
Active World Model Learning with Progress Curiosity

Appendix - Active World Model Learning with Progress Curiosity

A. External Agent Behaviors
Below, we describe all behaviors in detail. Note that the animate behaviors (peekaboo, reaching, chasing, and mimicry) are
further sub-divided into deterministic and stochastic versions.

Inanimate behaviors

Static Inspired by stationary objects such as couches, lampposts, and fire hydrants, the static agent remains at
its starting location and stays immobile.

Periodic Inspired by objects exhibiting periodic motion such as fans, flashing lights, and clocks, the periodic
agent regularly moves back and forth between two specified locations in its quadrant.

Noise Inspired by random motion in wind, water, and other inanimate elements, the noise agent randomly
samples a new direction and moves in that direction with a fixed step size while remaining within the boundaries
of its quadrant.

Animate Behaviors

Reaching (deterministic) We often exhibit goal-oriented behavior by interacting with objects. The reacher
agent approaches each auxiliary object in its quadrant sequentially, such that object positions fully determine its
trajectory. Objects periodically shift locations such that predicting agent behavior at any given time requires
knowing the current object positions.

Reaching (stochastic) The order in which the reacher agent visits the objects is stochastic (uniform sampling
from the three possible objects). However, once the reacher agent starts moving towards an object, its trajectory
for the next few time steps, before it chooses a different object to move to, is predictable.

Chasing (deterministic) We often act contingently on the actions of other agents, which in turn depend on our
own. In chasing, a chaser agent chases a runner agent. If the runner is too close to quadrant bounds, it then
escapes to one of a few escape locations away from the chaser but within the quadrant. Thus, the chaser’s
position affects the runner’s trajectory and vice versa.

Chasing (stochastic) When the runner agent is too close to the quadrant bounds, it escapes by picking any
random location away from the chaser and within the bounds of the quadrant.

Peekaboo (deterministic) One way of detecting an animate agent is if its motion is contingent on our own.
The peekaboo agent acts contingently on the curious agent. If the curious agent stares at it, it hides behind an
auxiliary object such as a doll. If the curious agent continues to stare, it starts peeking out by moving to a fixed
peek location. If the curious agent looks away, it stops hiding, returning to its exposed location.

Peekaboo (stochastic) There are multiple peeking locations near the hiding object that the peekaboo agent can
visit randomly during its peeking behavior.

Active World Model Learning with Progress Curiosity

Mimicry (deterministic) From an early age, we learn by imitating others. Mimicry consists of an actor agent
and an imitator agent, each staying in one half of the quadrant to avoid collisions. The actor acts identically to
the random agent, while the imitator mirrors the actor’s trajectory with a delay, such that the past trajectory of
the actor fully determines the future trajectory of the imitator.

Mimicry (stochastic) The imitator agent is imperfect and produces a noisy reproduction of the actor agent’s
trajectory.

B. Connections between General Active Learning and Conventional Active Learning
Query Synthesis Active Learning is obtained by taking S = Y,A = X , P (·|·,a = x) = !(x) and c(s̄ =
(s, H, ✓),a, s̄0 = (s0, H 0

, ✓
0)) = Lval(✓) � Lval(✓0). In words, the agent proposes a synthetic data query a and the

oracle P provides a label s0. The agent’s objective is to reduce validation loss with a minimal number of data queries.
Most active learning methods take a greedy approach to maximize the model loss reduction after a single data query which
corresponds to setting � = 0.

Pool-based Active Learning is the same as Query Synthesis Active Learning with the only difference being A = Dpool

where Dpool is the initial pool of unlabelled data.

Stream Active Learning is obtained by choosing S = X ⇥ Y ,A = {0, 1}, P (·|s = (x,y),a) = !(x) if a =
1 else �(ydum), and c(s̄ = (s, H, ✓),a, s̄0 = (s0, H 0

, ✓
0)) = Lval(✓) � Lval(✓0), where � is the Dirac-delta function

and ydum is a dummy label that denotes the case when no label is returned by the oracle.

