
Learning Similarity Metrics for Numerical Simulations

Georg Kohl 1 Kiwon Um 1 Nils Thuerey 1

Abstract
We propose a neural network-based approach
that computes a stable and generalizing metric
(LSiM) to compare data from a variety of nu­
merical simulation sources. We focus on scalar
time-dependent 2D data that commonly arises
from motion and transport-based partial differen­
tial equations (PDEs). Our method employs a
Siamese network architecture that is motivated
by the mathematical properties of a metric. We
leverage a controllable data generation setup with
PDE solvers to create increasingly different out­
puts from a reference simulation in a controlled
environment. A central component of our learned
metric is a specialized loss function that intro­
duces knowledge about the correlation between
single data samples into the training process. To
demonstrate that the proposed approach outper­
forms existing metrics for vector spaces and other
learned, image-based metrics, we evaluate the dif­
ferent methods on a large range of test data. Addi­
tionally, we analyze generalization benefits of an
adjustable training data difficulty and demonstrate
the robustness of LSiM via an evaluation on three
real-world data sets.

1. Introduction

Evaluating computational tasks for complex data sets is a
fundamental problem in all computational disciplines. Reg­
ular vector space metrics, such as the L2 distance, were
shown to be very unreliable (Wang et al., 2004; Zhang et al.,
2018), and the advent of deep learning techniques with con­
volutional neural networks (CNNs) made it possible to more
reliably evaluate complex data domains such as natural im­
ages, texts (Benajiba et al., 2018), or speech (Wang et al.,
2018). Our central aim is to demonstrate the usefulness of

nich, Munich, Germany. Correspondence to: Georg Kohl
<georg.kohl@tum.de>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au­
thor(s).

1Department of Informatics, Technical University of Mu­

CNN-based evaluations in the context of numerical simula-
tions. These simulations are the basis for a wide range of
applications ranging from blood flow simulations to aircraft
design. Specifically, we propose a novel learned simulation
metric (LSiM) that allows for a reliable similarity evaluation
of simulation data.

Potential applications of such a metric arise in all areas
where numerical simulations are performed or similar data
is gathered from observations. For example, accurate evalua­
tions of existing and new simulation methods with respect to
a known ground truth solution (Oberkampf et al., 2004) can
be performed more reliably than with a regular vector norm.
Another good example is weather data for which complex
transport processes and chemical reactions make in-place
comparisons with common metrics unreliable (Jolliffe &
Stephenson, 2012). Likewise, the long-standing, open ques­
tions of turbulence (Moin & Mahesh, 1998; Lin et al., 1998)
can benefit from improved methods for measuring the simi­
larity and differences in data sets and observations.

In this work, we focus on field data, i.e., dense grids of
scalar values, similar to images, which were generated with
known partial differential equations (PDEs) in order to en­
sure the availability of ground truth solutions. While we
focus on 2D data in the following to make comparisons with
existing techniques from imaging applications possible, our
approach naturally extends to higher dimensions. Every
sample of this 2D data can be regarded a high dimensional
vector, so metrics on the corresponding vector space are
applicable to evaluate similarities. These metrics, in the
following denoted as shallow metrics, are typically simple,
element-wise functions such as L1 or L2 distances. Their
inherent problem is that they cannot compare structures on
different scales or contextual information.

Many practical problems require solutions over time and
need a vast number of non-linear operations that often re­
sult in substantial changes of the solutions even for small
changes of the inputs. Hence, despite being based on
known, continuous formulations, these systems can be seen
as chaotic. We illustrate this behavior in Fig. 1, where two
smoke flows are compared to a reference simulation. A
single simulation parameter was varied for these examples,
and a visual inspection shows that smoke plume (a) is more
similar to the reference. This matches the data generation

mailto:georg.kohl@tum.de

Learning Similarity Metrics for Numerical Simulations

Figure 1. Example of field data from a fluid simulation of hot smoke with normalized distances for different metrics. Our method (LSiM,
green) approximates the ground truth distances (GT, gray) determined by the data generation method best, i.e., version (a) is closer to the
ground truth data than (b). An L2 metric (red) erroneously yields a reversed ordering.

process: version (a) has a significantly smaller parameter
change than (b) as shown in the inset graph on the right.
LSiM robustly predicts the ground truth distances while the
L2 metric labels plume (b) as more similar. In our work, we
focus on retrieving the relative distances of simulated data
sets. Thus, we do not aim for retrieving the absolute param­
eter change but a relative distance that preserves ordering
with respect to this parameter.

Using existing image metrics based on CNNs for this prob­
lem is not optimal either: natural images only cover a small
fraction of the space of possible 2D data, and numerical
simulation outputs are located in a fundamentally different
data manifold within this space. Hence, there are crucial
aspects that cannot be captured by purely learning from
photographs. Furthermore, we have full control over the
data generation process for simulation data. As a result, we
can create arbitrary amounts of training data with gradual
changes and a ground truth ordering. With this data, we can
learn a metric that is not only able to directly extract and use
features but also encodes interactions between them. The
central contributions of our work are as follows:

•	 We propose a Siamese network architecture with fea­
ture map normalization, which is able to learn a metric
that generalizes well to unseen motion and transport­
based simulation methods.

•	 We propose a novel loss function that combines a cor­
relation loss term with a mean squared error to improve
the accuracy of the learned metric.

•	 In addition, we show how a data generation approach
for numerical simulations can be employed to train
networks with general and robust feature extractors for
metric calculations.

Our source code, data sets, and final model are available at
https://github.com/tum-pbs/LSIM.

2. Related Work

One of the earliest methods to go beyond using simple met­
rics based on Lp norms for natural images was the structural

similarity index (Wang et al., 2004). Despite improvements,
this method can still be considered a shallow metric. Over
the years, multiple large databases for human evaluations of
natural images were presented, for instance, CSIQ (Larson
& Chandler, 2010), TID2013 (Ponomarenko et al., 2015),
and CID:IQ (Liu et al., 2014). With this data and the discov­
ery that CNNs can create very powerful feature extractors
that are able to recognize patterns and structures, deep fea­
ture maps quickly became established as means for evalua­
tion (Amirshahi et al., 2016; Berardino et al., 2017; Bosse
et al., 2016; Kang et al., 2014; Kim & Lee, 2017). Recently,
these methods were improved by predicting the distribution
of human evaluations instead of directly learning distance
values (Prashnani et al., 2018; Talebi & Milanfar, 2018b).
Zhang et al. compared different architecture and levels of
supervision, and showed that metrics can be interpreted as a
transfer learning approach by applying a linear weighting
to the feature maps of any network architecture to form the
image metric LPIPS v0.1. Typical use cases of these image­
based CNN metrics are computer vision tasks such as detail
enhancement (Talebi & Milanfar, 2018a), style transfer, and
super-resolution (Johnson et al., 2016). Generative adver­
sarial networks also leverage CNN-based losses by training
a discriminator network in parallel to the generation task
(Dosovitskiy & Brox, 2016).

