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Abstract 
We propose a neural network-based approach 
that computes a stable and generalizing metric 
(LSiM) to compare data from a variety of nu­
merical simulation sources. We focus on scalar 
time-dependent 2D data that commonly arises 
from motion and transport-based partial differen­
tial equations (PDEs). Our method employs a 
Siamese network architecture that is motivated 
by the mathematical properties of a metric. We 
leverage a controllable data generation setup with 
PDE solvers to create increasingly different out­
puts from a reference simulation in a controlled 
environment. A central component of our learned 
metric is a specialized loss function that intro­
duces knowledge about the correlation between 
single data samples into the training process. To 
demonstrate that the proposed approach outper­
forms existing metrics for vector spaces and other 
learned, image-based metrics, we evaluate the dif­
ferent methods on a large range of test data. Addi­
tionally, we analyze generalization benefits of an 
adjustable training data difficulty and demonstrate 
the robustness of LSiM via an evaluation on three 
real-world data sets. 

1. Introduction 

Evaluating computational tasks for complex data sets is a 
fundamental problem in all computational disciplines. Reg­
ular vector space metrics, such as the L2 distance, were 
shown to be very unreliable (Wang et al., 2004; Zhang et al., 
2018), and the advent of deep learning techniques with con­
volutional neural networks (CNNs) made it possible to more 
reliably evaluate complex data domains such as natural im­
ages, texts (Benajiba et al., 2018), or speech (Wang et al., 
2018). Our central aim is to demonstrate the usefulness of 
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CNN-based evaluations in the context of numerical simula-
tions. These simulations are the basis for a wide range of 
applications ranging from blood flow simulations to aircraft 
design. Specifically, we propose a novel learned simulation 
metric (LSiM) that allows for a reliable similarity evaluation 
of simulation data. 

Potential applications of such a metric arise in all areas 
where numerical simulations are performed or similar data 
is gathered from observations. For example, accurate evalua­
tions of existing and new simulation methods with respect to 
a known ground truth solution (Oberkampf et al., 2004) can 
be performed more reliably than with a regular vector norm. 
Another good example is weather data for which complex 
transport processes and chemical reactions make in-place 
comparisons with common metrics unreliable (Jolliffe & 
Stephenson, 2012). Likewise, the long-standing, open ques­
tions of turbulence (Moin & Mahesh, 1998; Lin et al., 1998) 
can benefit from improved methods for measuring the simi­
larity and differences in data sets and observations. 

In this work, we focus on field data, i.e., dense grids of 
scalar values, similar to images, which were generated with 
known partial differential equations (PDEs) in order to en­
sure the availability of ground truth solutions. While we 
focus on 2D data in the following to make comparisons with 
existing techniques from imaging applications possible, our 
approach naturally extends to higher dimensions. Every 
sample of this 2D data can be regarded a high dimensional 
vector, so metrics on the corresponding vector space are 
applicable to evaluate similarities. These metrics, in the 
following denoted as shallow metrics, are typically simple, 
element-wise functions such as L1 or L2 distances. Their 
inherent problem is that they cannot compare structures on 
different scales or contextual information. 

Many practical problems require solutions over time and 
need a vast number of non-linear operations that often re­
sult in substantial changes of the solutions even for small 
changes of the inputs. Hence, despite being based on 
known, continuous formulations, these systems can be seen 
as chaotic. We illustrate this behavior in Fig. 1, where two 
smoke flows are compared to a reference simulation. A 
single simulation parameter was varied for these examples, 
and a visual inspection shows that smoke plume (a) is more 
similar to the reference. This matches the data generation 
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Figure 1. Example of field data from a fluid simulation of hot smoke with normalized distances for different metrics. Our method (LSiM, 
green) approximates the ground truth distances (GT, gray) determined by the data generation method best, i.e., version (a) is closer to the 
ground truth data than (b). An L2 metric (red) erroneously yields a reversed ordering. 

process: version (a) has a significantly smaller parameter 
change than (b) as shown in the inset graph on the right. 
LSiM robustly predicts the ground truth distances while the 
L2 metric labels plume (b) as more similar. In our work, we 
focus on retrieving the relative distances of simulated data 
sets. Thus, we do not aim for retrieving the absolute param­
eter change but a relative distance that preserves ordering 
with respect to this parameter. 

Using existing image metrics based on CNNs for this prob­
lem is not optimal either: natural images only cover a small 
fraction of the space of possible 2D data, and numerical 
simulation outputs are located in a fundamentally different 
data manifold within this space. Hence, there are crucial 
aspects that cannot be captured by purely learning from 
photographs. Furthermore, we have full control over the 
data generation process for simulation data. As a result, we 
can create arbitrary amounts of training data with gradual 
changes and a ground truth ordering. With this data, we can 
learn a metric that is not only able to directly extract and use 
features but also encodes interactions between them. The 
central contributions of our work are as follows: 

•	 We propose a Siamese network architecture with fea­
ture map normalization, which is able to learn a metric 
that generalizes well to unseen motion and transport­
based simulation methods. 

