
Appendix: Learning Similarity Metrics for Numerical Simulations
 

This supplemental document contains an analysis of the 
proposed metric design with respect to properties of metrics 
in general (App. A) and details to the used network archi­
tectures (App. B). Afterwards, material that deals with the 
data sets is provided. It contains examples and failure cases 
for each of the data domains and analyzes the impact of 
the data difficulty (App. C and D). Next, the evaluation on 
real-world data is described in more detail (App. E). Finally, 
we explore additional metric evaluations (App. F) and give 
an overview on the used notation (App. G). 

The source code for using the trained LSiM metric and re­
training the model from scratch are available at https:// 
github.com/tum-pbs/LSIM. This includes the full 
data sets and the corresponding data generation scripts for 
the employed PDE solver. 

A. Discussion of Metric Properties 
To analyze if the proposed method qualifies as a metric, it is 
split in two functions m1 : I → L and m2 : L×L → [0, ∞), 
which operate on the input space I and the latent space L. 
Through flattening elements from the input or latent space 
into vectors, I c Ra and L c Rb where a and b are the 
dimensions of the input data and all feature maps respec­
tively, and both values have a similar order of magnitude. 
m1 describes the non-linear function computed by the base 
network combined with the following normalization and 
returns a point in the latent space. m2 uses two points in 
the latent space to compute a final distance value, thus it in­
cludes the latent space difference and the aggregation along 
the spatial, layer, and channel dimensions. With the Siamese 
network architecture, the resulting function for the entire 
approach is 

m(x, y) = m2(m1(x),m1(y)). 

The identity of indiscernibles mainly depends on m1 be­
cause, even if m2 itself guarantees this property, m1 could 
still be non-injective, which means it can map different in­
puts to the same point in latent space x̃ = ˜  y.y for x = 
Due to the complicated nature of m1, it is difficult to make 
accurate predictions about the injectivity of m1. Each base 
network layer of m1 recursively processes the result of the 
preceding layer with various feature extracting operations. 
Here, the intuition is that significant changes in the input 
should produce different feature map results in one or more 
layers of the network. As very small changes in the input 
lead to zero valued distances predicted by the CNN (i.e., an 

identical latent space for different inputs), m1 is in practice 
not injective. In an additional experiment, the proposed ar­
chitecture was evaluated on about 3500 random inputs from 
all our data sets, where the CNN received one unchanged 
and one slightly modified input. The modification consisted 
of multiple pixel adjustments by one bit (on 8-bit color im­
ages) in random positions and channels. When adjusting 
only a single pixel in the 224 × 224 input, the CNN predicts 
a zero valued distance on about 23% of the inputs, but we 
never observed an input where seven or more changed pixels 
resulted in a distance of zero in all experiments. 

In this context, the problem of numerical errors is impor­
tant because even two slightly different latent space repre­
sentations could lead to a result that seems to be zero if 
the difference vanishes in the aggregation operations or is 
smaller than the floating point precision. On the other hand, 
an automated analysis to find points that have a different 
input but an identical latent space image is a challenging 
problem and left as future work. 

The evaluation of the base network and the normalization is 
deterministic, and hence ∀x : m1(x) = m1(x) holds. Fur­
thermore, we know that m(x, x) = 0 if m2 guarantees that 
∀m1(x) : m2(m1(x),m1(x)) = 0. Thus, the remaining 
properties, i.e., non-negativity, symmetry, and the triangle 
inequality, only depend on m2 since for them the original 
inputs are not relevant, but their respective images in the la­
tent space. The resulting structure with a relaxed identity of 
indiscernibles is called a pseudometric, where ∀x̃, ỹ, z̃ ∈ L: 

m2(x̃, ỹ) ≥ 0 (1) 
m2(x̃, ỹ) = m2(ỹ, x̃) (2) 
m2(x̃, ỹ) ≤ m2(x̃, z̃) + m2(z̃, ỹ) (3) 
m2(x̃, x̃) = 0 (4) 

Notice that m2 has to fulfill these properties with respect to 
the latent space but not the input space. If m2 is carefully 
constructed, the metric properties still apply, independently 
of the actual design of the base network or the feature map 
normalization. 

A first observation concerning m2 is that if all aggregations 
were sum operations and the element-wise latent space dif­
ference was the absolute value of a difference operation, 
m2 would be equivalent to computing the L1 norm of the 
difference vector in latent space: 

b  
sum m2 (x̃, ỹ) = |x̃i − ỹi|. 

i=1

b

https://github.com/tum-pbs/LSIM
https://github.com/tum-pbs/LSIM


Similarly, adding a square operation to the element-wise 
distance in the latent space and computing the square root 
at the very end leads to the L2 norm of the latent space 
difference vector. In the same way, it is possible to use any 
Lp norm with the corresponding operations:   1 

bb p 

sum(x̃, ỹ) = |x̃i − ỹi|p2 m . 
i=1

In both cases, this forms the metric induced by the corre-
sponding norm, which by definition has all desired prop­
erties (1), (2), (3), and (4). If we change all aggregation 
methods to a weighted average operation, each term in the 
sum is multiplied by a weight wi. This is even possible with 
learned weights, as they are constant at evaluation time if 
they are clamped to be positive as described above. Now, wi 

can be attributed to both inputs by distributivity, meaning 
each input is element-wise multiplied with a constant vector 
before applying the metric, which leaves the metric prop­
erties untouched. The reason is that it is possible to define 
new vectors in the same space, equal to the scaled inputs. 
This renaming trivially provides the correct properties: 

bb 
weighted m (x̃, ỹ) = wi|x̃i − ỹi|,2 

i=1 

bb 
wi>0 
= |wix̃i − wiỹi|. 

i=1

Accordingly, doing the same with the Lp norm idea is pos­
sible, and each wi just needs a suitable adjustment before 
distributivity can be applied, keeping the metric properties 
once again:   1 

bb p 

weighted m2 (x̃, ỹ) = wi|x̃i − ỹi|p
i=1 

  1 
bb p 

= wi|x̃i − ỹi| |x̃i − ỹi| . . . |x̃i − ỹi|
i=1   1

pbb 1 1 1 
p p p 

i|x̃i − ỹi| w |x̃i − ỹi| . . . w |x̃i − ỹi| ,= wi i 
i=1  1

b p
1 1

wi>0 
= ỹi|pp p|w x̃i − w .i i

i=1

Learning Similarity Metrics for Numerical Simulations 

b
With these weighted terms for m2, it is possible to describe 
all used aggregations and latent space difference methods. 
The proposed method deals with multiple higher order ten­
sors instead of a single vector. Thus, the weights wi addi­
tionally depend on constants such as the direction of the 
aggregations and their position in the latent space tensors. 
But it is easy to see that mapping a higher order tensor to a 
vector and keeping track of additional constants still retains 
all properties in the same way. As a result, the described 
architecture by design yields a pseudometric that is suitable 
for comparing simulation data in a way that corresponds to 
our intuitive understanding of distances. 

B. Architectures 
The following sections provide details regarding the archi­
tecture of the base network and some experimental design. 