Siamese network architectures are known to work well for a
variety of comparison tasks such as audio (Zhang & Duan,
2017), satellite images (He et al., 2019), or the similarity of
interior product designs (Bell & Bala, 2015). Furthermore,
they yield robust object trackers (Bertinetto et al., 2016),
algorithms for image patch matching (Hanif, 2019), and for
descriptors for fluid flow synthesis (Chu & Thuerey, 2017).
Inspired by these studies, we use a similar Siamese neural
network architecture for our metric learning task. In contrast
to other work on self-supervised learning that utilizes spatial
or temporal changes to learn meaningful representations
(Agrawal et al., 2015; Wang & Gupta, 2015), our method
does not rely on tracked keypoints in the data.

While correlation terms have been used for learning joint
representations by maximizing correlation of projected

https://github.com/tum-pbs/LSIM

Learning Similarity Metrics for Numerical Simulations

views (Chandar et al., 2016) and are popular for style trans­
fer applications via the Gram matrix (Ruder et al., 2016),
they were not used for learning distance metrics. As we
demonstrate below, they can yield significant improvements
in terms of the inferred distances.

Similarity metrics for numerical simulations are a topic of
ongoing investigation. A variety of specialized metrics have
been proposed to overcome the limitations of Lp norms,
such as the displacement and amplitude score from the area
of weather forecasting (Keil & Craig, 2009) as well as per­
mutation based metrics for energy consumption forecasting
(Haben et al., 2014). Turbulent flows, on the other hand, are
often evaluated in terms of aggregated frequency spectra
(Pitsch, 2006). Crowd-sourced evaluations based on the
human visual system were also proposed to evaluate simula­
tion methods for physics-based animation (Um et al., 2017)
and for comparing non-oscillatory discretization schemes
(Um et al., 2019). These results indicate that visual evalua­
tions in the context of field data are possible and robust, but
they require extensive (and potentially expensive) user stud­
ies. Additionally, our method naturally extends to higher
dimensions, while human evaluations inherently rely on pro­
jections with at most two spatial and one time dimension.

3. Constructing a CNN-based Metric

In the following, we explain our considerations when em­
ploying CNNs as evaluation metrics. For a comparison that
corresponds to our intuitive understanding of distances, an
underlying metric has to obey certain criteria. More pre­
cisely, a function m : I × I → [0, ∞) is a metric on its input
space I if it satisfies the following properties x, y, z I: ∀ ∈

m(x, y) ≥ 0 non-negativity (1)
m(x, y) = m(y, x) symmetry (2)
m(x, y) ≤ m(x, z) + m(z, y) triangle ineq. (3)
m(x, y) = 0 x = y identity of indisc. (4) ⇐⇒

The properties (1) and (2) are crucial as distances should be
symmetric and have a clear lower bound. Eq. (3) ensures

that direct distances cannot be longer than a detour. Property
(4), on the other hand, is not really useful for discrete opera­
tions as approximation errors and floating point operations
can easily lead to a distance of zero for slightly different
inputs. Hence, we focus on a relaxed, more meaningful
definition m(x, x) = 0 ∀x ∈ I, which leads to a so-called
pseudometric. It allows for a distance of zero for different
inputs but has to be able to spot identical inputs.

We realize these requirements for a pseudometric with an
architecture that follows popular perceptual metrics such
as LPIPS: The activations of a CNN are compared in latent
space, accumulated with a set of weights, and the resulting
per-feature distances are aggregated to produce a final dis­
tance value. Fig. 2 gives a visual overview of this process.

To show that the proposed Siamese architecture by construc­
tion qualifies as a pseudometric, the function

m(x, y) = m2(m1(x),m1(y))

computed by our network is split into two parts: m1 : I → L
to compute the latent space embeddings x̃ = m1(x), ỹ =
m1(y) from each input, and m2 : L → [0, ∞) to compare
these points in the latent space L. We chose operations
for m2 such that it forms a metric ∀x̃, ỹ ∈ L. Since m1

always maps to L, this means m has the properties (1),
(2), and (3) on I for any possible mapping m1, i.e., only a
metric on L is required. To achieve property (4), m1 would
need to be injective, but the compression of typical feature
extractors precludes this. However, if m1 is deterministic
m(x, x) = 0 ∀x ∈ I is still fulfilled since identical inputs
result in the same point in latent space and thus a distance
of zero. More details for this proof can be found in App. A.

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

Elementwise
latent space
difference

Channel aggr.:
weighted avg.

Spatial aggr.:
average

Layer aggr.:
summation

Distance
output

1 Learned weight
per feature map

RGB inputs Feature maps:
sets of 3rd order tensors

Difference maps:
set of 3rd order tensors

Average maps:
set of 2nd order tensors

Layer distances:
set of scalars

d1 d2 d3 d
Result:
scalar

Figure 2. Overview of the proposed distance computation for a simplified base network that contains three layers with four feature maps
each in this example. The output shape for every operation is illustrated below the transitions in orange and white. Bold operations are
learned, i.e., contain weights influenced by the training process.

3.1. Base Network

The sole purpose of the base network (Fig. 2, in purple) is to
extract feature maps from both inputs. The Siamese architec­
ture implies that the weights of the base network are shared
for both inputs, meaning all feature maps are comparable.
We experimented with the feature extracting layers from var-

Learning Similarity Metrics for Numerical Simulations

ious CNN architectures, such as AlexNet (Krizhevsky et al.,
2017), VGG (Simonyan & Zisserman, 2015), SqueezeNet
(Iandola et al., 2016), and a fluid flow prediction network
(Thuerey et al., 2018). We considered three variants of these
networks: using the original pre-trained weights, fine-tuning
them, or re-training the full networks from scratch. In con­
trast to typical CNN tasks where only the result of the final
output layer is further processed, we make use of the full
range of extracted features across the layers of a CNN (see
Fig. 2). This implies a slightly different goal compared
to regular training: while early features should be general
enough to allow for extracting more complex features in
deeper layers, this is not their sole purpose. Rather, features
in earlier layers of the network can directly participate in
the final distance calculation and can yield important cues.