•	 We propose a novel loss function that combines a cor­
relation loss term with a mean squared error to improve 
the accuracy of the learned metric. 

•	 In addition, we show how a data generation approach 
for numerical simulations can be employed to train 
networks with general and robust feature extractors for 
metric calculations. 

Our source code, data sets, and final model are available at 
https://github.com/tum-pbs/LSIM. 

2. Related Work 

One of the earliest methods to go beyond using simple met­
rics based on Lp norms for natural images was the structural 

similarity index (Wang et al., 2004). Despite improvements, 
this method can still be considered a shallow metric. Over 
the years, multiple large databases for human evaluations of 
natural images were presented, for instance, CSIQ (Larson 
& Chandler, 2010), TID2013 (Ponomarenko et al., 2015), 
and CID:IQ (Liu et al., 2014). With this data and the discov­
ery that CNNs can create very powerful feature extractors 
that are able to recognize patterns and structures, deep fea­
ture maps quickly became established as means for evalua­
tion (Amirshahi et al., 2016; Berardino et al., 2017; Bosse 
et al., 2016; Kang et al., 2014; Kim & Lee, 2017). Recently, 
these methods were improved by predicting the distribution 
of human evaluations instead of directly learning distance 
values (Prashnani et al., 2018; Talebi & Milanfar, 2018b). 
Zhang et al. compared different architecture and levels of 
supervision, and showed that metrics can be interpreted as a 
transfer learning approach by applying a linear weighting 
to the feature maps of any network architecture to form the 
image metric LPIPS v0.1. Typical use cases of these image­
based CNN metrics are computer vision tasks such as detail 
enhancement (Talebi & Milanfar, 2018a), style transfer, and 
super-resolution (Johnson et al., 2016). Generative adver­
sarial networks also leverage CNN-based losses by training 
a discriminator network in parallel to the generation task 
(Dosovitskiy & Brox, 2016). 

Siamese network architectures are known to work well for a 
variety of comparison tasks such as audio (Zhang & Duan, 
2017), satellite images (He et al., 2019), or the similarity of 
interior product designs (Bell & Bala, 2015). Furthermore, 
they yield robust object trackers (Bertinetto et al., 2016), 
algorithms for image patch matching (Hanif, 2019), and for 
descriptors for fluid flow synthesis (Chu & Thuerey, 2017). 
Inspired by these studies, we use a similar Siamese neural 
network architecture for our metric learning task. In contrast 
to other work on self-supervised learning that utilizes spatial 
or temporal changes to learn meaningful representations 
(Agrawal et al., 2015; Wang & Gupta, 2015), our method 
does not rely on tracked keypoints in the data. 

While correlation terms have been used for learning joint 
representations by maximizing correlation of projected 
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views (Chandar et al., 2016) and are popular for style trans­
fer applications via the Gram matrix (Ruder et al., 2016), 
they were not used for learning distance metrics. As we 
demonstrate below, they can yield significant improvements 
in terms of the inferred distances. 

Similarity metrics for numerical simulations are a topic of 
ongoing investigation. A variety of specialized metrics have 
been proposed to overcome the limitations of Lp norms, 
such as the displacement and amplitude score from the area 
of weather forecasting (Keil & Craig, 2009) as well as per­
mutation based metrics for energy consumption forecasting 
(Haben et al., 2014). Turbulent flows, on the other hand, are 
often evaluated in terms of aggregated frequency spectra 
(Pitsch, 2006). Crowd-sourced evaluations based on the 
human visual system were also proposed to evaluate simula­
tion methods for physics-based animation (Um et al., 2017) 
and for comparing non-oscillatory discretization schemes 
(Um et al., 2019). These results indicate that visual evalua­
tions in the context of field data are possible and robust, but 
they require extensive (and potentially expensive) user stud­
ies. Additionally, our method naturally extends to higher 
dimensions, while human evaluations inherently rely on pro­
jections with at most two spatial and one time dimension. 

3. Constructing a CNN-based Metric 

In the following, we explain our considerations when em­
ploying CNNs as evaluation metrics. For a comparison that 
corresponds to our intuitive understanding of distances, an 
underlying metric has to obey certain criteria. More pre­
cisely, a function m : I × I → [0, ∞) is a metric on its input 
space I if it satisfies the following properties x, y, z  I: ∀ ∈

m(x, y) ≥ 0 non-negativity (1) 
m(x, y) = m(y, x) symmetry (2) 
m(x, y) ≤ m(x, z) + m(z, y) triangle ineq. (3) 
m(x, y) = 0  x = y identity of indisc. (4) ⇐⇒

The properties (1) and (2) are crucial as distances should be 
symmetric and have a clear lower bound. Eq. (3) ensures 

that direct distances cannot be longer than a detour. Property 
(4), on the other hand, is not really useful for discrete opera­
tions as approximation errors and floating point operations 
can easily lead to a distance of zero for slightly different 
inputs. Hence, we focus on a relaxed, more meaningful 
definition m(x, x) = 0 ∀x ∈ I, which leads to a so-called 
pseudometric. It allows for a distance of zero for different 
inputs but has to be able to spot identical inputs. 