32

55

55

3

224

224

96

26

26

192

12

12

128

12

12

128

12

12

12x12 Convolution
with stride 4
+ ReLU

4x4 MaxPool with 
stride 2

5x5 Convolution
with stride 1
+ ReLU

3x3 Convolution
with stride 1
+ ReLU

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 1. Proposed base network architecture consisting of five layers with up to 192 feature maps that are decreasing in spatial size. It is 
similar to the feature extractor from AlexNet as identical spatial dimensions for the feature maps are used, but it reduces the number of 
feature maps for each layer by 50% to have fewer weights. 

B.1. Base Network Design 

Fig. 1 shows the architecture of the base network for the 
LSiM metric. Its purpose is to extract features from both 
inputs of the Siamese architecture that are useful for the 
further processing steps. To maximise the usefulness and 
to avoid feature maps that show overly similar features, 
the chosen kernel size and stride of the convolutions are 
important. Starting with larger kernels and strides means 
the network has a big receptive field and can consider simple, 
low-level features in large regions of the input. For the two 



following layers, the large strides are replaced by additional 
MaxPool operations that serve a similar purpose and reduce 
the spatial size of the feature maps. 

For the three final layers, only small convolution kernels 
and strides are used, but the number of channels is signifi­
cantly larger than before. These deep features maps typically 
contain high-level structures, which are most important to 
distinguish complex changes in the inputs. Keeping the 
number of trainable weights as low as possible was an im­
portant consideration for this design to prevent overfitting 
to certain simulations types and increase generality. We 
explored a weight range by using the same architecture and 
only scaling the number of feature maps in each layer. The 
final design shown in Fig. 1 with about 0.62 million weights 
worked best for our experiments. 

In the following, we analyze the contributions of the per­
layer features of two different metric networks to highlight 
differences in terms of how the features are utilized for the 
distance estimation task. In Fig. 2, our LSiM network yields 
a significantly smaller standard deviation in the learned 
weights that aggregate feature maps of five layers, com­
pared to a pre-trained base network. This means, all fea­
ture maps contribute to establishing the distances similarly, 
and the aggregation just fine-tunes the relative importance 
of each feature. In addition, almost all features receive a 
weight greater than zero, and as a result, more features are 
contributing to the final distance value. 

Employing a fixed pre-trained feature extractor, on the other 
hand, shows a very different picture: Although the mean 
across the different network layers is similar, the contribu­
tions of different features vary strongly, which is visible in 
the standard deviation being significantly larger. Further­
more, 2-10% of the feature maps in each layer receive a 
weight of zero and hence were deemed not useful at all for 
establishing the distances. This illustrates the usefulness of 
a targeted network in which all features contribute to the 
distance inference. 

Learning Similarity Metrics for Numerical Simulations 

1 2 3 4 5
Layer

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
an

d 
st

d.
 d

ev
. 

of
 fe

at
ur

e 
m

ap
 w

ei
gh

ts
AlexNetfrozen

1 2 3 4 5
Layer

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
an

d 
st

d.
 d

ev
. 

of
 fe

at
ur

e 
m

ap
 w

ei
gh

ts

LSiM (ours)

0

5

10

15

20

25

U
nu

se
d 

fe
at

ur
e 

m
ap

s 
in

 %

0

5

10

15

20

25

U
nu

se
d 

fe
at

ur
e 

m
ap

s 
in

 %

Figure 2. Analysis of the distributions of learned feature map aggregation weights across the base network layers. Displayed is a base 
network with pre-trained weights (left) in comparison to our method for fully training the base network (right). Note that the percentage 
of unused feature maps for most layers of our base network is 0%. 

B.2. Feature Map Normalization 

In the following, we analyze how the different feature 
map normalizations discussed in Section 3.2 of the main 
paper affect the performance of our metric. We com­
pare using no normalization normnone(G) = G, the unit 
length normalization via division by the norm of a fea­
ture vector normunit(G) = G / 1G1 proposed by Zhang2 
et al., a global unit length normalization normglobal(G) = 
G / max (1G012 , 1G112 , . . . ) that considers the norm of all 
feature vectors in the entire training set, and the proposed 
normalization to a scaled chi distribution 

1 G − mean (G0, G1, . . . )normdist(G) = √ . 
gc − 1 std (G0, G1, . . . ) 

Fig. 3 shows a comparison of these normalization methods 
on the combined test data. Using no normalization is sig­
nificantly detrimental to the performance of the metric as 
succeeding operations cannot reliably compare the features. 
A unit length normalization of a single sample is already a 
major improvement since following operations now have a 
predictable range of values to work with. This corresponds 
to a cosine distance, which only measures angles of the 
feature vectors and entirely neglects their length. 

0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74
Correlation on all test data

normnone

normunit

normglobal

normdist.

Figure 3. Performance on our test data for different feature map 
normalization approaches. 

Using the maximum norm across all training samples (com­
puted in a pre-processing step and fixed for training) in­
troduces additional information as the network can now 
compare magnitudes as well. However, this comparison 
is not stable as the maximum norm can be an outlier with 
respect to the typical content of the corresponding feature. 



Learning Similarity Metrics for Numerical Simulations 

The proposed normalization forms a chi distribution by indi­
vidually transforming each component of the feature vector 
to a standard normal distribution. Afterwards, scaling with 
the inverse mode of the chi distribution leads to a consistent 
average magnitude close to one. It results in the best per­
forming metric since both length and angle of the feature 
vectors can be reliably compared by the following opera­
tions. 

B.3. Recursive “Meta-Metric” 

Since comparing the feature maps is a central operation of 
the proposed metric calculations, we experimented with re­
placing it with an existing CNN-based metric. In theory, this 
would allow for a recursive, arbitrarily deep network that 
repeatedly invokes itself: first, the extracted representations 
of inputs are used and then the representations extracted 
from the previous representations, etc. In practice, however, 
using more than one recursion step is currently not feasible 
due to increasing computational requirements in addition to 
vanishing gradients. 

Fig. 4 shows how our computation method can be modi­
fied for a CNN-based latent space difference, instead of an 
element-wise operation. Here we employ LPIPS (Zhang 
et al., 2018). There are two main differences compared to 
proposed method. First, the LPIPS latent space difference 
creates single distance values for a pair of feature maps 
instead of a spatial feature difference. As a result, the fol­
lowing aggregation is a single learned average operation and 
spatial or layer aggregations are no longer necessary. We 
also performed experiments with a spatial LPIPS version 
here, but due to memory limitations, these were not success­
ful. Second, the convolution operations in LPIPS have a 
lower limit for spatial resolution, and some feature maps of 
our base network are quite small (see Fig. 1). Hence, we 
up-scale the feature maps below the required spatial size of 
32 × 32 using nearest neighbor interpolation. 

On our combined test data, such a metric with a fully 
trained base network achieves a performance comparable to 
AlexNetrandom or AlexNetfrozen. 

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

LPIPS
latent space
difference

Aggregation:
weighted avg.

