
Appendix: Optimal Continual Learning has Perfect Memory and is NP-HARD

Jeremias Knoblauch 1 Hisham Husain 2 Tom Diethe 3

A. Proofs: Optimal CL is NP-HARD

The main results relating to the computational hardness of
CL which are not proven in the main paper are carefully
derived in this supplement.

A.1. Relationship with other problems

Notice that at each step, the functionsAθ andAI of optimal
Idealized CL define an optimization problem, as we are
tasked with a parameter value θt at each iteration satisfying
the specified criterion on all previous tasks.
Definition 1. Given a fixed hypothesis class FΘ, criterion
C, a set A ∈ SATQ and B ∈ SAT∩ for

SAT∩ = {∩ti=1Ai : Ai ∈ SATQ,

1 ≤ i ≤ t and 1 ≤ t ≤ T, T ∈ N},
the optimal Idealized CL optimization problem is to find
a θ ∈ A ∩ B. Accordingly, the optimal Idealized CL
decision problem is to decide if a solution exists, i.e. if
θ ∈ A ∩B 6= ∅.

We first show that the optimal Idealized CL optimization
problem is at least as hard as its corresponding decision
problem.
Proposition 1. If one can solve the optimal Idealized CL
optimization problem, one can solve the optimal Idealized
CL decision problem.

Proof. if the optimal Idealized CL optimization problem
can be solved, then there exists some function f : SATQ ×
SAT∩ → Θ such that

f(A,B) = θ

such that θ ∈ A ∩ B, for any A and B as in Definition 1.
But then, one can construct the indicator function

1(A,B) =

{
1 if f(A,B) /∈ ∅
0 otherwise,

1Department of Statistics, Warwick University & The Alan
Turing Institute, London 2Australian National University, Can-
berra & Data61, Sydney 3Amazon. Correspondence to: Jeremias
Knoblauch <j.knoblauchwarwick.ac.uk>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

which clearly solves the decision problem.

The interpretation of this result is clear: Computationally,
the optimal Idealized CL optimization problem is at least
as hard as the optimal Idealized CL decision problem. This
insight is useful mainly because of the next proposition,
which shows that any optimal CL algorithm can solve the
optimal Idealized CL optimization problem.

Proposition 2. If a CL algorithm is optimal, then it can
solve the optimal Idealized CL optimization problem.

Proof. By Lemma 1, it suffices to show this for an opti-
mal Idealized CL algorithm. Suppose that Aθ, AI define
an optimal Idealized CL algorithm. For a given problem
instance of the optimal Idealized CL optimization prob-
lem with A ∈ SATQ and ∩T−1t=1 Bt = B ∈ SAT∩ such that
Bt ∈ SATQ for all 1 ≤ t ≤ (T − 1), we can use the
optimal Idealized CL algorithm to solve the problem. To
see this, construct the problem instance as SATi = Bi for
1 ≤ i ≤ (T − 1) and SATT = A. Clearly, the value θT
generated by the optimal Idealized CL algorithm satisfies
that θT ∈ A ∩B.

Again, this has a clear interpretation: Computationally, the
optimal Idealized CL algorithm is at least as hard as the
optimal Idealized CL optimization problem.

A.2. Proof of Lemma 2

A straightforward Corollary follows. Rewriting this result,
one obtains Lemma 2.

Corollary 1. If a CL algorithm is optimal, then it can solve
the optimal Idealized CL decision problem.

Proof. Combine Propositions 1 and 2.

A.3. A further refinement

Indeed, the connection between an optimal CL algorithm
and the optimal Idealized CL optimization and decision
problems can be made much tighter. The below alternative
Lemma could be used in the proof of Theorem 2 to show
that optimal CL does not only solve an NP-HARD problem,
it solves an NP-HARD problem at each iteration. We do



Optimal Continual Learning has Perfect Memory and is NP-HARD

not discuss this in the main paper as the consequences re-
main the same, though at the expense of complicating the
presentation.