We realize these requirements for a pseudometric with an 
architecture that follows popular perceptual metrics such 
as LPIPS: The activations of a CNN are compared in latent 
space, accumulated with a set of weights, and the resulting 
per-feature distances are aggregated to produce a final dis­
tance value. Fig. 2 gives a visual overview of this process. 

To show that the proposed Siamese architecture by construc­
tion qualifies as a pseudometric, the function 

m(x, y) = m2(m1(x),m1(y)) 

computed by our network is split into two parts: m1 : I → L 
to compute the latent space embeddings x̃ = m1(x), ỹ = 
m1(y) from each input, and m2 : L → [0, ∞) to compare 
these points in the latent space L. We chose operations 
for m2 such that it forms a metric ∀x̃, ỹ ∈ L. Since m1 

always maps to L, this means m has the properties (1), 
(2), and (3) on I for any possible mapping m1, i.e., only a 
metric on L is required. To achieve property (4), m1 would 
need to be injective, but the compression of typical feature 
extractors precludes this. However, if m1 is deterministic 
m(x, x) = 0 ∀x ∈ I is still fulfilled since identical inputs 
result in the same point in latent space and thus a distance 
of zero. More details for this proof can be found in App. A. 
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Figure 2. Overview of the proposed distance computation for a simplified base network that contains three layers with four feature maps 
each in this example. The output shape for every operation is illustrated below the transitions in orange and white. Bold operations are 
learned, i.e., contain weights influenced by the training process. 

3.1. Base Network 

The sole purpose of the base network (Fig. 2, in purple) is to 
extract feature maps from both inputs. The Siamese architec­
ture implies that the weights of the base network are shared 
for both inputs, meaning all feature maps are comparable. 
We experimented with the feature extracting layers from var-
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ious CNN architectures, such as AlexNet (Krizhevsky et al., 
2017), VGG (Simonyan & Zisserman, 2015), SqueezeNet 
(Iandola et al., 2016), and a fluid flow prediction network 
(Thuerey et al., 2018). We considered three variants of these 
networks: using the original pre-trained weights, fine-tuning 
them, or re-training the full networks from scratch. In con­
trast to typical CNN tasks where only the result of the final 
output layer is further processed, we make use of the full 
range of extracted features across the layers of a CNN (see 
Fig. 2). This implies a slightly different goal compared 
to regular training: while early features should be general 
enough to allow for extracting more complex features in 
deeper layers, this is not their sole purpose. Rather, features 
in earlier layers of the network can directly participate in 
the final distance calculation and can yield important cues. 

We achieved the best performance for our data sets using a 
base network architecture with five layers, similar to a re­
duced AlexNet, that was trained from scratch (see App. B.1). 
This feature extractor is fully convolutional and thus allows 
for varying spatial input dimensions, but for comparability 
to other models we keep the input size constant at 224×224 
for our evaluation. In separate tests with interpolated inputs, 
we found that the metric still works well for scaling factors 
in the range [0.5, 2]. 

3.2. Feature Map Normalization 

The goal of normalizing the feature maps (Fig. 2, in red) is 
to transform the extracted features of each layer, which typi­
cally have very different orders of magnitude, into compara­
ble ranges. While this task could potentially be performed 
by the learned weights, we found the normalization to yield 
improved performance in general. 

Let G denote a 4th order feature tensor with dimensions 
(gb, gc, gx, gy ) from one layer of the base network. We form 
a series G0, G1, . . . for every possible content of this tensor 
across our training samples. The normalization only hap­
pens in the channel dimension, so all following operations 
accumulate values along the dimension of gc while keeping 
gb, gx, and gy constant, i.e., are applied independently of the 
batch and spatial dimensions. The unit length normalization 
proposed by Zhang et al., i.e., 

normunit(G) = G / IGI2 , 

only considers the current sample. In this case, IGI2 is
a 3rd order tensor with the Euclidean norms of G along 
the channel dimension. Effectively, this results in a cosine 
distance, which only measures angles of the latent space 
vectors. To consider the vector magnitude, the most basic 
idea is to use the maximum norm of other training samples, 
and this leads to a global unit length normalization 

normglobal(G) = G / max (IG0I2 , IG1I2 , . . . ) . 