Distance
output

1 Learned weight 
per feature map

RGB inputs Feature maps:
sets of 3rd order tensors 

Feature differences:
sets of scalars

d1,4d1,3d1,2d1,1 d
Result:
scalar

d1,4d1,3d1,2d2,1

d1,4d1,3d1,2d3,1

Spatial
extension

Spatial
extension

Extended feature maps:
sets of 3rd order tensors 

Figure 4. Adjusted distance computation for a LPIPS-based latent space difference. To provide sufficiently large inputs for LPIPS, small 
feature maps are spatially enlarged with nearest neighbor interpolation. In addition, LPIPS creates scalar instead of spatial differences 
leading to a simplified aggregation. 

B.4. Optical Flow Metric 

In the following, we describe our approach to compute a 
metric via optical flow (OF). For an efficient OF evalua­
tion, we employed a pre-trained network (Ilg et al., 2016). 

: I × I → Rimax×jmax×2From an OF network f with 
two input data fields x, y ∈ I , we get the flow vector field 

(fxyfxy(i, j) = (i, j), fxy (i, j))T , where i and j de­1 2 
note the locations, and f1 and f2 denote the components of 
the flow vectors. In addition, we have a second flow field 
fyx(i, j) computed from the reversed input ordering. We 
can now define a function m : I × I → [0, ∞): 

 
imax jmax b b 

(fxym(x, y) = (i, j))2 + (fxy (i, j))2 
1 2 

i=0 j=0

(fyx + (i, j))2 + (fyx (i, j))2 .1 2 

Intuitively, this function computes the sum over the mag­
nitudes of all flow vectors in both vector fields. With this 
definition, it is obvious that m(x, y) fulfills the metric prop­
erties of non-negativity and symmetry (see Eq. (1) and (2)). 
Under the assumption that identical inputs create a zero flow 
field, a relaxed identity of indiscernibles holds as well (see 
Eq. (4)). Compared to the proposed approach, there is no 
guarantee for the triangle inequality though, thus m(x, y) 
only qualifies as a pseudo-semimetric. 

Fig. 5 shows flow visualizations on data examples produced 
by FlowNet2. The metric works relatively well for inputs 
that are similar to the training data from FlowNet2 such as 
the shape data example in the top row. For data that provides 
some outline, e.g., the smoke simulation example in the 
middle row or also liquid data, the metric does not work 



Learning Similarity Metrics for Numerical Simulations 

as well but still provides a reasonable flow field. However, 
for full spatial examples such as the Burger’s or Advection-
Diffusion cases (see bottom row), the network is no longer 
able to produce meaningful flow fields. The results are often 
a very uniform flow with similar magnitude and direction. 

Figure 5. Outputs from FlowNet2 on data examples. The flow streamlines are sparse visualization of the resulting flow field and indicate 
the direction of the flow by their orientation and its magnitude by their color (darker being larger). The two visualizations on the right 
show the dense flow field and are color-coded to show the flow direction (blue/yellow: vertical, green/red: horizontal) and the flow 
magnitude (brighter being larger). 

B.5. Non-Siamese Architecture 

6

224

224

128

12

12
Dropout

Adaptive MaxPool

ReLU

Sigmoid2 Stacked inputs

Feature 
extractor 
identical 
to base 
network

128 128

1

Predicted
distance

4608

Fully connected 
layer

Flatten

128
6

6

Figure 6. Non-Siamese network architecture with the same feature extractor used in Fig. 1. It uses both stacked inputs and directly predicts 
the final distance value from the last set of feature maps with several fully connected layers. 

To compute a metric without the Siamese architecture out­
lined above, we use a network structure with a single output 
as shown in Fig. 6. Thus, instead of having two identically 
feature extractors and combining the feature maps, here the 
distance is directly predicted from the stacked inputs with a 
single network with about 1.24 million weights. After using 
the same feature extractor as described in Section B.1, the 
final set of feature maps is spatially reduced with an adap­
tive MaxPool operation. Next, the result is flattened, and 

three consecutive fully connected layers process the data to 
form the final prediction. Here, the last activation function 
is a sigmoid instead of ReLU. The reason is that a ReLU 
would clamp every negative intermediate value to a zero 
distance, while a sigmoid compresses the intermediate value 
to a small distance that is more meaningful than directly 
clamping it. 

In terms of metric properties, this architecture only provides 
non-negativity (see Eq. (1)) due to the final sigmoid function. 
All other properties cannot be guaranteed without further 
constraints. This is the main disadvantage of a non-Siamese 
network. These issues could be alleviated with specialized 
training data or by manually adding constraints to the model, 
e.g., to have some amount of symmetry (see Eq. (2)) and 
at least a weakened identity of indiscernibles (see Eq. (4)). 
However, compared to a Siamese network that guarantees 



Learning Similarity Metrics for Numerical Simulations 

them by design, these extensions are clearly sub-optimal. 
As a result of the missing properties, this network has signif­
icant problems with generalization. While it performs well 
on the training data, the performance noticeably deteriorates 
for several of the test data sets. 

B.6. Skip Connections in Base Network 

As explained above, our base network primarily serves as a 
feature extractor to produce activations that are employed to 
evaluate a learned metric.In many state-of-the-art methods, 
networks with skip connections are employed (Ronneberger 
et al., 2015; He et al., 2016; Huang et al., 2017), as experi­
ments have shown that these connections help to preserve 
information from the inputs. In our case, the classification 
“output” of a network such as the AlexNet plays no actual 
role. Rather, the features extracted along the way are crucial. 
Hence, skip connections should not improve the inference 
task for our metrics. 

To verify that this is the case, we have included tests with a 
base network (see Fig. 7) similar to the popular UNet archi­
tecture (Ronneberger et al., 2015). For our experiments, we 
kept the early layers closely in line with the feature extrac­
tors that worked well for the base network (see Section B.1). 
Only the layers in the decoder part have an increased spa­
tial feature map size to accommodate the skip connections. 
As expected, this network can be used to compute reliable 
metrics for the input data without negatively affecting the 
performance. However, as expected, the improvements of 
skip connections for regular inference tasks do not translate 
into improvements for the metric calculations. 

32

55

55

3

224

224

64

26

26

128

12

12

128

12

12

12x12 Convolution
with stride 4
+ ReLU

4x4 MaxPool with 
stride 2

5x5 Convolution
with stride 1
+ ReLU

3x3 Convolution
with stride 1
+ ReLU

32

55

55

128   +   64 

12

12

64  +  64

26

26

32 + 32

55

55

3x3 Transposed 
convolution with 
stride 1 + ReLU

5x5 Transposed 
convolution with 
stride 2 + ReLU

Skip connection 
via channel 
concatenation

3x3 Transposed 
convolution with 
stride 2 + ReLU

Figure 7. Network architecture with skip connections for better information transport between feature maps. Transposed convolutions are 
used to upscale the feature maps in the second half of the network to match the spatial size of earlier layers for the skip connections. 

C. Impact of Data Difficulty
 

0x 5x 10x 15x 20x 25x
Difficulty of training data (scaled noise strength)

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

LSiMreduced on all test data
L2 on training data
LPIPS on training data

Figure 8. Impact of increasing data difficulty for a reduced training 
data set. Evaluations on training data for L2 and LPIPS, and the 
test performance of models trained with the different reduced data 
sets (LSiMreduced) are shown. 