We achieved the best performance for our data sets using a
base network architecture with five layers, similar to a re­
duced AlexNet, that was trained from scratch (see App. B.1).
This feature extractor is fully convolutional and thus allows
for varying spatial input dimensions, but for comparability
to other models we keep the input size constant at 224×224
for our evaluation. In separate tests with interpolated inputs,
we found that the metric still works well for scaling factors
in the range [0.5, 2].

3.2. Feature Map Normalization

The goal of normalizing the feature maps (Fig. 2, in red) is
to transform the extracted features of each layer, which typi­
cally have very different orders of magnitude, into compara­
ble ranges. While this task could potentially be performed
by the learned weights, we found the normalization to yield
improved performance in general.

Let G denote a 4th order feature tensor with dimensions
(gb, gc, gx, gy) from one layer of the base network. We form
a series G0, G1, . . . for every possible content of this tensor
across our training samples. The normalization only hap­
pens in the channel dimension, so all following operations
accumulate values along the dimension of gc while keeping
gb, gx, and gy constant, i.e., are applied independently of the
batch and spatial dimensions. The unit length normalization
proposed by Zhang et al., i.e.,

normunit(G) = G / IGI2 ,

only considers the current sample. In this case, IGI2 is
a 3rd order tensor with the Euclidean norms of G along
the channel dimension. Effectively, this results in a cosine
distance, which only measures angles of the latent space
vectors. To consider the vector magnitude, the most basic
idea is to use the maximum norm of other training samples,
and this leads to a global unit length normalization

normglobal(G) = G / max (IG0I2 , IG1I2 , . . .) .

Now, the magnitude of the current sample can be compared
to other feature vectors, but this is not robust since the largest
feature vector could be an outlier with respect to the typical
content. Instead, we individually transform each component
of a feature vector with dimension gc to a standard normal
distribution. This is realized by subtracting the mean and
dividing by the standard deviation of all features element­
wise along the channel dimension as follows:

−
1 G − mean (G0, G1, . . .)normdist(G) = √ .

gc 1 std (G0, G1, . . .)

These statistics are computed via a preprocessing step over
the training data and stay fixed during training, as we did not
observe significant improvements with more complicated
schedules such as keeping a running mean. The magnitude
of the resulting normalized vectors follows a chi distribution
with k = gc degrees of freedom, but computing its mean √
2 Γ((k + 1)/2) / Γ(e 1k/2) is xpensive , especially for

larger k. Instead, the mode of the chi distribution
√
gc − 1

that closely approximates its mean is employed to achieve a
consistent average magnitude of about one independently of
gc. As a result, we can measure angles for the latent space
vectors and compare their magnitude in the global length
distribution across all layers.

3.3. Latent Space Differences

Computing the difference of two latent space representations
x̃, ỹ ∈ L that consist of all extracted features from the two
inputs x, y ∈ I lies at the core of the metric. This difference
operator in combination with the following aggregations has
to ensure that the metric properties above are upheld with
respect to L. Thus, the most obvious approach to employ an
element-wise difference x̃i − ỹi ∀i ∈ {0, 1, . . . , dim(L)} is
not suitable, as it invalidates non-negativity and symmetry.
Instead, exponentiation of an absolute difference via |x̃i −
ỹi|p yields an Lp metric on L, when combined with the
correct aggregation and a pth root. |x̃i − ỹi|2 is used to
compute the difference maps (Fig. 2, in yellow), as we did
not observe significant differences for other values of p.

Considering the importance of comparing the extracted fea­
tures, this simple feature difference does not seem optimal.
Rather, one can imagine that improvements in terms of com­
paring one set of feature activations could lead to overall
improvements for derived metrics. We investigated replac­
ing these operations with a pre-trained CNN-based metric
for each feature map. This creates a recursive process or
“meta-metric” that reformulates the initial problem of learn­
ing input similarities in terms of learning feature space sim­
ilarities. However, as detailed in App. B.3, we did not find
any substantial improvements with this recursive approach.
This implies that once a large enough number of expressive

1Γ denotes the gamma function for factorials

Learning Similarity Metrics for Numerical Simulations

features is available for comparison, the in-place difference
of each feature is sufficient to compare two inputs.

3.4. Aggregations

The subsequent aggregation operations (Fig. 2, in green) are
applied to the difference maps to compress the contained
per feature differences along the different dimensions into a
single distance value. A simple summation in combination
with an absolute difference |x̃i − ỹi| above leads to an L1

distance on the latent space L. Similarly, we can show that
average or learned weighted average operations are applica­
ble too (see App. A). In addition, using a p-th power for the
latent space difference requires a corresponding root opera­
tion after all aggregations, to ensure the metric properties
with respect to L.

To aggregate the difference maps along the channel dimen­
sion, we found the weighted average proposed by Zhang
et al. to work very well. Thus, we use one learnable weight
to control the importance of a feature. The weight is a
multiplier for the corresponding difference map before sum­
mation along the channel dimension, and is clamped to be
non-negative. A negative weight would mean that a larger
difference in this feature produces a smaller overall distance,
which is not helpful. For regularization, the learned ag­
gregation weights utilize dropout during training, i.e., are
randomly set to zero with a probability of 50%. This ensures
that the network cannot rely on single features only, but has
to consider multiple features for a more stable evaluation.

For spatial and layer aggregation, functions such as a sum­
mation or averaging are sufficient and generally interchange­
able. We experimented with more intricate aggregation func­
tions, e.g., by learning a spatial average or determining layer
importance weights dynamically from the inputs. When the
base network is fixed and the metric only has very few train­
able weights, this did improve the overall performance. But,
with a fully trained base network, the feature extraction
seems to automatically adopt these aspects making a more
complicated aggregation unnecessary.

4. Data Generation and Training

Similarity data sets for natural images typically rely on
changing already existing images with distortions, noise,
or other operations and assigning ground truth distances
according to the strength of the operation. Since we can
control the data creation process for numerical simulations
directly, we can generate large amounts of simulation data
with increasing dissimilarities by altering the parameters
used for the simulations. As a result, the data contains more
information about the nature of the problem, i.e., which
changes of the data distribution should lead to increased
distances, than by applying modifications as a post-process.

4.1. Data Generation

Given a set of model equations, e.g., a PDE from fluid dy­
namics, typical solution methods consist of a solver that,
given a set of boundary conditions, computes discrete ap­
proximations of the necessary differential operators. The
discretized operators and the boundary conditions typically
contain problem dependent parameters, which we collec­
tively denote with p0, p1, . . . , pi, . . . in the following. We
only consider time dependent problems, and our solvers
start with initial conditions at t0 to compute a series of time
steps t1, t2, . . . until a target point in time (tt) is reached.
At that point, we obtain a reference output field o0 from one
of the PDE variables, e.g., a velocity.