Now, the magnitude of the current sample can be compared 
to other feature vectors, but this is not robust since the largest 
feature vector could be an outlier with respect to the typical 
content. Instead, we individually transform each component 
of a feature vector with dimension gc to a standard normal 
distribution. This is realized by subtracting the mean and 
dividing by the standard deviation of all features element­
wise along the channel dimension as follows: 

−
1 G − mean (G0, G1, . . . )normdist(G) = √ . 

gc  1 std (G0, G1, . . . ) 

These statistics are computed via a preprocessing step over 
the training data and stay fixed during training, as we did not 
observe significant improvements with more complicated 
schedules such as keeping a running mean. The magnitude 
of the resulting normalized vectors follows a chi distribution 
with k = gc degrees of freedom, but computing its mean √ 
2 Γ((k + 1)/2) / Γ( e 1k/2) is xpensive , especially for  

larger k. Instead, the mode of the chi distribution 
√
gc − 1 

that closely approximates its mean is employed to achieve a 
consistent average magnitude of about one independently of 
gc. As a result, we can measure angles for the latent space 
vectors and compare their magnitude in the global length 
distribution across all layers. 

3.3. Latent Space Differences 

Computing the difference of two latent space representations 
x̃, ỹ ∈ L that consist of all extracted features from the two 
inputs x, y ∈ I lies at the core of the metric. This difference 
operator in combination with the following aggregations has 
to ensure that the metric properties above are upheld with 
respect to L. Thus, the most obvious approach to employ an 
element-wise difference x̃i − ỹi ∀i ∈ {0, 1, . . . , dim(L)} is 
not suitable, as it invalidates non-negativity and symmetry. 
Instead, exponentiation of an absolute difference via |x̃i − 
ỹi|p yields an Lp metric on L, when combined with the 
correct aggregation and a pth root. |x̃i − ỹi|2 is used to 
compute the difference maps (Fig. 2, in yellow), as we did 
not observe significant differences for other values of p. 

Considering the importance of comparing the extracted fea­
tures, this simple feature difference does not seem optimal. 
Rather, one can imagine that improvements in terms of com­
paring one set of feature activations could lead to overall 
improvements for derived metrics. We investigated replac­
ing these operations with a pre-trained CNN-based metric 
for each feature map. This creates a recursive process or 
“meta-metric” that reformulates the initial problem of learn­
ing input similarities in terms of learning feature space sim­
ilarities. However, as detailed in App. B.3, we did not find 
any substantial improvements with this recursive approach. 
This implies that once a large enough number of expressive 

1Γ denotes the gamma function for factorials 
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features is available for comparison, the in-place difference 
of each feature is sufficient to compare two inputs. 

3.4. Aggregations 

The subsequent aggregation operations (Fig. 2, in green) are 
applied to the difference maps to compress the contained 
per feature differences along the different dimensions into a 
single distance value. A simple summation in combination 
with an absolute difference |x̃i − ỹi| above leads to an L1 

distance on the latent space L. Similarly, we can show that 
average or learned weighted average operations are applica­
ble too (see App. A). In addition, using a p-th power for the 
latent space difference requires a corresponding root opera­
tion after all aggregations, to ensure the metric properties 
with respect to L. 

To aggregate the difference maps along the channel dimen­
sion, we found the weighted average proposed by Zhang 
et al. to work very well. Thus, we use one learnable weight 
to control the importance of a feature. The weight is a 
multiplier for the corresponding difference map before sum­
mation along the channel dimension, and is clamped to be 
non-negative. A negative weight would mean that a larger 
difference in this feature produces a smaller overall distance, 
which is not helpful. For regularization, the learned ag­
gregation weights utilize dropout during training, i.e., are 
randomly set to zero with a probability of 50%. This ensures 
that the network cannot rely on single features only, but has 
to consider multiple features for a more stable evaluation. 

For spatial and layer aggregation, functions such as a sum­
mation or averaging are sufficient and generally interchange­
able. We experimented with more intricate aggregation func­
tions, e.g., by learning a spatial average or determining layer 
importance weights dynamically from the inputs. When the 
base network is fixed and the metric only has very few train­
able weights, this did improve the overall performance. But, 
with a fully trained base network, the feature extraction 
seems to automatically adopt these aspects making a more 
complicated aggregation unnecessary. 

4. Data Generation and Training 

Similarity data sets for natural images typically rely on 
changing already existing images with distortions, noise, 
or other operations and assigning ground truth distances 
according to the strength of the operation. Since we can 
control the data creation process for numerical simulations 
directly, we can generate large amounts of simulation data 
with increasing dissimilarities by altering the parameters 
used for the simulations. As a result, the data contains more 
information about the nature of the problem, i.e., which 
changes of the data distribution should lead to increased 
distances, than by applying modifications as a post-process. 