We shed more light on the aspect of noise levels and data 
difficulty via six reduced data sets that consist of a smaller 
amount of Smoke and Advection-Diffusion data with dif­
ferently scaled noise strength values. Results are shown 
in Fig. 8. Increasing the noise level creates more difficult 
data as shown by the dotted and dashed plots representing 
the performance of the L2 and the LPIPS metric on each 
data set. Both roughly follow an exponentially decreasing 
function. Each point on the solid line plot is the test result of 
a reduced LSiM model trained on the data set with the corre­
sponding noise level. Apart from the data, the entire training 

http:metric.In


Learning Similarity Metrics for Numerical Simulations 

setup was identical. This shows that the training process is 
very robust to the noise, as the result on the test data only 
slowly decreases for very high noise levels. Furthermore, 
small amounts of noise improve the generalization com­
pared to the model that was trained without any noise. This 
is somewhat expected, as a model that never saw noisy data 
during training cannot learn to extract features which are 
robust with respect to noise. 

D. Data Set Details 
In the following sections, the generation of each used data 
set is described. For each figure showing data samples 
(consisting of a reference simulation and several variants 
with a single changing initial parameter), the leftmost image 
is the reference and the images to the right show the variants 
in order of increasing parameter change. For the figures 9, 
10, 11, and 12, the first subfigure (a) demonstrates that 
medium and large scale characteristics behave very non­
chaotic for simulations without any added noise. They are 
only included for illustrative purposes and are not used for 
training. The second and third subfigure (b) and (c) in 
each case show the training data of LSiM, where the large 
majority of data falls into the category (b) of normal samples 
that follow the generation ordering, even with more varying 
behaviour. Category (c) is a small fraction of the training 
data, and the shown examples are specifically picked to 
show how the chaotic behaviour can sometimes override the 
ordering intended by the data generation in the worst case. 
Occasionally, category (d) is included to show how normal 
data samples from the test set differ from the training data. 

D.1. Navier-Stokes Equations 

These equations describe the general behaviour of fluids 
with respect to advection, viscosity, pressure, and mass con­
servation. Eq. (5) defines the conservation of momentum, 
and Eq. (6) constraints the conservation of mass: 

∂u VP 
+ (u · V)u = − + νV2 u + g, (5)

∂t	 ρ 

 u = 0.	 (6) V ·

In this context, u is the velocity, P is the pressure the fluid 
exerts, ρ is the density of the fluid (usually assumed to 
be constant), ν is the kinematic viscosity coefficient that 
indicates the thickness of the fluid, and g denotes the accel­
eration due to gravity. With this PDE, three data sets were 
created using a smoke and a liquid solver. For all data, 2D 
simulations were run until a certain step, and useful data 
fields were exported afterwards. 

SMOKE 

For the smoke data, a standard Eulerian fluid solver using 
a preconditioned pressure solver based on the conjugate 

gradient method and Semi-Lagrangian advection scheme 
was employed. 

The general setup for every smoke simulation consists of a 
rectangular smoke source at the bottom with a fixed additive 
noise pattern to provide smoke plumes with more details. 
Additionally, there is a downwards directed, spherical force 
field area above the source, which divides the smoke in two 
major streams along it. We chose this solution over an ac­
tual obstacle in the simulation in order to avoid overfitting 
to a clearly defined black obstacle area inside the smoke 
data. Once the simulation reaches a predefined time step, 
the density, pressure, and velocity fields (separated by di­
mension) are exported and stored. Some example sequences 
can be found in Fig. 9. With this setup, the following initial 
conditions were varied in isolation: 

•	 Smoke buoyancy in x- and y-direction 

•	 Strength of noise added to the velocity field 

•	 Amount of force in x- and y-direction provided by the 
force field 

•	 Orientation and size of the force field 

•	 Position of the force field in x- and y-direction 

•	 Position of the smoke source in x- and y-direction 

Overall, 768 individual smoke sequences were used for 
training, and the validation set contains 192 sequences with 
different initialization seeds. 

LIQUID 

For the liquid data, a solver based on the fluid implicit parti­
cle (FLIP) method (Zhu & Bridson, 2005) was employed. 
It is a hybrid Eulerian-Lagrangian approach that replaces 
the Semi-Lagrangian advection scheme with particle based 
advection to reduce numerical dissipation. Still, this method 
is not optimal as we experienced problems such as mass 
loss, especially for larger noise values. 

The simulation setup consists of a large breaking dam and 
several smaller liquid areas for more detailed splashes. After 
the dam hits the simulation boundary, a large, single drop 
of liquid is created in the middle of the domain that hits the 
already moving liquid surface. Then, the extrapolated level 
set values, binary indicator flags, and the velocity fields 
(separated by dimension) are saved. Some examples are 
shown in Fig. 10. The list of varied parameters include: 

•	 Radius of the liquid drop 

•	 Position of the drop in x- and y-direction 

•	 Amount of additional gravity force in x- and y­
direction 

•	 Strength of noise added to the velocity field 



Learning Similarity Metrics for Numerical Simulations 

(a) Data samples generated without noise: tiny output changes following generation ordering 

(b) Normal training data samples with noise: larger output changes but ordering still applies 

(c) Outlier data samples: noise can override the generation ordering by chance 

Figure 9. Various smoke simulation examples using one component of the velocity (top rows), the density (middle rows), and the pressure 
field (bottom rows). 



Learning Similarity Metrics for Numerical Simulations 

(a) Data samples generated without noise: tiny output changes following generation ordering 

(b) Normal training data samples with noise: larger output changes but ordering still applies 

(c) Outlier data samples: noise can override the generation ordering by chance 

(d) Data samples from test set with additional background noise 

Figure 10. Several liquid simulation examples using the binary indicator flags (top rows), the extrapolated level set values (middle rows), 
and one component of the velocity field (bottom rows) for the training data and only the velocity field for the test data. 



Learning Similarity Metrics for Numerical Simulations 

(a) Data samples generated without noise: tiny output changes following generation ordering 

(b) Normal training data samples with noise: larger output changes but ordering still applies 

(c) Outlier data samples: noise can override the generation ordering by chance 

(d) Data samples from test set with additional background noise
 

Figure 11. Various examples from the Advection-Diffusion equation using the density field.
 



Learning Similarity Metrics for Numerical Simulations 

(a) Data samples generated without noise: tiny output changes following generation ordering 

(b) Normal training data samples with noise: larger output changes but ordering still applies 

(c) Outlier data samples: noise can override the generation ordering by chance
 

Figure 12. Different simulation examples from the Burger’s equation using the velocity field.
 

The liquid training set consists of 792 sequences and the 
validation set of 198 sequences with different random seeds. 
For the liquid test set, additional background noise was 
added to the velocity field of the simulations as displayed 
in Fig. 10(d). Because this only alters the velocity field, the 
extrapolated level set values and binary indicator flags are 
not used for this data set, leading to 132 sequences. 

D.2. Advection-Diffusion and Burger’s Equation 

For these PDEs, our solvers only discretize and solve the 
corresponding equation in 1D. Afterwards, the different 
time steps of the solution process are concatenated along a 
new dimension to form 2D data with one spatial and one 
time dimension. 