C. Connections between AWML and Curiosity
Information Gain (Houthooft et al., 2016; Linke et al., 2019) based methods seek to minimize uncertainty in the Bayesian
posterior distribution over model parameters:

�c(s̄,a, s̄0) = L(✓, µ)� L(✓0, µ) ' DKL(p(✓
0)||p(✓)) (7)

where p(✓0) = p(✓|H [{a, s̄0}) and p(✓) = p(✓|H). Note that, information gain is a lower bound to the prediction gain
under weak assumptions (Bellemare et al., 2016). If the posterior has a simple form such as Laplace or Gaussian, information
gain can be estimated by weight change |✓0 � ✓| (Linke et al., 2019), and otherwise one may resort to learning a variational
approximation q to approximate the information gain with DKL(q(✓0)||q(✓)) (Houthooft et al., 2016). The former weight
change methods require a model after every step in the environment and is thus impractical in many settings where world
model updates are expensive, e.g backpropagation through deep neural nets. The latter family of variational methods require
maintenance of a parameter distribution and an interlaced evidence lower bound optimization and are thus impractical to use
with modern deep nets (Achiam & Sastry, 2017).

Adversarial (Stadie et al., 2015; Pathak et al., 2017; Schmidhuber, 2019) curiosity assumes prediction gain is proportional
to the current world model loss.

�c(s̄,a, s̄0) = L(✓, µ)� L(✓0, µ) ' � log!✓(s
0|s,a) (8)

This assumption holds when the target function ! is learnable by the model class ⇥ and the learning algorithm P` makes
monotonic improvement without the need for curriculum learning. However, adversarial reward is perpetually high when
the target is unlearnable by the model class, e.g deterministic model !✓ cannot match stochastic target function ! on inputs
x for which !(x) is not a Dirac-delta distribution. This problem is known as the white noise problem (Schmidhuber, 2010).

Disagreement (Pathak et al., 2019) assumes future world model loss reduction is proportional to the prediction variance of
an ensemble of N world models {P✓j}Nj=1

.

�c(s̄,a, s̄0) = L(✓, µ)� L(✓0, µ) ' Var({!✓j (s
0|s,a)}Nj=1

) (9)

This approximation is reasonable when there exists a unique optimal world model. As we will show, for complex target
functions all members of the ensemble do not converge to a single model and as a result the white noise problem persists. A

Active World Model Learning with Progress Curiosity

key limitation of this method is that memory usage grow linearly with size of the model ensemble. Disagreement-based
curiosity is known as query by committee sampling (Seung et al., 1992) in active learning.

Novelty (Bellemare et al., 2016; Dinh et al., 2016; Burda et al., 2018b) methods reward transitions with a low visitation
count N (s, a, s0). The prototypical novelty reward is:

�c(s̄,a, s̄0) = L(✓, µ)� L(✓0, µ) ' N (st, at)
�1/2 (10)

(Bellemare et al., 2016) generalize visitation counts to pseudocounts for use in continuous state, action spaces. Novelty is
a good surrogate reward when one seeks to maximize coverage over the transition space regardless of the learnability of
the transition. This characteristic makes novelty reward prefer noisy data drawn from a high entropy distribution. Novelty
reward is not adapted to the world model and thus has a propensity to be inefficient at reducing world model loss.

D. World model architecture ablation and disentanglement
To evaluate the importance of disentanglement in world model architecture, independently of controller choice, we produce
datasets for offline training for each task (excluding peekaboo, since the behavior is dependent on the observer’s choices, no
policy-independent offline training dataset can be constructed). We then train the world model to convergence. We compare
the loss of our disentangled world model to an entangled LSTM architecture that instead takes as input and predicts all
external agents together. As seen in Figure 6, the disentangled architecture significantly outperforms the entangled ablation.

Reaching Chasing Mimicry
deterministic stochastic deterministic stochastic deterministic

Va
lid

at
io

n
lo

ss
(s

ca
le

d)

disentangled

stochastic

entangled

Figure 6. Asymptotic Model Performance Final performance of the
disentangled world model and entangled ablations.

Intuitively, the disentangled architecture performs better
because it ignores spurious correlations between causally-
unrelated events in the agent’s data stream. Formaliz-
ing this intuition and explaining why this is particularly
salient in our current environment, in contrast to some
other situations (Locatello et al., 2018), is an important fu-
ture direction. Interestingly, the disentangled architecture
shares a key feature with the concept known as Theory of
Mind, which involves the ability to predict the behaviors
of other agents as a function of inferred mental states,
such as beliefs, desires, and goals (Astington et al., 1990; Premack & Woodruff, 1978; Wellman, 1992). A core, though often
unstated, assumption behind Theory of Mind is the agent-centric allocation of computational resources. Our disentangled
model builds this in as a key feature, suggesting that at least one possible function of Theory of Mind may be to enable
statistical disentangling. This certainly requires considerable follow-up work to substantiate.