4.1. Data Generation 

Given a set of model equations, e.g., a PDE from fluid dy­
namics, typical solution methods consist of a solver that, 
given a set of boundary conditions, computes discrete ap­
proximations of the necessary differential operators. The 
discretized operators and the boundary conditions typically 
contain problem dependent parameters, which we collec­
tively denote with p0, p1, . . . , pi, . . . in the following. We 
only consider time dependent problems, and our solvers 
start with initial conditions at t0 to compute a series of time 
steps t1, t2, . . . until a target point in time (tt) is reached. 
At that point, we obtain a reference output field o0 from one 
of the PDE variables, e.g., a velocity. 

Initial conditions OutputFinite difference solver with time discretization
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Figure 3. General data generation method from a PDE solver for 
a time dependent problem. With increasing changes of the initial 
conditions for a parameter pi in Δi increments, the outputs de­
crease in similarity. Controlled Gaussian noise is injected in a 
simulation field of the solver. The difficulty of the learning task 
can be controlled by scaling Δi as well as the noise variance v. 

For data generation, we incrementally change a single pa­
rameter pi in n steps Δi, 2 · Δi, . . . , n · Δi to create a series 
of n outputs o1, o2, . . . , on. We consider a series obtained 
in this way to be increasingly different from o0. To create 
natural variations of the resulting data distributions, we add 
Gaussian noise fields with zero mean and adjustable vari­
ance v to an appropriate simulation field such as a velocity. 
This noise allows us to generate a large number of varied 
data samples for a single simulation parameter pi. Further­
more, v serves as an additional parameter that can be varied 
in isolation to observe the same simulation with different 
levels of interference. This is similar in nature to numerical 
errors introduced by discretization schemes. These pertur­
bations enlarge the space covered by the training data, and 
we found that training networks with suitable noise levels 
improves robustness as we will demonstrate below. The 
process for data generation is summarized in Fig. 3. 

As PDEs can model extremely complex and chaotic be­
haviour, there is no guarantee that the outputs always ex­
hibit increasing dissimilarity with the increasing parameter 
change. This behaviour is what makes the task of similar­
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ity assessment so challenging. Even if the solutions are 
essentially chaotic, their behaviour is not arbitrary but rather 
governed by the rules of the underlying PDE. For our data 
set, we choose the following range of representative PDEs: 
We include a pure Advection-Diffusion model (AD), and 
Burger’s equation (BE) which introduces an additional vis­
cosity term. Furthermore, we use the full Navier-Stokes 
equations (NSE), which introduce a conservation of mass 
constraint. When combined with a deterministic solver and 
a suitable parameter step size, all these PDEs exhibit chaotic 
behaviour at small scales, and the medium to large scale 
characteristics of the solutions shift smoothly with increas­
ing changes of the parameters pi. 

The noise amplifies the chaotic behaviour to larger scales 
and provides a controlled amount of perturbations for the 
data generation. This lets the network learn about the nature 
of the chaotic behaviour of PDEs without overwhelming it 
with data where patterns are not observable anymore. The 
latter can easily happen when Δi or v grow too large and 
produce essentially random outputs. Instead, we specifically 
target solutions that are difficult to evaluate in terms of a 
shallow metric. We heuristically select the smallest v and a 
suitable Δi such that the ordering of several random output 
samples with respect to their L2 difference drops below a 
correlation value of 0.8. For the chosen PDEs, v was small 
enough to avoid deterioration of the physical behaviour 
especially due to the diffusion terms, but different means of 
adjusting the difficulty may be necessary for other data. 

4.2. Training 

For training, the 2D scalar fields from the simulations were 
augmented with random flips, 90◦ rotations, and cropping 
to obtain an input size of 224 × 224 every time they are 
used. Identical augmentations were applied to each field of 
one given sequence to ensure comparability. Afterwards, 
each input sequence is collectively normalized to the range 
[0, 255]. To allow for comparisons with image metrics and 
provide the possibility to compare color data and full ve­
locity fields during inference, the metric uses three input 
channels. During training, the scalar fields are duplicated to 
each channel after augmentation. Unless otherwise noted, 
networks were trained with a batch size of 1 for 40 epochs 
with the Adam optimizer using a learning rate of 10−5. To 
evaluate the trained networks on validation and test inputs, 
only a bilinear resizing and the normalization step is applied. 