Initial conditions OutputFinite difference solver with time discretization

[p0 p1
⋯ pi] t1 t2 t t o0

o1[p0 p1
⋯ pi+Δi]

[p0 p1
⋯ pi+n⋅Δi] t1 t2 t t onIn

c
re

a
si

n
g

 p
ar

a
m

e
te

r
ch

a
n

g
e

D
e

cr
e

as
in

g
 o

u
tp

u
t

si
m

ila
ri

ty

noise1,1(s) noise1,2(s) noise1 , t(s)

t1 t2 t t

noise2,1(s) noise2,2(s) noise2 , t(s)

noisen ,1(s) noisen ,2(s) noisen ,t (s)

Figure 3. General data generation method from a PDE solver for
a time dependent problem. With increasing changes of the initial
conditions for a parameter pi in Δi increments, the outputs de­
crease in similarity. Controlled Gaussian noise is injected in a
simulation field of the solver. The difficulty of the learning task
can be controlled by scaling Δi as well as the noise variance v.

For data generation, we incrementally change a single pa­
rameter pi in n steps Δi, 2 · Δi, . . . , n · Δi to create a series
of n outputs o1, o2, . . . , on. We consider a series obtained
in this way to be increasingly different from o0. To create
natural variations of the resulting data distributions, we add
Gaussian noise fields with zero mean and adjustable vari­
ance v to an appropriate simulation field such as a velocity.
This noise allows us to generate a large number of varied
data samples for a single simulation parameter pi. Further­
more, v serves as an additional parameter that can be varied
in isolation to observe the same simulation with different
levels of interference. This is similar in nature to numerical
errors introduced by discretization schemes. These pertur­
bations enlarge the space covered by the training data, and
we found that training networks with suitable noise levels
improves robustness as we will demonstrate below. The
process for data generation is summarized in Fig. 3.

As PDEs can model extremely complex and chaotic be­
haviour, there is no guarantee that the outputs always ex­
hibit increasing dissimilarity with the increasing parameter
change. This behaviour is what makes the task of similar­

Learning Similarity Metrics for Numerical Simulations

ity assessment so challenging. Even if the solutions are
essentially chaotic, their behaviour is not arbitrary but rather
governed by the rules of the underlying PDE. For our data
set, we choose the following range of representative PDEs:
We include a pure Advection-Diffusion model (AD), and
Burger’s equation (BE) which introduces an additional vis­
cosity term. Furthermore, we use the full Navier-Stokes
equations (NSE), which introduce a conservation of mass
constraint. When combined with a deterministic solver and
a suitable parameter step size, all these PDEs exhibit chaotic
behaviour at small scales, and the medium to large scale
characteristics of the solutions shift smoothly with increas­
ing changes of the parameters pi.

The noise amplifies the chaotic behaviour to larger scales
and provides a controlled amount of perturbations for the
data generation. This lets the network learn about the nature
of the chaotic behaviour of PDEs without overwhelming it
with data where patterns are not observable anymore. The
latter can easily happen when Δi or v grow too large and
produce essentially random outputs. Instead, we specifically
target solutions that are difficult to evaluate in terms of a
shallow metric. We heuristically select the smallest v and a
suitable Δi such that the ordering of several random output
samples with respect to their L2 difference drops below a
correlation value of 0.8. For the chosen PDEs, v was small
enough to avoid deterioration of the physical behaviour
especially due to the diffusion terms, but different means of
adjusting the difficulty may be necessary for other data.

4.2. Training

For training, the 2D scalar fields from the simulations were
augmented with random flips, 90◦ rotations, and cropping
to obtain an input size of 224 × 224 every time they are
used. Identical augmentations were applied to each field of
one given sequence to ensure comparability. Afterwards,
each input sequence is collectively normalized to the range
[0, 255]. To allow for comparisons with image metrics and
provide the possibility to compare color data and full ve­
locity fields during inference, the metric uses three input
channels. During training, the scalar fields are duplicated to
each channel after augmentation. Unless otherwise noted,
networks were trained with a batch size of 1 for 40 epochs
with the Adam optimizer using a learning rate of 10−5. To
evaluate the trained networks on validation and test inputs,
only a bilinear resizing and the normalization step is applied.

5. Correlation Loss Function

The central goal of our networks is to identify relative dif­
ferences of input pairs produced via numerical simulations.
Thus, instead of employing a loss that forces the network
to only infer given labels or distance values, we train our
networks to infer the ordering of a given sequence of simula­

tion outputs o0, o1, . . . , on. We propose to use the Pearson
correlation coefficient (see Pearson, 1920), which yields
a value in [−1, 1] that measures the linear relationship be-
tween two distributions. A value of 1 implies that a linear
equation describes their relationship perfectly. We com-
pute this coefficient for a full series of outputs such that the
network can learn to extract features that arrange this data
series in the correct ordering. Each training sample of our
network consists of every possible pair from the sequence
o0, o1, . . . , on and the corresponding ground truth distance
distribution c ∈ [0, 1]0.5(n+1)n representing the parameter
change from the data generation. For a distance prediction
d ∈ [0, ∞)0.5(n+1)n of our network for one sample, we
compute the loss with:

 I − I −2 2

¯(c − c̄) · (d − d)
L(c, d) = λ1(c − d)2 + λ2(1 −) (5)¯c c̄ d d

Here, the mean of a distance vector is denoted by c̄ and
d̄ for ground truth and prediction, respectively. The first
part of the loss is a regular MSE term, which minimizes
the difference between predicted and actual distances. The
second part is the Pearson correlation coefficient, which is
inverted such that the optimization results in a maximization
of the correlation. As this formulation depends on the length
of the input sequence, the two terms are scaled to adjust
their relative influence with λ1 and λ2. For the training, we
chose n = 10 variations for each reference simulation. If
n should vary during training, the influence of both terms
needs to be adjusted accordingly. We found that scaling
both terms to a similar order of magnitude worked best in
our experiments.

0.62 0.64 0.66 0.68 0.70 0.72 0.74
Correlation on all test data

MSE

Cross cor.

Pearson cor.

MSE +
 cross cor.

Proposed

LSiM (ours)
AlexNetfrozen

Figure 4. Performance comparison on our test data of the proposed
approach (LSiM) and a smaller model (AlexNetfrozen) for different
loss functions on the y-axis.