Lemma 1. A CL algorithm is optimal if and only if it solves
T optimal Idealized CL optimization problem instances
given by {(At, Bt)}Tt=1 with At = SATt = SAT(P̂t) and
Bt = SAT1:(t−1) = ∩t−1i=1SATi. Similarly, a CL algorithm
is optimal only if it can be used to solve the collection of T
optimal Idealized CL decision problems corresponding to
{(At, Bt)}Tt=1.

Proof. Using Lemma 1 once again, it suffices to prove this
for an optimal Idealized CL algorithm. The first part of the
proposition then follows by definition, as θt ∈ SAT1:t =
SATt∩

(
∩t−1i=1SATi

)
. Setting B = ∩t−1i=1SATi and A = SATt

reveals this to be an optimal Idealized CL optimization
problem. The second part follows by combining the first part
with the same arguments used in the proof of Proposition
1.

A.4. Proof of Theorem 1

With Lemma 2 in place, the proof of Theorem 1 follows
by relatively simple arguments that we summarize in two
separate propositions.

Proposition 3. If Q and C are such that SATQ ⊇ S or
SAT∩ ⊇ S so that S is the set of tropical hypersurfaces or
the set of polytopes on Θ, then the optimal Idealized CL
decision problem is NP-COMPLETE.

Proof. This is a simple application of the results in
Theobald (2006) for the case where S is the set of tropical
hypersurfaces. For the case where S is the set of polytopes,
it is a simple application of the results in Tiwary (2008b)
and Tiwary (2008a).

Proposition 4. The optimal idealized CL optimization prob-
lem is NP-HARD.

Proof. By proposition 1, the idealized CL optimization
problem is at least as hard as the idealized CL decision
problem.

With this in hand, the proof of Theorem 1 is readily obtained
by combining Lemma 2 with Propositions 2, 3 and 4.

Proof. First, use Lemma 2: Optimal CL can correctly de-
cide if A ∩ B = ∅, for all A ∈ SAT∩ and B ∈ SATQ.
Second, use Proposition 3 to conclude that this decision
problem is NP-COMPLETE. Third, it follows by Proposi-
tion 4 that the optimization problem corresponding to an
NP-COMPLETE decision problem is NP-HARD. Thus, by
Proposition 2, the result follows.

A.5. Proof of Corollary 1

It is straightforward to generalize the results of Theorem 1
for all collections SATQ whose intersections are as hard to
compute as polytopes.

Proof. Re-use the proof of Theorem 1 and note that if the
decision problem is at least as hard as for polytopes, then the
computational complexity of derived as a result of Theorem
1 provides a lower bound.

B. Proofs: Optimal CL has Perfect Memory
Next, we show give detailed derivations for the perfect mem-
ory result in the main paper.

B.1. Proof of Lemma 3

For convenience, we compile the results in Lemma 3 into
two separate Propositions.

Proposition 5. θ′ ∈ E(θ) ⇐⇒ E(θ) = E(θ′). Further,
whenever θ′ /∈ E(θ), it hold that E(θ) ∩ E(θ′) = ∅.

Proof. Suppose that θ′ ∈ E(θ). From the definition of
E(θ), this immediately implies that any A ∈ S(θ) contains
θ′. In other words, θ′ ∈ A ⇐⇒ θ ∈ A for all A ∈ SATQ.
From this, it immediately follows that S(θ) = S(θ′) so that

E(θ) =
⋂

A∈S(θ)

A =
⋂

A∈S(θ′)

A = E(θ′),

which proves the first claim. The second claim then follows
by contradiction: Suppose there was a point θ̃ such that
θ̃ ∈ E(θ) ∩ E(θ′). But then, θ̃ ∈ E(θ), which by the first
claim would imply that S(θ) = S(θ̃) = S(θ′) so that

E(θ) =
⋂

A∈S(θ)

A =
⋂

A∈S(θ̃)

A =
⋂

A∈S(θ′)

A = E(θ′).

