 d, f). This is due to mode
collapsing onto a small part of the target space, i.e. most of the produced samples are only from a single rotation/permutation
of a certain configuration. Hence, a random sample lying in another region will yield a very large reweighing weight. This
behaviour was also observed in (Noé et al., 2019) and gets worse with larger proportions of the KL-loss. The non-equivariant
models with data augmentation produce samples with high energies making reweighing difficult as well (Figure 10 e, g).
These models are prone to mode collapse as well if the proportion of the KL-loss becomes larger than λ = 0.5. We thus
chose λ = 0.5 throughout the reported experiments. In contrast, the equivariant models (kernel flow, simple gradient flow

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

a) b)b)a)

Figure 8. Log-likelihood on train and test data for both a) the DW-4 and b) the LJ-13 system after training on an increasing number of
data points. All equivariant flows generalizes quickly to unseen trajectories, but the kernel flow achieves the lowest log-likelihoods on the
train and test data.

and the gradient flow with SchNet) produce low energies and allow for correct reweighing (Figure 10 a, b, c).

B.4. Visualisation of the weights of the kernel flow

Due to the simple structure of the kernel flow we can visualize the learned dynamics of the equivariant flow, by plotting W
after training (Figure 11).

C. Technical details
In this section we show the hyperparameters and optimization details used for the experiments presented in this work. For
all experiments we used ML-training to train the models on the given training data (λ = 0) if not stated otherwise. For the
discovery of new meta-stable states (7.5) for the DW-4 system, where we used a combination of ML-training and KL-training
with λ = 0.5 after pretraining both models with ML-training.

C.1. Equivariant kernel flow

For the DW-4 system we fixed 50, 10 kernel means µK,l, µR,l equispaced in [0, 8], [0, 1] for distances and times respectively.
The bandwidths γK,l, γR,l of the kernels have been initialized with 0.5, 0.3 and were optimized during the training process.
The total model ended up having 620 trainable parameters.

For the LJ-13 system we fixed 50 kernel means µK,l in [0, 16] concentrated around rm = 1 with increasing distance to each
other towards the interval bounds. Similarly bandwidths γK,l are initialized narrowly close to rm increasing towards the
interval bounds. We placed the 10 kernels µR,l for the time-dependent component equispaced in [0, 1]. The bandwidths γR, l
where initialized with narrower bandwidths around t = 0.5 and smearing out the closer they reach the interval boundaries.
Again bandwidths were optimized during the training process. This resulted in a total of 620 trainable parameters.

As regularization is important to efficiently train our architecture using fixed step-size solvers our models were optimized
using AdamW, a modified implementation with fixed weight-decay (Loshchilov & Hutter, 2017) using a learning rate of
0.005, weight decay of 0.01 and a batch size of 64 samples until convergence.

C.2. Equivariant gradient flows

We used the same distance embedding for both equivariant gradient flows.

For the DW-4 system we fixed 50 rbf-kernel means equispaced in [0, 8]. The bandwidths have been initialized with 0.5 and
were not optimized during the training process.

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

a) b)

Figure 9. Log-likelihood on train and test data for both a) the DW-4 and b) the LJ-13 system after training on an increasing number
of data points. The non-equivariant coupling flow with data augmentation (aug RNVP) performs significantly worse compared to the
equivariant flow on both test systems. For the LJ-13 system it is even unable to fit the augmented data at all and remains close to the prior.

neq	nODEkernel	flow aug	neq	nODE

		simple	gradient	flow RNVP aug	RNVPgradient	flow	with	SchNet

a)

b) c) f) g)

d) e)

Figure 10. Energy histograms for samples from the DW-4 system with different models.

For the LJ-13 system we fixed 50 rbf-kernel means in [0, 16] concentrated around rm = 1 with increasing distance to each
other towards the interval bounds. Similarly bandwidths γK,l are initialized narrowly close to rm increasing towards the
interval bounds and were not optimized during the training process..

For the equivariant gradient flows with the simple potential the transformation of each embedded distance was modeled
with a dense neural network with layer sizes [50, 64, 32, 1] and tanh activation functions. This resulted in a total of 5377
trainable parameters.

For the equivariant gradient flows with the SchNet (Schütt et al., 2017) inspired potential we used 16 features and 3 interaction
blocks. For the feature encoding we used a simple network with layer sizes [1, 16]. For the continuous convolutions in
the three interaction blocks we used dense neural networks with layer sizes [50, 32, 32, 16] and tanh activation functions.
Finally, a dense neural networks with layer sizes [16, 8, 4, 1] was used to compute the invariant energy after the interaction
blocks. This resulted in a total of 9857 trainable parameters.

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

a)

b)

Figure 11. Kernel weights W visualized after training for the a) DW-4 system and the b) LJ-13 system.

C.3. Non equivariant nODE flow

For the DW-4 system we used a dense neural network with layer sizes [64, 64] and tanh activation functions. This resulted
in a total of 5256 trainable parameters.

For the LJ-13 system we used a dense neural network with layer sizes [64, 128, 64] and tanh activation functions. This
resulted in a total of 21671 trainable parameters. For the optimization we used AdamW with a learning rate of 0.005. We
optimized the model with a batch size of 64 samples until convergence.

C.4. MCMC trajectories

For each system, a training and a test trajectory were obtained with Metropolis Monte-Carlo, where we optimized the width
of the Gaussian proposal density by maximizing α · s, with α being the acceptance rate computed from short trajectories
and s the Gaussian standard deviation (step size). The optimal step sizes are s = 0.5 for the DW − 4 system and s = 0.025
for the LJ − 13 system. To ensure that all samples steam from the equilibrium distribution we discard a large number of
initial samples. For the DW-4 system the initial 1000 samples are discarded, while we discard 20000 for the LJ-13 system.

C.5. Non equivariant coupling flows

For the DW-4 system we used 8 coupling blocks. For the translation transformation we used a dense neural network with
layer sizes [4, 64, 64, 4] and ReLU activation functions. For the scaling transformation we used a dense neural network with
layer sizes [4, 64, 64, 4] and tanh activation functions. This resulted in a total of 21576 trainable parameters.

For the LJ-13 system we used 16 coupling blocks. For the translation transformation we used a dense neural network with
layer sizes [19/20, 64, 64, 20/19] and ReLU activation functions. For the scaling transformation we used a dense neural
network with layer sizes [19/20, 64, 64, 20/19] and tanh activation functions. The number of input and output neurons for
each network is either 19 or 20 due to the uneven number of total dimensions. This resulted in a total of 215680 trainable
parameters.

C.6. Benchmark systems

Throughout all experiments we chose the same parameters for our two benchmark systems.

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities

For the DW-2 / DW-4 system we chose a = 0, b = −4, c = 0.9, d0 = 4 and a dimensionless temperature factor of τ = 1.

For the LJ-13 system we chose rm = 1, ε = 1 and a dimensionless temperature factor of τ = 1.

C.7. Error bars

Error bars in all plots are given by one standard deviation.

In Figure 3 a) we show errors for 1000 estimations per particle count. In Figure 3 b) errors are displayed for 100 reweighed
bootstrapped sub-samples. In Figure 3 c) time was measured for 100 estimations per particle count per method.

In Figure 4 a) we show 3 runs per method.

In Figure 5, Figure 8, and Figure 9 we show 5 runs per model/system/training set size.

C.8. Computing infrastructure

All experiments were conducted on a GeForce GTX 1080 Ti with 12 GB RAM.