In Fig. 4, we investigate how the proposed loss function
compares to other commonly used loss formulations for our
full network and a pre-trained network, where only aggre­
gation weights are learned. The performance is measured
via Spearman’s rank correlation of predicted against ground
truth distances on our combined test data sets. This is com­
parable to the All column in Tab. 1 and described in more

Learning Similarity Metrics for Numerical Simulations

detail in Section 6.2. In addition to our full loss function, we
consider a loss function that replaces the Pearson correlation
with a simpler cross-correlation (c · d) / (IcI IdI). We 2 2

also include networks trained with only the MSE or only
the correlation terms for each of the two variants.

A simple MSE loss yields the worst performance for both
evaluated models. Using any correlation based loss function
for the AlexNetfrozen metric (see Section 6.2) improves the
results, but there is no major difference due to the limited
number of only 1152 trainable weights. For LSiM, the pro­
posed combination of MSE loss with the Pearson correlation
performs better than using cross-correlation or only isolated
Pearson correlation. Interestingly, combining cross correla­
tion with MSE yields worse results than cross correlation
by itself. This is caused by the cross correlation term influ­
encing absolute distance values, which potentially conflicts
with the MSE term. For our loss, the Pearson correlation
only handles the relative ordering while the MSE deals with
the absolute distances, leading to better inferred distances.

6. Results

In the following, we will discuss how the data generation
approach was employed to create a large range of training
and test data from different PDEs. Afterwards, the proposed
metric is compared to other metrics, and its robustness is
evaluated with several external data sets.

6.1. Data Sets

We created four training (Smo, Liq, Adv and Bur) and two
test data sets (LiqN and AdvD) with ten parameter steps for
each reference simulation. Based on two 2D NSE solvers,
the smoke and liquid simulation training sets (Smo and
Liq) add noise to the velocity field and feature varied initial
conditions such as fluid position or obstacle properties, in
addition to variations of buoyancy and gravity forces. The
two other training sets (Adv and Bur) are based on 1D
solvers for AD and BE, concatenated over time to form a
2D result. In both cases, noise was injected into the velocity
field, and the varied parameters are changes to the field
initialization and forcing functions.

For the test data set, we substantially change the data dis­
tribution by injecting noise into the density instead of the
velocity field for AD simulations to obtain the AdvD data
set and by including background noise for the velocity field
of a liquid simulation (LiqN). In addition, we employed
three more test sets (Sha, Vid, and TID) created without
PDE models to explore the generalization for data far from
our training data setup. We include a shape data set (Sha)
that features multiple randomized moving rigid shapes, a
video data set (Vid) consisting of frames from random
video footage, and TID2013 (Ponomarenko et al., 2015) as
a perceptual image data set (TID). Below, we additionally
list a combined correlation score (All) for all test sets apart
from TID, which is excluded due to its different structure.
Examples for each data set are shown in Fig. 5 and genera­
tion details with further samples can be found in App. D.

Figure 5. Samples from our data sets. For each subset the reference is on the left, and three variations in equal parameter steps follow.
From left to right and top to bottom: Smo (density, velocity, and pressure), Adv (density), Liq (flags, velocity, and levelset), Bur
(velocity), LiqN (velocity), AdvD (density), Sha and Vid.

6.2. Performance Evaluation

To evaluate the performance of a metric on a data set, we
first compute the distances from each reference simulation
to all corresponding variations. Then, the predicted and
the ground truth distance distributions over all samples are
combined and compared using Spearman’s rank correlation
coefficient (see Spearman, 1904). It is similar to the Pear­
son correlation, but instead it uses ranking variables, i.e.,
measures monotonic relationships of distributions.

The top part of Tab. 1 shows the performance of the shallow
metrics L2 and SSIM as well as the LPIPS metric (Zhang
et al., 2018) for all our data sets. The results clearly show
that shallow metrics are not suitable to compare the samples
in our data set and only rarely achieve good correlation
values. The perceptual LPIPS metric performs better in
general and outperforms our method on the image data sets
Vid and TID. This is not surprising as LPIPS is specifically
trained for such images. For most of the simulation data
sets, however, it performs significantly worse than for the
image content. The last row of Tab. 1 shows the results of
our LSiM model with a very good performance across all
data sets and no negative outliers. Note that although it was
not trained with any natural image content, it still performs
well for the image test sets.

Learning Similarity Metrics for Numerical Simulations

Table 1. Performance comparison of existing metrics (top block), experimental designs (middle block), and variants of the proposed
method (bottom block) on validation and test data sets measured in terms of Spearman’s rank correlation coefficient of ground truth
against predicted distances. Bold+underlined values show the best performing metric for each data set, bold values are within a 0.01
error margin of the best performing, and italic values are 0.2 or more below the best performing. On the right, a visualization of the
combined test data results is shown for selected models.

Metric
Va

Smo Liq

lidation

Adv

data sets

Bur TID LiqN

Test data sets

AdvD Sha Vid All

L2 0.66 0.80 0.74 0.62 0.82 0.73 0.57 0.58 0.79 0.61
SSIM 0.69 0.73 0.77 0.71 0.77 0.26 0.69 0.46 0.75 0.53
LPIPS v0.1. 0.63 0.68 0.68 0.72 0.86 0.50 0.62 0.84 0.83 0.66

AlexNetrandom 0.63 0.69 0.69 0.66 0.82 0.64 0.65 0.67 0.81 0.65
AlexNetfrozen 0.66 0.70 0.69 0.71 0.85 0.40 0.62 0.87 0.84 0.65
Optical flow 0.62 0.57 0.36 0.37 0.55 0.49 0.28 0.61 0.75 0.48
Non-Siamese 0.77 0.85 0.78 0.74 0.65 0.81 0.64 0.25 0.80 0.60
Skipfrom scratch 0.79 0.83 0.80 0.74 0.85 0.78 0.61 0.78 0.83 0.71

LSiMnoiseless

LSiMstrong noise

LSiM (ours)

0.77
0.65
0.78

0.77
0.65
0.82

0.76
0.67
0.79

0.72
0.69
0.75

0.85
0.84
0.86

0.62
0.39
0.79

0.58
0.54
0.58

0.86
0.89
0.88

0.82
0.82
0.81

0.68
0.64
0.73

L2
SS

IM
LP
IP
S

O
pt
Fl
ow

N
on

Si
am Sk
ip

LS
iM

0.5

0.6

0.7

C
or

re
la

tio
n

(A
ll)

Shallow
Image-based
Experimental
Proposed

The middle block of Tab. 1 contains several interesting vari­
ants (more details can be found in App. B): AlexNetrandom

and AlexNetfrozen are small models, where the base net­
work is the original AlexNet with pre-trained weights.
AlexNetrandom contains purely random aggregation weights
without training, whereas AlexNetfrozen only has trainable
weights for the channel aggregation and therefore lacks
the flexibility to fully adjust to the data distribution of the
numerical simulations. The random model performs surpris­
ingly well in general, pointing to powers of the underlying
Siamese CNN architecture.