5. Correlation Loss Function 

The central goal of our networks is to identify relative dif­
ferences of input pairs produced via numerical simulations. 
Thus, instead of employing a loss that forces the network 
to only infer given labels or distance values, we train our 
networks to infer the ordering of a given sequence of simula­

tion outputs o0, o1, . . . , on. We propose to use the Pearson 
correlation coefficient (see Pearson, 1920), which yields 
a value in [−1, 1] that measures the linear relationship be-
tween two distributions. A value of 1 implies that a linear 
equation describes their relationship perfectly. We com-
pute this coefficient for a full series of outputs such that the 
network can learn to extract features that arrange this data 
series in the correct ordering. Each training sample of our 
network consists of every possible pair from the sequence 
o0, o1, . . . , on and the corresponding ground truth distance 
distribution c ∈ [0, 1]0.5(n+1)n representing the parameter 
change from the data generation. For a distance prediction 
d ∈ [0, ∞)0.5(n+1)n of our network for one sample, we 
compute the loss with: 

    I − I −2 2 

¯(c − c̄) · (d − d)
L(c, d) = λ1(c − d)2 + λ2(1 − ) (5)¯c  c̄ d  d

Here, the mean of a distance vector is denoted by c̄ and 
d̄ for ground truth and prediction, respectively. The first 
part of the loss is a regular MSE term, which minimizes 
the difference between predicted and actual distances. The 
second part is the Pearson correlation coefficient, which is 
inverted such that the optimization results in a maximization 
of the correlation. As this formulation depends on the length 
of the input sequence, the two terms are scaled to adjust 
their relative influence with λ1 and λ2. For the training, we 
chose n = 10 variations for each reference simulation. If 
n should vary during training, the influence of both terms 
needs to be adjusted accordingly. We found that scaling 
both terms to a similar order of magnitude worked best in 
our experiments. 

0.62 0.64 0.66 0.68 0.70 0.72 0.74
Correlation on all test data

MSE

Cross cor.

Pearson cor.

MSE + 
 cross cor.

Proposed

LSiM (ours)
AlexNetfrozen

Figure 4. Performance comparison on our test data of the proposed 
approach (LSiM) and a smaller model (AlexNetfrozen) for different 
loss functions on the y-axis. 

In Fig. 4, we investigate how the proposed loss function 
compares to other commonly used loss formulations for our 
full network and a pre-trained network, where only aggre­
gation weights are learned. The performance is measured 
via Spearman’s rank correlation of predicted against ground 
truth distances on our combined test data sets. This is com­
parable to the All column in Tab. 1 and described in more 
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detail in Section 6.2. In addition to our full loss function, we 
consider a loss function that replaces the Pearson correlation 
with a simpler cross-correlation (c · d) / (IcI IdI ). We 2 2

also include networks trained with only the MSE or only 
the correlation terms for each of the two variants. 

A simple MSE loss yields the worst performance for both 
evaluated models. Using any correlation based loss function 
for the AlexNetfrozen metric (see Section 6.2) improves the 
results, but there is no major difference due to the limited 
number of only 1152 trainable weights. For LSiM, the pro­
posed combination of MSE loss with the Pearson correlation 
performs better than using cross-correlation or only isolated 
Pearson correlation. Interestingly, combining cross correla­
tion with MSE yields worse results than cross correlation 
by itself. This is caused by the cross correlation term influ­
encing absolute distance values, which potentially conflicts 
with the MSE term. For our loss, the Pearson correlation 
only handles the relative ordering while the MSE deals with 
the absolute distances, leading to better inferred distances. 

6. Results 

In the following, we will discuss how the data generation 
approach was employed to create a large range of training 
and test data from different PDEs. Afterwards, the proposed 
metric is compared to other metrics, and its robustness is 
evaluated with several external data sets. 

6.1. Data Sets 

We created four training (Smo, Liq, Adv and Bur) and two 
test data sets (LiqN and AdvD) with ten parameter steps for 
each reference simulation. Based on two 2D NSE solvers, 
the smoke and liquid simulation training sets (Smo and 
Liq) add noise to the velocity field and feature varied initial 
conditions such as fluid position or obstacle properties, in 
addition to variations of buoyancy and gravity forces. The 
two other training sets (Adv and Bur) are based on 1D 
solvers for AD and BE, concatenated over time to form a 
2D result. In both cases, noise was injected into the velocity 
field, and the varied parameters are changes to the field 
initialization and forcing functions. 

For the test data set, we substantially change the data dis­
tribution by injecting noise into the density instead of the 
velocity field for AD simulations to obtain the AdvD data 
set and by including background noise for the velocity field 
of a liquid simulation (LiqN). In addition, we employed 
three more test sets (Sha, Vid, and TID) created without 
PDE models to explore the generalization for data far from 
our training data setup. We include a shape data set (Sha) 
that features multiple randomized moving rigid shapes, a 
video data set (Vid) consisting of frames from random 
video footage, and TID2013 (Ponomarenko et al., 2015) as 
a perceptual image data set (TID). Below, we additionally 
list a combined correlation score (All) for all test sets apart 
from TID, which is excluded due to its different structure. 
Examples for each data set are shown in Fig. 5 and genera­
tion details with further samples can be found in App. D. 

Figure 5. Samples from our data sets. For each subset the reference is on the left, and three variations in equal parameter steps follow. 
From left to right and top to bottom: Smo (density, velocity, and pressure), Adv (density), Liq (flags, velocity, and levelset), Bur 
(velocity), LiqN (velocity), AdvD (density), Sha and Vid. 