ADVECTION-DIFFUSION EQUATION 

This equation describes how a passive quantity is transported 
inside a velocity field due to the processes of advection and 
diffusion. Eq. (7) is the simplified Advection-Diffusion 
equation with constant diffusivity and no sources or sinks. 

∂d 
= νV2d − u · Vd, (7)

∂t 

where d denotes the density, u is the velocity, and ν is the 
kinematic viscosity (also known as diffusion coefficient) 
that determines the strength of the diffusion. Our solver 
employed a simple implicit time integration and a diffusion 
solver based on conjugate gradient without preconditioning. 
The initialization for the 1D fields of the simulations was 
created by overlaying multiple parameterized sine curves 
with random frequencies and magnitudes. 

In addition, continuous forcing controlled by further param­
eterized sine curves was included in the simulations over 
time. In this case, the only initial conditions to vary are the 
forcing and initialization parameters of the sine curves and 
the strength of the added noise. From this PDE, only the pas­
sive density field was used as shown in Fig. 11. Overall, 798 
sequences are included in the training set and 190 sequences 
with a different random initialization in the validation set. 

For the Advection-Diffusion test set, the noise was instead 
added directly to the passive density field of the simulations. 
This results in 190 sequences with more small scale details 
as shown in Fig. 11(d). 



Learning Similarity Metrics for Numerical Simulations 

BURGER’S EQUATION 

This equation is very similar to the Advection-Diffusion 
equation and describes how the velocity field itself changes 
due to diffusion and advection: 

∂u 
= νV2 u − u · Vu. (8)

∂t 

Eq. (8) is known as the viscous form of the Burger’s equation 
that can develop shock waves, and again u is the velocity and 
ν denotes the kinematic viscosity. Our solver for this PDE 
used a slightly different implicit time integration scheme, 
but the same diffusion solver as used for the Advection-
Diffusion equation. 

The simulation setup and parameters were also the same; the 
only difference is that the velocity field instead of the density 
is exported. As a consequence, the data in Fig. 12 looks 
relatively similar to those from the Advection-Diffusion 
equation. The training set features 782 sequences, and the 
validation set contains 204 sequences with different random 
seeds. 

D.3. Other Data-Sets 

The remaining data sets are not based on PDEs and thus not 
generated with the proposed method. The data is only used 
to test the generalization of the discussed metrics and not 
for training or validation. The Shapes test set contains 160 
sequences, the Video test set consists 131 sequences, and 
the TID test set features 216 sequences. 

SHAPES 

This data set tests if the metrics are able to track simple, 
moving geometric shapes. To create it, a straight path be­
tween two random points inside the domain is generated 

and a random shape is moved along this path in steps of 
equal distance. The size of the used shape depends on the 
distance between the start and end point such that a signifi­
cant fraction of the shape overlaps between two consecutive 
steps. It is also ensured that no part of the shape leaves the 
domain at any step by using a sufficiently big boundary area 
when generating the path. 

With this method, multiple random shapes for a single data 
sample are produced, and their paths can overlap such that 
they occlude each other to provide an additional challenge. 
All shapes are moved in their parametric representation, and 
only when exporting the data, they are discretized onto a 
fixed binary grid. To add more variations to this simple 
approach, we also apply them in a non-binary way with 
smoothed edges and include additive Gaussian noise over 
the entire domain. Examples are shown in Fig. 13. 

Figure 13. Examples from the shapes data set using a field with only binary shape values (first row), shape values with additional noise 
(second row), smoothed shape values (third row), and smoothed values with additional noise (fourth row). 

VIDEO 

For this data set, different publicly available video record­
ings were acquired and processed in three steps. First, 
videos with abrupt cuts, scene transitions, or camera move­
ments were discarded, and afterwards the footage was bro­
ken down into single frames. Then, each frame was resized 
to match the spatial size of our other data by linear interpola­
tion. Since directly using consecutive frames is no challenge 
for any analyzed metric and all of them recovered the or­
dering almost perfectly, we achieved a more meaningful 
data set by skipping several intermediate frames. For the 
final data set, we defined the first frame of every video as 
the reference and collected subsequent frames in an interval 
step of ten frames as the increasingly different variations. 
Some data examples can be found in Fig. 14. 



Learning Similarity Metrics for Numerical Simulations 

Figure 14. Multiple examples from the video data set. 

TID2013 

This data set was created by Ponomarenko et al. and used 
without any further modifications. It consists of 25 reference 
images with 24 distortion types in five levels. As a result, 
it is not directly comparable to our data sets; thus, it is 
excluded from the test set aggregations. The distortions 
focus on various types of noise, image compression, and 
color changes. Fig. 15 contains examples from the data set. 

Figure 15. Examples from the TID2013 data set proposed by Ponomarenko et al.. Displayed are a change of contrast, three types of noise, 
denoising, jpg2000 compression, and two color quantizations (from left to right and top to bottom). 

D.4. Hardware 

Data generation, training, and metric evaluations were per­
formed on a machine with an Intel i7-6850 (3.60Ghz) CPU 
and an NVIDIA GeForce GTX 1080 Ti GPU. 

E. Real-World Data 
Below, we give details of the three data sets used for the 
evaluation in Section 6.3 of the main paper. 

E.1. ScalarFlow 

The ScalarFlow data set (Eckert et al., 2019) contains 
3D velocities of real-world scalar transport flows recon­
structed from multiple camera perspectives. For our eval­
uation, we cropped the volumetric 100 × 178 × 100 grids 
to 100 × 160 × 100 such that they only contain the area of 
interest and convert them to 2D with two variants: either 
by using the center slice or by computing the mean along 
the z-dimension. Afterwards, the velocity vectors are split 
by channels, linearly interpolated to 256 × 256, and then 
normalized. Variations for each reconstructed plume are 
acquired by using frames in equal temporal intervals. We 
employed the velocity field reconstructions from 30 plumes 
(with simulation IDs 0 − 29) for both compression methods. 
Fig. 16 shows some example sequences. 

E.2. Johns Hopkins Turbulence Database 

The Johns Hopkins Turbulence Database (JHTDB) (Perl­
man et al., 2007) features various data sets of 3D turbu­



Learning Similarity Metrics for Numerical Simulations 

Figure 16. Four different smoke plume examples of the processed ScalarFlow data set using one of the three velocity components. The 
two top rows show the center slice, and the two bottom rows show the mean along the z-dimension. The temporal interval between each 
image is ten simulation time steps. 

Figure 17. Data samples extracted from the Johns Hopkins Turbulence Database with a spatial or temporal interval of ten using one of the 
three velocity components. From top to bottom: mhd1024 and isotropic1024coarse (varied time step), isotropic4096 and rotstrat4096 
(varied z-position), channel and channel5200 (varied x-position). 



Learning Similarity Metrics for Numerical Simulations 

lent flow fields created with direct numerical simulations 
(DNS). Here, we used three forced isotropic turbulence 
data sets with different resolutions (isotropic1024coarse, 
isotropic1024fine, and isotropic4096), two channel flows 
with different Reynolds numbers (channel and channel­
5200), the forced magneto-hydrodynamic isotropic turbu­
lence data set (mhd1024), and the rotating stratified turbu­
lence data set (rotstrat4096). 