Recognizing that many PDEs include transport phenomena,
we investigated optical flow (Horn & Schunck, 1981) as a
means to compute motion from field data. For the Optical
flow metric, we used FlowNet2 (Ilg et al., 2016) to bidirec­
tionally compute the optical flow field between two inputs
and aggregate it to a single distance value by summing all
flow vector magnitudes. On the data set Vid that is similar
to the training data of FlowNet2, it performs relatively well,
but in most other cases it performs poorly. This shows that
computing a simple warping from one input to the other is
not enough for a stable metric although it seems like an in­
tuitive solution. A more robust metric needs the knowledge
of the underlying features and their changes to generalize
better to new data.

To evaluate whether a Siamese architecture is really ben­
eficial, we used a Non-Siamese architecture that directly
predicts the distance from both stacked inputs. For this
purpose, we employed a modified version of AlexNet that
reduces the weights of the feature extractor by 50% and
of the remaining layers by 90%. As expected, this metric

works great on the validation data but has huge problems
with generalization, especially on TID and Sha. In addi­
tion, even simple metric properties such as symmetry are no
longer guaranteed because this architecture does not have
the inherent constraints of the Siamese setup. Finally, we
experimented with multiple fully trained base networks. As
re-training existing feature extractors only provided small
improvements, we used a custom base network with skip
connections for the Skipfrom scratch metric. Its results already
come close to the proposed approach on most data sets.

The last block in Tab. 1 shows variants of the proposed
approach trained with varied noise levels. This inherently
changes the difficulty of the data. Hence, LSiMnoiseless was
trained with relatively simple data without perturbations,
whereas LSiMstrong noise was trained with strongly varying
data. Both cases decrease the capabilities of the trained
model on some of the validation and test sets. This indicates
that the network needs to see a certain amount of variation
at training time in order to become robust, but overly large
changes hinder the learning of useful features (also see
App. C).

6.3. Evaluation on Real-World Data

To evaluate the generalizing capabilities of our trained met­
ric, we turn to three representative and publicly available
data sets of captured and simulated real-world phenomena,
namely buoyant flows, turbulence, and weather. For the
former, we make use of the ScalarFlow data set (Eckert
et al., 2019), which consists of captured velocities of buoy­
ant scalar transport flows. Additionally, we include velocity
data from the Johns Hopkins Turbulence Database (JHTDB)

Learning Similarity Metrics for Numerical Simulations

(Perlman et al., 2007), which represents direct numerical
simulations of fully developed turbulence. As a third case,
we use scalar temperature and geopotential fields from the
WeatherBench repository (Rasp et al., 2020), which contains
global climate data on a Cartesian latitude-longitude grid of
the earth. Visualizations of this data via color-mapping the
scalar fields or velocity magnitudes are shown in Fig. 6.

Figure 6. Examples from three real-world data repositories used for evaluation, visualized via color-mapping. Each block features
four different sequences (rows) with frames in equal temporal or spatial intervals. Left: ScalarFlow – captured buoyant volumetric
transport flows using the z-slice (top two) and z-mean (bottom two). Middle: JHTDB – four different turbulent DNS simulations. Right:
WeatherBench – weather data consisting of temperature (top two) and geopotential (bottom two).

L2 SSIM LPIPS LSiM (ours)

0.7

0.8

0.9

1.0

Av
er

ag
e

co
rre

la
tio

n

ScalarFlow JHTDB WeatherBench

Figure 7. Spearman correlation values for multiple metrics on data
from three repositories. Shown are mean and standard deviation
over different temporal or spatial intervals used to create sequences.

For the results in Fig. 7, we extracted sequences of frames
with fixed temporal and spatial intervals from each data set
to obtain a ground truth ordering. Six different interval spac­
ings for every data source are employed, and all velocity
data is split by component. We then measure how well dif­
ferent metrics recover the original ordering in the presence
of the complex changes of content, driven by the underlying
physical processes. The LSiM model outlined in previous
sections was used for inference without further changes.

Every metric is separately evaluated (see Section 6.2) for
the six interval spacings with 180-240 sequences each. For
ScalarFlow and WeatherBench, the data was additionally
partitioned by z-slice or z-mean and temperature or geopo­

tential respectively, leading to twelve evaluations. Fig. 7
shows the mean and standard deviation of the resulting cor­
relation values. Despite never being trained on any data
from these data sets, LSiM recovers the ordering of all three
cases with consistently high accuracy. It yields averaged
correlations of 0.96 ± 0.02, 0.95 ± 0.05, and 0.95 ± 0.06
for ScalarFlow, JHTDB, and WeatherBench, respectively.
The other metrics show lower means and higher uncertainty.
Further details and results for the individual evaluations can
be found in App. E.

7. Conclusion

We have presented the LSiM metric to reliably and robustly
compare outputs from numerical simulations. Our method
significantly outperforms existing shallow metric functions
and provides better results than other learned metrics. We
demonstrated the usefulness of the correlation loss, showed
the benefits of a controlled data generation environment,
and highlighted the stability of the obtained metric for a
range of real-world data sets.

Our trained LSiM metric has the potential to impact a wide
range of fields, including the fast and reliable accuracy as­
sessment of new simulation methods, robust optimizations
of parameters for reconstructions of observations, and guid­
ing generative models of physical systems. Furthermore, it
will be highly interesting to evaluate other loss functions,
e.g., mutual information (Bachman et al., 2019) or con­
trastive predictive coding (Hénaff et al., 2019), and combi­
nations with evaluations from perceptual studies (Um et al.,
2019). We also plan to evaluate our approach for an even
larger set of PDEs as well as for 3D and 4D data sets. Espe­
cially, turbulent flows are a highly relevant and interesting
area for future work on learned evaluation metrics.

Learning Similarity Metrics for Numerical Simulations

Acknowledgements

This work was supported by the ERC Starting Grant re­
alFlow (StG-2015-637014). We would like to thank Stephan
Rasp for preparing the WeatherBench data and all reviewers
for helping to improve this work.

References

Agrawal, P., Carreira, J., and Malik, J. Learning to
see by moving. In 2015 IEEE International Confer­
ence on Computer Vision (ICCV), pp. 37–45, 2015.
doi:10.1109/ICCV.2015.13.