6.2. Performance Evaluation 

To evaluate the performance of a metric on a data set, we 
first compute the distances from each reference simulation 
to all corresponding variations. Then, the predicted and 
the ground truth distance distributions over all samples are 
combined and compared using Spearman’s rank correlation 
coefficient (see Spearman, 1904). It is similar to the Pear­
son correlation, but instead it uses ranking variables, i.e., 
measures monotonic relationships of distributions. 

The top part of Tab. 1 shows the performance of the shallow 
metrics L2 and SSIM as well as the LPIPS metric (Zhang 
et al., 2018) for all our data sets. The results clearly show 
that shallow metrics are not suitable to compare the samples 
in our data set and only rarely achieve good correlation 
values. The perceptual LPIPS metric performs better in 
general and outperforms our method on the image data sets 
Vid and TID. This is not surprising as LPIPS is specifically 
trained for such images. For most of the simulation data 
sets, however, it performs significantly worse than for the 
image content. The last row of Tab. 1 shows the results of 
our LSiM model with a very good performance across all 
data sets and no negative outliers. Note that although it was 
not trained with any natural image content, it still performs 
well for the image test sets. 
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Table 1. Performance comparison of existing metrics (top block), experimental designs (middle block), and variants of the proposed 
method (bottom block) on validation and test data sets measured in terms of Spearman’s rank correlation coefficient of ground truth 
against predicted distances. Bold+underlined values show the best performing metric for each data set, bold values are within a 0.01 
error margin of the best performing, and italic values are 0.2 or more below the best performing. On the right, a visualization of the 
combined test data results is shown for selected models. 

Metric 
Va

Smo Liq 

lidation 

Adv 

data sets 

Bur TID LiqN 

Test data sets 

AdvD Sha Vid All 

L2 0.66 0.80 0.74 0.62 0.82 0.73 0.57 0.58 0.79 0.61 
SSIM 0.69 0.73 0.77 0.71 0.77 0.26 0.69 0.46 0.75 0.53 
LPIPS v0.1. 0.63 0.68 0.68 0.72 0.86 0.50 0.62 0.84 0.83 0.66 

AlexNetrandom 0.63 0.69 0.69 0.66 0.82 0.64 0.65 0.67 0.81 0.65 
AlexNetfrozen 0.66 0.70 0.69 0.71 0.85 0.40 0.62 0.87 0.84 0.65 
Optical flow 0.62 0.57 0.36 0.37 0.55 0.49 0.28 0.61 0.75 0.48 
Non-Siamese 0.77 0.85 0.78 0.74 0.65 0.81 0.64 0.25 0.80 0.60 
Skipfrom scratch 0.79 0.83 0.80 0.74 0.85 0.78 0.61 0.78 0.83 0.71 

LSiMnoiseless 

LSiMstrong noise 

LSiM (ours) 

0.77 
0.65 
0.78 

0.77 
0.65 
0.82 

0.76 
0.67 
0.79 

0.72 
0.69 
0.75 

0.85 
0.84 
0.86 

0.62 
0.39 
0.79 

0.58 
0.54 
0.58 

0.86 
0.89 
0.88 

0.82 
0.82 
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0.68 
0.64 
0.73 
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The middle block of Tab. 1 contains several interesting vari­
ants (more details can be found in App. B): AlexNetrandom 

and AlexNetfrozen are small models, where the base net­
work is the original AlexNet with pre-trained weights. 
AlexNetrandom contains purely random aggregation weights 
without training, whereas AlexNetfrozen only has trainable 
weights for the channel aggregation and therefore lacks 
the flexibility to fully adjust to the data distribution of the 
numerical simulations. The random model performs surpris­
ingly well in general, pointing to powers of the underlying 
Siamese CNN architecture. 

Recognizing that many PDEs include transport phenomena, 
we investigated optical flow (Horn & Schunck, 1981) as a 
means to compute motion from field data. For the Optical 
flow metric, we used FlowNet2 (Ilg et al., 2016) to bidirec­
tionally compute the optical flow field between two inputs 
and aggregate it to a single distance value by summing all 
flow vector magnitudes. On the data set Vid that is similar 
to the training data of FlowNet2, it performs relatively well, 
but in most other cases it performs poorly. This shows that 
computing a simple warping from one input to the other is 
not enough for a stable metric although it seems like an in­
tuitive solution. A more robust metric needs the knowledge 
of the underlying features and their changes to generalize 
better to new data. 