For the evaluation, five 256 × 256 reference slices in the 
x/y-plane from each of the seven data sets are used. The 
spatial and temporal position of each slice is randomized 
within the bounds of the corresponding simulation domain. 
We normalize the value range and split the velocity vectors 
by component for an individual evaluation. Variants for 
each reference are created by gradually varying the x- and z­
position of the slice in equal intervals. The temporal position 
of each slice is varied as well if a sufficient amount of tem­
porally resolved data is available (for isotropic1024coarse, 
isotropic1024fine, channel, and mhd1024). This leads to 
216 sequences in total. Fig. 17 shows examples from six of 
the JHTDB data sets. 

E.3. WeatherBench 

The WeatherBench repository (Rasp et al., 2020) represents 
a collection of various weather measurements of different 
atmospherical quantities such as precipitation, cloud cov­
erage, wind velocities, geopotential, and temperature. The 
data ranges from 1979 to 2018 with a fine temporal reso­
lution and is stored on a Cartesian latitude-longitude grid 
of the earth. In certain subsets of the data, an additional 
dimension such as altitude or pressure levels is available. As 
all measurements are available as scalar fields, only a linear 
interpolation to the correct input size and a normalization 
was necessary in order to prepare the data. We used the low­

resolution geopotential data set at 500hPa (i.e., at around 
5.5km height) with a size of 32 × 64 yielding smoothly 
changing features when upsampling the data. In addition, 
the high-res temperature data with a size of 128 × 256 for 
small scale details was used. For the temperature field, 
we used the middle atmospheric pressure level at 850hPa 
corresponding to an altitude of 1.5km in our experiments. 

To create sequences with variations for a single time step 
of the weather data, we used frames in equal time inter­
vals, similar to the ScalarFlow data. Due to the very fine 
temporal discretization of the data, we only use a temporal 
interval of two hours as the smallest interval step of one in 
Fig. 19. We sampled three random starting points in time 
from each of the 40 years of measurements, resulting in 
120 temperature and geopotential sequences overall. Fig. 18 
shows a collection of example sequences. 

Figure 18. Examples of the processed WeatherBench data: high-res temperature data 1.40625deg/temperature (upper two rows) and 
low-res geopotential data 5.625deg/geopotential 500 (lower two rows). The temporal interval spacing between the images is twenty hours. 

E.4. Detailed Results 

For each of the variants explained in the previous sections, 
we create test sets with six different spatial and temporal 
intervals. Fig. 19 shows the combined Spearman correlation 
of the sequences for different interval spacings when evalu­
ating various metrics. For the results in Fig. 7 in the main 
paper, all correlation values shown here are aggregated by 
data source via mean and standard deviation. 

While our metric reliably recovers the increasing distances 
within the data sets, the individual measurements exhibit 
interesting differences in terms of their behavior for varying 
distances. As JHTDB and WeatherBench contain relatively 
uniform phenomena, a larger step interval creates more dif­
ficult data as the simulated and measured states contain 
changes that are more and more difficult to analyze along 
a sequence. For ScalarFlow, on the other hand, the diffi­



Learning Similarity Metrics for Numerical Simulations 

culty decreases for larger intervals due to the large-scale 
motion of the reconstructed plumes. As a result of buoyancy 
forces, the observed smoke rises upwards into areas where 
no smoke has been before. For the network, this makes 
predictions relatively easy as the large-scale translations 
are indicative of the temporal progression, and small scale 
turbulence effects can be largely ignored. For this data set, 
smaller intervals are more difficult as the overall shape of 
the plume barely changes while the complex evolution of 
small scale features becomes more important. 

Overall, the LSiM metric recovers the ground truth ordering 
of the sequences very well as indicated by the consistently 
high correlation values in Fig. 19. The other metrics comes 
close to these results on certain sub-datasets but are signifi­
cantly less consistent. SSIM struggles on JHTDB across all 
interval sizes, and LPIPS cannot keep up on WeatherBench, 
especially for larger intervals. L2 is more stable overall, but 
consistently stays below the correlation achieved by LSiM. 

0.6
0.7
0.8
0.9
1.0

L2

ScalarFlow
 (z-mean)

ScalarFlow
 (z-slice) JHTDB WeatherBench

 (geopotential)
WeatherBench
 (temperature)

0.6
0.7
0.8
0.9
1.0

SS
IM

0.6
0.7
0.8
0.9
1.0

LP
IP
S

1 2 3 4 5 10
Temporal or Spatial Step Interval

0.6
0.7
0.8
0.9
1.0

LS
iM

(o
ur
s)

C
or

re
la

tio
n

Figure 19. Detailed breakdown of the results when evaluating LSiM on the individual data sets of ScalarFlow (30 sequences each), JHTDB 
(90 sequences each), and WeatherBench (120 sequences each) with different step intervals. 

F. Additional Evaluations 
In the following, we demonstrate other ways to compare the 
performance of the analyzed metrics on our data sets. In 

Tab. 1, the Pearson correlation coefficient is used instead of 
Spearman’s rank correlation coefficient. While Spearman’s 
correlation measures monotonic relationships by using rank­
ing variables, it directly measures linear relationships. 

The results in Tab. 1 match very closely to the values com­
puted with Spearman’s rank correlation coefficient. The 
best performing metrics in both tables are identical; only 
the numbers slightly vary. Since a linear and a monotonic 
relation describes the results of the metrics similarly well, 
there are no apparent non-linear dependencies that cannot 
be captured using the Pearson correlation. 

In the Tables 2 and 3, we employ a different, more intuitive 
approach to determine combined correlation values for each 
data set using the Pearson correlation. We are no longer 
analyzing the entire predicted distance distribution and the 
ground truth distribution at once as done above. Instead, we 
individually compute the correlation between the ground 
truth and the predicted distances for the single data samples 
of the data set. From the single correlation values, we 
compute the mean and standard deviations shown in the 
tables. Note that this approach potentially produces less 
accurate comparison results, as small errors in the individual 



Learning Similarity Metrics for Numerical Simulations 

Table 1. Performance comparison on validation and test data sets measured in terms of the Pearson correlation coefficient of ground truth 
against predicted distances. Bold+underlined values show the best performing metric for each data set, bold values are within a 0.01 
error margin of the best performing, and italic values are 0.2 or more below the best performing. On the right a visualization of the 
combined test data results is shown for selected models. 