Amirshahi, S. A., Pedersen, M., and Yu, S. X.
Image Quality Assessment by Comparing
CNN Features between Images. Journal of
Imaging Sience and Technology, 60(6), 2016.
doi:10.2352/J.ImagingSci.Technol.2016.60.6.060410.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learning
representations by maximizing mutual information across
views. CoRR, abs/1906.00910, 2019. URL http://
arxiv.org/abs/1906.00910.

Bell, S. and Bala, K. Learning visual similarity for
product design with convolutional neural networks.
ACM Transactions on Graphics, 34(4):98:1–98:10, 2015.
doi:10.1145/2766959.

Benajiba, Y., Sun, J., Zhang, Y., Jiang, L., Weng, Z.,
and Biran, O. Siamese networks for semantic pat­
tern similarity. CoRR, abs/1812.06604, 2018. URL
http://arxiv.org/abs/1812.06604.

Berardino, A., Balle, J., Laparra, V., and Simoncelli, E.
Eigen-Distortions of Hierarchical Representations. In
Advances in Neural Information Processing Systems 30
(NIPS 2017), volume 30, 2017. URL http://arxiv.
org/abs/1710.02266.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,
and Torr, P. H. S. Fully-Convolutional Siamese Net­
works for Object Tracking. In Computer Vision - ECCV
2016 Workshops, PT II, volume 9914, pp. 850–865, 2016.
doi:10.1007/978-3-319-48881-3 56.

Bosse, S., Maniry, D., Mueller, K.-R., Wiegand, T., and
Samek, W. Neural Network-Based Full-Reference Image
Quality Assessment. In 2016 Picture Coding Symposium
(PCS), 2016. doi:10.1109/PCS.2016.7906376.

Chandar, S., Khapra, M. M., Larochelle, H., and Ravindran,
B. Correlational neural networks. Neural Computation,
28(2):257–285, 2016. doi:10.1162/NECO a 00801.

Chu, M. and Thuerey, N. Data-Driven Synthesis of
Smoke Flows with CNN-based Feature Descriptors.

ACM Transactions on Graphics, 36(4):69:1–69:14, 2017.
doi:10.1145/3072959.3073643.

Dosovitskiy, A. and Brox, T. Generating Images with Per­
ceptual Similarity Metrics based on Deep Networks. In
Advances in Neural Information Processing Systems 29
(NIPS 2016), volume 29, 2016. URL http://arxiv.
org/abs/1602.02644.

Eckert, M.-L., Um, K., and Thuerey, N. Scalarflow:
A large-scale volumetric data set of real-world scalar
transport flows for computer animation and machine
learning. ACM Transactions on Graphics, 38(6), 2019.
doi:10.1145/3355089.3356545.

Haben, S., Ward, J., Greetham, D. V., Singleton, C., and
Grindrod, P. A new error measure for forecasts of
household-level, high resolution electrical energy con­
sumption. International Journal of Forecasting, 30(2):
246–256, 2014. doi:10.1016/j.ijforecast.2013.08.002.

Hanif, M. S. Patch match networks: Improved two­
channel and Siamese networks for image patch match­
ing. Pattern Recognition Letters, 120:54–61, 2019.
doi:10.1016/j.patrec.2019.01.005.

He, H., Chen, M., Chen, T., Li, D., and Cheng,
P. Learning to match multitemporal optical satel­
lite images using multi-support-patches Siamese net­
works. Remote Sensing Letters, 10(6):516–525, 2019.
doi:10.1080/2150704X.2019.1577572.

Henaf´ f, O. J., Razavi, A., Doersch, C., Eslami, S.
M. A., and van den Oord, A. Data-efficient image
recognition with contrastive predictive coding. CoRR,
abs/1905.09272, 2019. URL http://arxiv.org/
abs/1905.09272.

Horn, B. K. and Schunck, B. G. Determining optical
flow. Artificial intelligence, 17(1-3):185–203, 1981.
doi:10.1016/0004-3702(81)90024-2.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016. URL http://
arxiv.org/abs/1602.07360.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,
and Brox, T. Flownet 2.0: Evolution of optical flow esti­
mation with deep networks. CoRR, abs/1612.01925, 2016.
URL http://arxiv.org/abs/1612.01925.

Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual Losses
for Real-Time Style Transfer and Super-Resolution. In
Computer Vision - ECCV 2016, PT II, volume 9906, pp.
694–711, 2016. doi:10.1007/978-3-319-46475-6 43.

https://doi.org/10.1109/ICCV.2015.13
https://doi.org/10.2352/J.ImagingSci.Technol.2016.60.6.060410
http://arxiv.org/abs/1906.00910
http://arxiv.org/abs/1906.00910
https://doi.org/10.1145/2766959
http://arxiv.org/abs/1812.06604
http://arxiv.org/abs/1710.02266
http://arxiv.org/abs/1710.02266
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1109/PCS.2016.7906376
https://doi.org/10.1162/NECO_a_00801
https://doi.org/10.1145/3072959.3073643
http://arxiv.org/abs/1602.02644
http://arxiv.org/abs/1602.02644
https://doi.org/10.1145/3355089.3356545
https://doi.org/10.1016/j.ijforecast.2013.08.002
https://doi.org/10.1016/j.patrec.2019.01.005
https://doi.org/10.1080/2150704X.2019.1577572
http://arxiv.org/abs/1905.09272
http://arxiv.org/abs/1905.09272
https://doi.org/10.1016/0004-3702(81)90024-2
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1612.01925
https://doi.org/10.1007/978-3-319-46475-6_43

Learning Similarity Metrics for Numerical Simulations

Jolliffe, I. T. and Stephenson, D. B. Forecast verification: a
practitioner’s guide in atmospheric science. John Wiley
& Sons, 2012. doi:10.1002/9781119960003.

Kang, L., Ye, P., Li, Y., and Doermann, D. Convolutional
Neural Networks for No-Reference Image Quality As­
sessment. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1733–1740, 2014.
doi:10.1109/CVPR.2014.224.

Keil, C. and Craig, G. C. A displacement and am­
plitude score employing an optical flow technique.
Weather and Forecasting, 24(5):1297–1308, 2009.
doi:10.1175/2009WAF2222247.1.

Kim, J. and Lee, S. Deep Learning of Human Visual Sen­
sitivity in Image Quality Assessment Framework. In
30TH IEEE Conference on Computer Vision and Pat­
tern Recognition (CVPR 2017), pp. 1969–1977, 2017.
doi:10.1109/CVPR.2017.213.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Ima­
genet classification with deep convolutional neural net­
works. Communications of the ACM, 60(6):84–90, 2017.
doi:10.1145/3065386.