To evaluate whether a Siamese architecture is really ben­
eficial, we used a Non-Siamese architecture that directly 
predicts the distance from both stacked inputs. For this 
purpose, we employed a modified version of AlexNet that 
reduces the weights of the feature extractor by 50% and 
of the remaining layers by 90%. As expected, this metric 

works great on the validation data but has huge problems 
with generalization, especially on TID and Sha. In addi­
tion, even simple metric properties such as symmetry are no 
longer guaranteed because this architecture does not have 
the inherent constraints of the Siamese setup. Finally, we 
experimented with multiple fully trained base networks. As 
re-training existing feature extractors only provided small 
improvements, we used a custom base network with skip 
connections for the Skipfrom scratch metric. Its results already 
come close to the proposed approach on most data sets. 

The last block in Tab. 1 shows variants of the proposed 
approach trained with varied noise levels. This inherently 
changes the difficulty of the data. Hence, LSiMnoiseless was 
trained with relatively simple data without perturbations, 
whereas LSiMstrong noise was trained with strongly varying 
data. Both cases decrease the capabilities of the trained 
model on some of the validation and test sets. This indicates 
that the network needs to see a certain amount of variation 
at training time in order to become robust, but overly large 
changes hinder the learning of useful features (also see 
App. C). 

6.3. Evaluation on Real-World Data 

To evaluate the generalizing capabilities of our trained met­
ric, we turn to three representative and publicly available 
data sets of captured and simulated real-world phenomena, 
namely buoyant flows, turbulence, and weather. For the 
former, we make use of the ScalarFlow data set (Eckert 
et al., 2019), which consists of captured velocities of buoy­
ant scalar transport flows. Additionally, we include velocity 
data from the Johns Hopkins Turbulence Database (JHTDB) 
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(Perlman et al., 2007), which represents direct numerical 
simulations of fully developed turbulence. As a third case, 
we use scalar temperature and geopotential fields from the 
WeatherBench repository (Rasp et al., 2020), which contains 
global climate data on a Cartesian latitude-longitude grid of 
the earth. Visualizations of this data via color-mapping the 
scalar fields or velocity magnitudes are shown in Fig. 6. 

Figure 6. Examples from three real-world data repositories used for evaluation, visualized via color-mapping. Each block features 
four different sequences (rows) with frames in equal temporal or spatial intervals. Left: ScalarFlow – captured buoyant volumetric 
transport flows using the z-slice (top two) and z-mean (bottom two). Middle: JHTDB – four different turbulent DNS simulations. Right: 
WeatherBench – weather data consisting of temperature (top two) and geopotential (bottom two). 
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Figure 7. Spearman correlation values for multiple metrics on data 
from three repositories. Shown are mean and standard deviation 
over different temporal or spatial intervals used to create sequences. 

For the results in Fig. 7, we extracted sequences of frames 
with fixed temporal and spatial intervals from each data set 
to obtain a ground truth ordering. Six different interval spac­
ings for every data source are employed, and all velocity 
data is split by component. We then measure how well dif­
ferent metrics recover the original ordering in the presence 
of the complex changes of content, driven by the underlying 
physical processes. The LSiM model outlined in previous 
sections was used for inference without further changes. 

Every metric is separately evaluated (see Section 6.2) for 
the six interval spacings with 180-240 sequences each. For 
ScalarFlow and WeatherBench, the data was additionally 
partitioned by z-slice or z-mean and temperature or geopo­

tential respectively, leading to twelve evaluations. Fig. 7 
shows the mean and standard deviation of the resulting cor­
relation values. Despite never being trained on any data 
from these data sets, LSiM recovers the ordering of all three 
cases with consistently high accuracy. It yields averaged 
correlations of 0.96 ± 0.02, 0.95 ± 0.05, and 0.95 ± 0.06 
for ScalarFlow, JHTDB, and WeatherBench, respectively. 
The other metrics show lower means and higher uncertainty. 
Further details and results for the individual evaluations can 
be found in App. E. 

7. Conclusion 

We have presented the LSiM metric to reliably and robustly 
compare outputs from numerical simulations. Our method 
significantly outperforms existing shallow metric functions 
and provides better results than other learned metrics. We 
demonstrated the usefulness of the correlation loss, showed 
the benefits of a controlled data generation environment, 
and highlighted the stability of the obtained metric for a 
range of real-world data sets. 

Our trained LSiM metric has the potential to impact a wide 
range of fields, including the fast and reliable accuracy as­
sessment of new simulation methods, robust optimizations 
of parameters for reconstructions of observations, and guid­
ing generative models of physical systems. Furthermore, it 
will be highly interesting to evaluate other loss functions, 
e.g., mutual information (Bachman et al., 2019) or con­
trastive predictive coding (Hénaff et al., 2019), and combi­
nations with evaluations from perceptual studies (Um et al., 
2019). We also plan to evaluate our approach for an even 
larger set of PDEs as well as for 3D and 4D data sets. Espe­
cially, turbulent flows are a highly relevant and interesting 
area for future work on learned evaluation metrics. 
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