Metric 
Va

Smo 

lidation 

Liq 

data sets 

Adv Bur TID LiqN 

Test data sets 

AdvD Sha Vid All 

L2 0.66 0.80 0.72 0.60 0.82 0.73 0.55 0.66 0.79 0.60 
SSIM 0.69 0.74 0.76 0.70 0.78 0.26 0.69 0.49 0.73 0.53 
LPIPS v0.1. 0.63 0.68 0.66 0.71 0.85 0.49 0.61 0.84 0.83 0.65 

AlexNetrandom 0.63 0.69 0.67 0.65 0.83 0.64 0.63 0.74 0.81 0.65 
AlexNetfrozen 0.66 0.69 0.68 0.71 0.85 0.39 0.61 0.86 0.83 0.64 
Optical flow 0.63 0.56 0.37 0.39 0.49 0.45 0.28 0.61 0.74 0.48 
Non-Siamese 0.77 0.84 0.78 0.74 0.67 0.81 0.64 0.27 0.79 0.60 
Skipfrom scratch 0.79 0.83 0.80 0.73 0.85 0.78 0.61 0.79 0.84 0.71 

LSiMnoiseless 

LSiMstrong noise 

LSiM (ours) 

0.77 
0.65 
0.78 

0.77 
0.64 
0.82 

0.76 
0.66 
0.79 

0.72 
0.68 
0.74 

0.86 
0.81 
0.86 

0.62 
0.39 
0.79 

0.58 
0.53 
0.58 

0.84 
0.90 
0.87 

0.83 
0.82 
0.82 

0.68 
0.64 
0.72 

L2
SS

IM
LP
IP
S

O
pt
Fl
ow

N
on

Si
am Sk
ip

LS
iM

0.5

0.6

0.7

C
or

re
la

tio
n 

(A
ll)

Shallow
Image-based
Experimental
Proposed

Table 2. Performance comparison on validation data sets measured by computing mean and standard deviation (in brackets) of Pearson 
correlation coefficients (ground truth against predicted distances) from individual data samples. Bold+underlined values show the best 
performing metric for each data set, bold values are within a 0.01 error margin of the best performing, and italic values are 0.2 or more 
below the best performing. On the right a visualization of the combined test data results is shown for selected models. 

Validation data sets 
Metric 

Smo Liq Adv Bur 

L2 0.68 (0.27) 0.82 (0.18) 0.74 (0.24) 0.63 (0.33)
 
SSIM 0.71 (0.23) 0.75 (0.23) 0.79 (0.21) 0.73 (0.33)
 
LPIPS v0.1. 0.66 (0.29) 0.71 (0.24) 0.70 (0.29) 0.75 (0.28)
 

AlexNetrandom 0.65 (0.28) 0.71 (0.29) 0.71 (0.27) 0.68 (0.31)
 
AlexNetfrozen 0.69 (0.27) 0.72 (0.25) 0.71 (0.27) 0.74 (0.29)
 
Optical flow 0.66 (0.38) 0.59 (0.47) 0.38 (0.52) 0.41 (0.49)
 
Non-Siamese 0.80 (0.19) 0.87 (0.14) 0.81 (0.20) 0.76 (0.32)
 
Skipfrom scratch 0.81 (0.19) 0.85 (0.16) 0.82 (0.19) 0.77 (0.30)
 

LSiMnoiseless 0.79 (0.21) 0.79 (0.20) 0.79 (0.23) 0.76 (0.29)
 
LSiMstrong noise 0.67 (0.28) 0.66 (0.29) 0.68 (0.30) 0.70 (0.32)
 
LSiM (ours) 0.81 (0.20) 0.84 (0.16) 0.81 (0.19) 0.78 (0.28)
 

Table 3. Performance comparison on test data sets measured by computing mean and std. dev. (in brackets) of Pearson correlation 
coefficients (ground truth against predicted distances) from individual data samples. Bold+underlined values show the best performing 
metric for each data set, bold values are within a 0.01 error margin of the best performing, and italic values are 0.2 or more below the 
best performing. 

L2
SS

IM
LP
IP
S

O
pt
Fl
ow

N
on

Si
am Sk
ip

LS
iM

0.0

0.2

0.4

0.6

0.8

1.0
C

or
re

la
tio

n 
(A

ll)

Shallow
Image-based
Experimental
Proposed

Test data sets 
Metric 

TID LiqN AdvD Sha Vid All 

L2 0.84 (0.08) 0.75 (0.18) 0.57 (0.38) 0.67 (0.18) 0.84 (0.27) 0.69 (0.29) 
SSIM 0.81 (0.20) 0.26 (0.38) 0.71 (0.31) 0.53 (0.32) 0.77 (0.28) 0.58 (0.38) 
LPIPS v0.1. 0.87 (0.11) 0.51 (0.34) 0.63 (0.34) 0.85 (0.14) 0.87 (0.22) 0.71 (0.31) 

AlexNetrandom 0.84 (0.10) 0.67 (0.24) 0.65 (0.33) 0.74 (0.18) 0.85 (0.26) 0.72 (0.28) 
AlexNetfrozen 0.86 (0.11) 0.41 (0.37) 0.64 (0.34) 0.87 (0.14) 0.87 (0.22) 0.70 (0.34) 
Optical flow 0.74 (0.67) 0.50 (0.34) 0.32 (0.53) 0.63 (0.45) 0.78 (0.45) 0.53 (0.49) 
Non-Siamese 0.87 (0.12) 0.84 (0.12) 0.66 (0.34) 0.31 (0.45) 0.83 (0.26) 0.64 (0.39) 
Skipfrom scratch 0.87 (0.12) 0.80 (0.16) 0.63 (0.37) 0.80 (0.17) 0.87 (0.20) 0.76 (0.27) 

LSiMnoiseless 0.87 (0.11) 0.64 (0.29) 0.60 (0.38) 0.86 (0.15) 0.86 (0.22) 0.73 (0.31) 
LSiMstrong noise 0.83 (0.12) 0.39 (0.38) 0.55 (0.36) 0.91 (0.17) 0.86 (0.25) 0.67 (0.37) 
LSiM (ours) 0.88 (0.10) 0.81 (0.15) 0.60 (0.37) 0.88 (0.16) 0.85 (0.23) 0.77 (0.28) 



Learning Similarity Metrics for Numerical Simulations 

computations can accumulate to larger deviations in mean 
and standard deviation. Still, both tables lead to very similar 
conclusions: The best performing metrics are almost the 
same, and low combined correlation values match with 
results that have a high standard deviation and a low mean. 

Fig. 20 shows a visualization of predicted distances c against 
ground truth distances d for different metrics on every sam­
ple from the test sets. Each plot contains over 6700 individ­
ual data points to illustrate the global distance distributions 
created by the metrics, without focusing on single cases. 
A theoretical optimal metric would recover a perfectly nar­
row distribution along the line c = d, while worse metrics 
recover broader, more curved distributions. Overall, the 
sample distribution of an L2 metric is very wide. LPIPS 
manages to follow the optimal diagonal a lot better, but our 
approach approximates it with the smallest deviations, as 
also shown in the tables above. The L2 metric performs 
very poorly on the shape data indicated by the too steeply 
increasing blue lines that flatten after a ground truth distance 
of 0.3. LPIPS already significantly reduces this problem, 
but LSiM still works slightly better. 

A similar issue is visible for the Advection-Diffusion data, 
where for L2 a larger number of red samples is below the 

On the video data, all three metrics perform similarly well. 

A fine-grained distance evaluation in 200 steps of 2 and our 
L
d
m
l
w
d
d
s
s
s
t

T
t
h
a
t
c
T

Figure 20. Distribution evaluation of ground truth distances against normalized predicted distances for L2 , LPIPS and LSiM on all test 
data (color coded). 

Figure 21. Mean and standard deviation of normalized distances over multiple data samples for L2 and LSiM. The samples differ by the 
quantity displayed in brackets. Each data sample uses 200 parameter variation steps instead of 10 like the others in our data sets. For the 
shape data the position of the shape varies and for the liquid data the gravity in x-direction is adjusted. 

optimal c = d line, than for the other metrics. LPIPS has 
the worst overall performance for liquid test set, indicated 
by the large number of fairly chaotic green lines in the plot. 