But since θ′ /∈ E(θ) and θ′ ∈ E(θ′) it holds that E(θ) 6=
E(θ′), which yields the desired contradiction.

Proposition 6. For all A ∈ SATQ and all θ ∈ Θ, either
E(θ) ⊆ A or E(θ) ∩A = ∅.

Proof. This follows by definition of E(θ): Either A ∈ S(θ),
in which case it must follow that E(θ) ⊆ A. Alternatively,
if A /∈ S(θ), then by Proposition 5 one has that A /∈ S(θ′)
for any θ′ ∈ E(θ), which means that E(θ) ∩A = ∅.

B.2. Proof of Lemma 4

We first define the notion of a Decision Problem Oracle set.
Note that Lemma 4 in the main paper revolves around such
a Decision Problem Oracle set (albeit without using this
name).



Optimal Continual Learning has Perfect Memory and is NP-HARD

Definition 2. Given a set SAT1:t ∈ SAT∩, a set C is a
Decision Problem Oracle set for SAT1:t if

C ∩A = ∅ ⇐⇒ SAT1:t ∩A = ∅,

for any A ∈ SATQ.

Proposition 7. If a CL algorithm is optimal, there exists
a function h : Θ × I → 2Θ such that for θt, It as in
Definition 6, Ct = h(θt, It) is a Decision Problem Oracle
set for SAT1:t, and this holds for all 1 ≤ t ≤ T .

Proof. If the CL algorithm is optimal, it can solve the opti-
mal Idealized CL decision problem given by A = SATt+1

and B = SAT1:t at the (t + 1)-th task. (This follows by
combining Lemma 1 with Proposition 1) Specifically, be-
cause

A(θt, It, A) /∈ ∅ ⇐⇒ SAT1:t ∩A 6= ∅,

it is clear that there must exist a function g : Θ × I ×
SATQ → 2Θ for which Ct = g(θt, It, A) is such that

Ct ∩A 6= ∅ ⇐⇒ SAT1:t ∩A 6= ∅.

Furthermore, it is clear that g will be constant in A (since
SAT1:t is), so that one can write Ct = h(θt, It) for some
h : Θ× I → 2Θ instead.

B.3. Assumptions for the Decision Problem Oracle set

We use the observation of the last subsection to investigate
the memory requirements of optimal CL algorithms. Before
doing so, we first make some assumptions that are useful
for proving Theorem 2 and Corollary 2.

B.3.1. ASSUMPTIONS FOR THEOREM 2

Assumption 1 (Storage efficiency). Ct ⊆ SAT1:t

Assumption 2 (Information efficiency). Ct ⊆ Ct−1

Assumption 3 (Finite identifiability). There exists a finite
sequence of sets {At}Tt=1 in SATQ such that ∩Tt=1At =
E(θ), for all θ ∈ Θ.

Remark 1. Assumption 1 ensures that Ct takes up as little
space in memory as possible. To illustrate this, suppose
that C̃t ∩ SATt+1 = ∅ ⇐⇒ SAT1:t ∩ SATt+1 = ∅, but
that C̃t \ SAT1:t 6= ∅. In this case, it clearly holds for
Ct = C̃t ∩ SAT1:t ⊂ C̃t that Ct ∩ SATt+1 = ∅ ⇐⇒
SAT1:t∩SATt+1 = ∅, too. In other words, one can construct
an alternative and stritly smaller Decision Problem Oracle
set Ct from C̃t by removing all points that are not also in
SAT1:t.

Remark 2. Assumption 2 ensures that the algorithm learns
monotonically. Specifically, it ensures that each additional
task will shrink the set SAT1:t of parameter values that sat-
isfy the criterion C on all task 1, 2, . . . t. This is intuitively

appealing since it means that the algorithm never incor-
rectly discards a parameter only to add it back in at a later
task.