Larson, E. C. and Chandler, D. M. Most apparent distortion:
full-reference image quality assessment and the role of
strategy. Journal of Electronic Imaging, 19(1), 2010.
doi:10.1117/1.3267105.

Lin, Z., Hahm, T. S., Lee, W., Tang, W. M., and White,
R. B. Turbulent transport reduction by zonal flows: Mas­
sively parallel simulations. Science, 281(5384):1835–
1837, 1998. doi:10.1126/science.281.5384.1835.

Liu, X., Pedersen, M., and Hardeberg, J. Y. CID:IQ - A
New Image Quality Database. In Image and Signal Pro­
cessing, ICISP 2014, volume 8509, pp. 193–202, 2014.
doi:10.1007/978-3-319-07998-1 22.

Moin, P. and Mahesh, K. Direct numerical sim­
ulation: a tool in turbulence research. Annual
review of fluid mechanics, 30(1):539–578, 1998.
doi:10.1146/annurev.fluid.30.1.539.

Oberkampf, W. L., Trucano, T. G., and Hirsch, C. Veri­
fication, validation, and predictive capability in compu­
tational engineering and physics. Applied Mechanics
Reviews, 57:345–384, 2004. doi:10.1115/1.1767847.

Pearson, K. Notes on the History of Correlation. Biometrika,
13(1):25–45, 1920. doi:10.1093/biomet/13.1.25.

Perlman, E., Burns, R., Li, Y., and Meneveau, C.
Data exploration of turbulence simulations using a
database cluster. In SC ’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, pp. 1–11,
2007. doi:10.1145/1362622.1362654.

Pitsch, H. Large-eddy simulation of turbulent combus­
tion. Annu. Rev. Fluid Mech., 38:453–482, 2006.
doi:10.1146/annurev.fluid.38.050304.092133.

Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V.,
Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli,
M., Battisti, F., and Kuo, C. C. J. Image database
TID2013: Peculiarities, results and perspectives. Sig­
nal Processing-Image Communication, 30:57–77, 2015.
doi:10.1016/j.image.2014.10.009.

Prashnani, E., Cai, H., Mostofi, Y., and Sen, P. Pieapp:
Perceptual image-error assessment through pairwise pref­
erence. CoRR, abs/1806.02067, 2018. URL http:
//arxiv.org/abs/1806.02067.

Rasp, S., Dueben, P., Scher, S., Weyn, J., Mouatadid, S., and
Thuerey, N. Weatherbench: A benchmark dataset for data­
driven weather forecasting. CoRR, abs/2002.00469, 2020.
URL http://arxiv.org/abs/2002.00469.

Ruder, M., Dosovitskiy, A., and Brox, T. Artistic style
transfer for videos. In Pattern Recognition, pp. 26–36,
2016. doi:10.1007/978-3-319-45886-1 3.

Simonyan, K. and Zisserman, A. Very deep convolu­
tional networks for large-scale image recognition. In
ICLR, 2015. URL http://arxiv.org/abs/1409.
1556.

Spearman, C. The proof and measurement of association
between two things. The American Journal of Psychology,
15(1):72–101, 1904. doi:10.2307/1412159.

Talebi, H. and Milanfar, P. Learned Perceptual Image
Enhancement. In 2018 IEEE International Confer­
ence on Computational Photography (ICCP), 2018a.
doi:10.1109/ICCPHOT.2018.8368474.

Talebi, H. and Milanfar, P. NIMA: Neural Image Assess­
ment. IEEE Transactions on Image Processing, 27(8):
3998–4011, 2018b. doi:10.1109/TIP.2018.2831899.

Thuerey, N., Weissenow, K., Mehrotra, H., Mainali, N.,
Prantl, L., and Hu, X. Well, how accurate is it? A study
of deep learning methods for reynolds-averaged navier­
stokes simulations. CoRR, abs/1810.08217, 2018. URL
http://arxiv.org/abs/1810.08217.

Um, K., Hu, X., and Thuerey, N. Perceptual Evaluation
of Liquid Simulation Methods. ACM Transactions on
Graphics, 36(4), 2017. doi:10.1145/3072959.3073633.

Um, K., Hu, X., Wang, B., and Thuerey, N. Spot the Dif­
ference: Accuracy of Numerical Simulations via the Hu­
man Visual System. CoRR, abs/1907.04179, 2019. URL
http://arxiv.org/abs/1907.04179.

https://doi.org/10.1002/9781119960003
https://doi.org/10.1109/CVPR.2014.224
https://doi.org/10.1175/2009WAF2222247.1
https://doi.org/10.1109/CVPR.2017.213
https://doi.org/10.1145/3065386
https://doi.org/10.1117/1.3267105
https://doi.org/10.1126/science.281.5384.1835
https://doi.org/10.1007/978-3-319-07998-1_22
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1115/1.1767847
https://doi.org/10.1093/biomet/13.1.25
https://doi.org/10.1145/1362622.1362654
https://doi.org/10.1146/annurev.fluid.38.050304.092133
https://doi.org/10.1016/j.image.2014.10.009
http://arxiv.org/abs/1806.02067
http://arxiv.org/abs/1806.02067
http://arxiv.org/abs/2002.00469
https://doi.org/10.1007/978-3-319-45886-1_3
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.2307/1412159
https://doi.org/10.1109/ICCPHOT.2018.8368474
https://doi.org/10.1109/TIP.2018.2831899
http://arxiv.org/abs/1810.08217
https://doi.org/10.1145/3072959.3073633
http://arxiv.org/abs/1907.04179

Learning Similarity Metrics for Numerical Simulations

Wang, X. and Gupta, A. Unsupervised learning of visual
representations using videos. In 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 2794–2802,
2015. doi:10.1109/ICCV.2015.320.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E.
Image quality assessment: From error visibility to struc­
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. doi:10.1109/TIP.2003.819861.

Wang, Z., Zhang, J., and Xie, Y. L2 Mispronunciation
Verification Based on Acoustic Phone Embedding and
Siamese Networks. In 2018 11TH International Sympo­
sium on Chinese Spoken Language Processing (ISCSLP),
pp. 444–448, 2018. doi:10.1109/ISCSLP.2018.8706597.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The Unreasonable Effectiveness of Deep Features
as a Perceptual Metric. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
586–595, 2018. doi:10.1109/CVPR.2018.00068.

Zhang, Y. and Duan, Z. IMINET: Convolutional Semi-
Siamese Networks for Sound Search by Vocal Imita­
tion. In 2017 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, pp. 304–308, 2017.
doi:10.1109/TASLP.2018.2868428.

https://doi.org/10.1109/ICCV.2015.320
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ISCSLP.2018.8706597
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/TASLP.2018.2868428