L
SiM metric via the mean and standard deviation of different 
ata samples is shown in Fig. 21. Similar to Fig. 20, the 
ean of an optimal metric would follow the ground truth 

ine with a standard deviation of zero, while the mean of 
orse metrics deviates around the line with a high standard 
eviation. The plot on the left combines eight samples with 
ifferent seeds from the Sha data set, where only a single 
hape is used. Similarly, the center plot aggregates eight 
amples from Sha with more than one shape. The right plot 
hows six data samples from the LiqN test set that vary by 
he amount of noise that was injected into the simulation. 

he task of only tracking a single shape in the example on 
he left is the easiest of the three shown cases. Both metrics 
ave no problem to recover the position change until a vari­
tion of 0.4, where L2 can no longer distinguish between 
he different samples. Our metric recovers distances with a 
ontinuously rising mean and a very low standard deviation. 
he task in the middle is already harder, as multiple shapes 



Learning Similarity Metrics for Numerical Simulations 

can occlude each other during the position changes. Starting 
at a position variation of 0.4, both metrics have a quite high 
standard deviation, but the proposed method stays closer to 
the ground truth line. L2 shows a similar issue as before 
because it flattens relatively fast. The plot on the right fea­
tures the hardest task. Here, both metrics perform similar as 
each has a different problem in addition to an unstable mean. 
Our metric stays close to the ground truth, but has a quite 
high standard deviation starting at about a variation of 0.4. 
The standard deviation of L2 is lower, but instead it starts 
off with a big jump from the first few data points. To some 
degree, this is caused by the normalization of the plots, but it 
still overestimates the relative distances for small variations 
in the simulation parameter. 

These findings also match with the distance distribution 
evaluations in Fig. 20 and the tables above: Our method has 
a significant advantage over shallow metrics on shape data, 
while the differences of both metrics become much smaller 
for the liquid test set. 

G. Notation 
In this work, we follow the notation suggested by Good­
fellow et al.. Vector quantities are displayed in bold, and 
tensors use a sans-serif font. Double-barred letters indicate 
sets or vector spaces. The following symbols are used: 

R Real numbers 

i, j Indexing in different contexts 

I Input space of the metric, i.e., color 
images/field data of size 224 × 224 × 3 

a Dimension of the input space I when 
flattened to a single vector 

x, y, z Elements in the input space I 

L Latent space of the metric, i.e., sets of 
3rd order feature map tensors 

b Dimension of the latent space L when 
flattened to a single vector 

x̃, ỹ, z̃ Elements in the latent space L, corre­
sponding to x, y, z 

w Weights for the learned average aggre­
gation (1 per feature map) 

p0, p1, . . . Initial conditions / parameters of a nu­
merical simulation 

n Number of variations of a simulation 
parameter, thus determines length of 
the network input sequence 

o0, o1, . . . , on Series of outputs of a simulation with 
increasing ground truth distance to o0 

Δ Amount of change in a single simula­
tion parameter 

t1, t2, . . . , tt Time steps of a numerical simulation 

v Variance of the noise added to a simu­
lation 

c Ground truth distance distribution, de­
termined by the data generation via Δ 

d Predicted distance distribution (sup­
posed to match the corresponding c) 

c̄, d̄ Mean of the distributions c and d 

1. . . 12 Euclidean norm of a vector 

m(x, y) Entire function computed by our metric 

m1(x, y) First part of m(x, y), i.e., base network 
and feature map normalization 

m2(x̃, ỹ) Second part of m(x, y), i.e., latent 
space difference and the aggregations 

G 3rd order feature tensor from one layer 
of the base network 

gb, gc, gx, gy Batch (gb), channel (gc), and spatial 
dimensions (gx, gy) of G 

f Optical flow network 

fxy, fyx Flow fields computed by an optical 
flow network f from two inputs in I 

fxy 
1 , fxy 

2 Components of the flow field fxy 

V, V2 Gradient (V) and Laplace operator 
(V2) 

∂ Partial derivative operator 

t Time in our PDEs 

u Velocity in our PDEs 

ν Kinematic viscosity / diffusion coeffi­
cient in our PDEs 

d, ρ Density in our PDEs 

P Pressure in the Navier-Stokes Equa­
tions 

g Gravity in the Navier-Stokes Equations 



Learning Similarity Metrics for Numerical Simulations 

References 
Eckert, M.-L., Um, K., and Thuerey, N. Scalarflow: 

A large-scale volumetric data set of real-world scalar 
transport flows for computer animation and machine 
learning. ACM Transactions on Graphics, 38(6), 2019. 
doi:10.1145/3355089.3356545. 

Goodfellow, I., Bengio, Y., and Courville, A. Deep 
Learning. MIT Press, 2016. URL http://www. 
deeplearningbook.org. 

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual 
learning for image recognition. In 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), pp. 
770–778, 2016. doi:10.1109/CVPR.2016.90. 

Huang, G., Liu, Z., Van Der Maaten, L., and Wein­
berger, K. Q. Densely connected convolutional net­
works. In 2017 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), pp. 2261–2269, 2017. 
doi:10.1109/CVPR.2017.243. 

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., 
and Brox, T. Flownet 2.0: Evolution of optical flow esti­
mation with deep networks. CoRR, abs/1612.01925, 2016. 
URL http://arxiv.org/abs/1612.01925. 

Perlman, E., Burns, R., Li, Y., and Meneveau, C. 
Data exploration of turbulence simulations using a 
database cluster. In SC ’07: Proceedings of the 2007 
ACM/IEEE Conference on Supercomputing, pp. 1–11, 
2007. doi:10.1145/1362622.1362654. 

Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., 
Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, 
M., Battisti, F., and Kuo, C. C. J. Image database 
TID2013: Peculiarities, results and perspectives. Sig­
nal Processing-Image Communication, 30:57–77, 2015. 
doi:10.1016/j.image.2014.10.009. 

Rasp, S., Dueben, P., Scher, S., Weyn, J., Mouatadid, S., and 
Thuerey, N. Weatherbench: A benchmark dataset for data­
driven weather forecasting. CoRR, abs/2002.00469, 2020. 
URL http://arxiv.org/abs/2002.00469. 

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con­
volutional networks for biomedical image segmentation. 
CoRR, abs/1505.04597, 2015. URL http://arxiv. 
org/abs/1505.04597. 

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, 
O. The Unreasonable Effectiveness of Deep Features 
as a Perceptual Metric. In 2018 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 
586–595, 2018. doi:10.1109/CVPR.2018.00068. 

Zhu, Y. and Bridson, R. Animating sand as a fluid. In ACM 
SIGGRAPH 2005 Papers, pp. 965–972, New York, NY, 
USA, 2005. doi:10.1145/1186822.1073298. 

https://doi.org/10.1145/3355089.3356545
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/1612.01925
https://doi.org/10.1145/1362622.1362654
https://doi.org/10.1016/j.image.2014.10.009
http://arxiv.org/abs/2002.00469
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1145/1186822.1073298