Remark 3. Assumption 3 says that equivalence sets are
reachable with finitely many tasks. In other words, there
exist collections of tasks which satisfy the algorithm’s opti-
mality criterion C only if the parameter that is learnt lies in
a single equivalence set.

B.3.2. ASSUMPTIONS FOR COROLLARY 2

As we shall see shortly, if we strengthen Assumption 3, we
can drastically simplify the proof of Theorem 2 and drop
the other two assumptions required for the result.
Assumption 4 (Identifiability). E(θ) ∈ SATQ, for all θ ∈
Θ.

Remark 4. Simply put, this means that each equivalence
set can be “reached” with a single task. In other words,
each equivalence set is identifiable with a single task.

B.4. Proof of Theorem 2

Notice that proving Theorem 2 is equivalent to proving the
proposition below.
Proposition 8. Under Assumptions 1, 2 and 3, any optimal
CL algorithm has perfect memory.

Proof. We show this by proving that for some arbitrary
minimal representation {f(i)}i∈I and F = ∪i∈I{f(i)},
Ct ⊇ F ∩ SAT1:t.

First, we show that C̃t = F ∩ SAT1:t is a Decision Problem
Oracle set. In other words, we show that C̃t ∩A = ∅ ⇐⇒
SAT1:t ∩A = ∅, for all A ∈ SATQ and any SAT1:t ∈ SAT∩.
We do so by contradiction: Suppose that ∃A ∈ SATQ so
that C̃t ∩A = ∅, but SAT1:t ∩A 6= ∅. But then, A∩ SAT1:t

contains at least one point, say θ. By construction of C̃t,
it also follows that F ∩ A = ∅. This yields the desired
contradiction, since by virtue of A ⊇ E(θ) it also implies
that F ∩ E(θ) = ∅, even though F contains exactly one
point for each equivalence set by definition, including the
equivalence set E(θ). In other words, it is sufficient for the
optimal CL algorithm to be able to reconstruct the Decision
Problem Oracle set C̃t = F ∩ SAT1:t at task (t+ 1).

Second, we demonstrate that this is also necessary: Suppose
that there exists some θ ∈ C̃t such that C̃t \ {θ} is also
a Decision Problem Oracle set, for all 1 ≤ t ≤ T . By
virtue of Assumption 3, we can construct a finite sequence
of sets {Ai}Ti=t+1 such that Ai ∈ SATQ and ∩Ti=t+1Ai =
E(θ). By construction, SAT1:t ∩

(
∩Ti=t+1Ai

)
6= ∅, but(

C̃t \ {θ}
)
∩
(
∩Ti=t+1Ai

)
= ∅. Since it also holds that

Ct ⊆ Ct−1, it follows that
(
C̃T−1 \ {θ}

)
∩AT = ∅, which

completes the proof.



Optimal Continual Learning has Perfect Memory and is NP-HARD

B.5. Proof of Corollary 2

Alternatively, one could drop the first two assumptions and
strengthen the third to draw the same conclusion.

Proposition 9. Under Assumption 4, the optimal CL algo-
rithm has perfect memory.

Proof. The proof of sufficiency is exactly equal to the one
in Proposition 8. The proof of necessity follows along
the same lines as before but is even easier: Since one can
always select A = E(θ), SAT1:t ⊇ Ct ⊇ SAT1:t ∩ F read-
ily follows. (Indeed, it follows that Ct = SAT1:t because
SAT1:t ∩ F for any F = ∪i∈I{f(i)} generated through a
Minimal Representation {f(i)}i∈I .)

References
Theobald, T. On the frontiers of polynomial computations

in tropical geometry. Journal of Symbolic Computation,
41(12):1360–1375, 2006.

Tiwary, H. R. On the hardness of computing intersection,
union and Minkowski sum of polytopes. Discrete &
Computational Geometry, 40(3):469–479, 2008a.

Tiwary, H. R. Complexity of some polyhedral enumeration
problems. PhD thesis, Saarländische Universität, 2008b.