E. Training Details
As shown in Algorithm 1, we interleave world model and policy updates while interacting with the environment. Specifically
we update the both the world model and Q-network with 10 gradient steps per 40 environment steps. Both model updates
begin after the buffer is filled with 1000 samples.

World Model: We parameterize each component network !✓k with a two-layer Long Short-Term Memory (LSTM) network
with 256 hidden units if |Ik| = 1 i.e., the causal group k contains a single external agent, and 512 if |Ik| � 2 to ensure that
the size of the parameter space scales with the input and output size. All networks are train using Adam with a learning rate
of 1e-4, �1 = 0.9,�2 = 0.999 and batch size 256.

The old model is synchronized with the new model weights once after 100 world model updates. This "warm starts" the
old model and prevents unreasonable large progress rewards at the start. We use a fixed value of the progress horizon
� = 0.9995 across all experiments. We found that any 0.9995  �  0.9999 attains similar results.

Policy Learning: For Q-network Q� updates we use the DQN algorithm (Mnih et al., 2015) with a discount factor of
� = 0.99, a boostrapping horizon of 200, a buffer size of 2e5. Same as the world model, we train the Q-network using
Adam with a learning rate of 1e-4, �1 = 0.9,�2 = 0.999 and batch size 256. The policy ⇡� is an ✏-greedy exploration
strategy with respect to Q�. Specifically, ✏ is linearly decayed from 1.0 to 0.025 at a rate of 0.0001 per environment step.

Active World Model Learning with Progress Curiosity

F. Validation Cases
Here we describe validation protocol for each behavior. As data for the world model must be generated by interacting with
the environment, what policy to use during validation is an important choice. As some behaviors are "interactive", i.e the
external agent dynamics depend on the curious agent’s actions, a naive policy that simply stares at the external agent may
not elicit the core dynamics underlying the behavior. Thus, we hard-code the policy during validation to elicit the core
dynamics for behavior and subsequently measure world model loss on the collected data.

Peekaboo: The validation policy looks at the peekaboo external agent until it hides. The policy then keeps the peekaboo
external agent in view so that when the agent "peeks" it immediately hides again. The validation loss measures the world
model performance on predicting the dynamics of this peeking behavior which is representative of the core “interactive”
nature of peekaboo.

Reaching: At the start of validation, auxiliary objects are spawned at new locations which changes the trajectory of the
reaching external agent. The validation policy then stares at the reaching external agent and validation loss is measured on
the collected samples. This validation loss measures how well the world model has learned the contingency between the
auxiliary object locations and the reaching external agent’s movements. For example, a world model that has overfit to the
external agent’s trajectory for a particular set of auxiliary object locations will fail to generalize when auxiliary objects are
spawned at new locations.

Chasing, Mimicry, Periodic, Static, Noise: The validation policy simply stares at the external agents and validation loss is
measured on the collected samples.

The validation losses shown in Figure 3a for the Mixture world is an average of the validation losses on the static, periodic,
and animate external agents. The random agent is excluded from evaluation as there is virtually no learnable patterns in
the behavior and averaging the large world model loss incurred on the random external agent could occlude the learning
performance differences between curiosity signals on the other learnable external agents. For the Noise World, the shown
validation losses in Figure 3b represent only the validation loss on the animate external agent.

G. Noise World Attention

-Progress -Progress RND

Disagreement Adversarial Random

deterministic stochastic deterministic stochastic deterministic deterministic
Reaching Chasing Peekaboo Mimicry

stochastic stochastic
stochastic

An
im

at
e-

In
an

im
at

e
At

te
nt

io
n

D
iff

er
en

tia
l

To
ta

l A
ni

m
at

e
At

te
nt

io
n

Figure 7. Attention Patterns in Noise World. The bar plot shows the total animate attention, which is the ratio between the number of
time steps an animate external agent was visible and the number of time steps a noise external agent was visible. The zoom-in box plots
show the differences between mean attention to the animate external agents and the mean of attention to the other agents in a 500 step
window, with periods of animate preference highlighted in purple. Results are averaged across 5 runs. �-Progress displays strong animate
attention while baselines are either indifferent, e.g �-Progress, or fixating on white noise, e.g Adversarial.

H. Further attention analyses
Here we provide details of the early indicator analysis (Section 7) and a regression of what factors (curiosity signal,
architecture, external agent behavior) best predict animate/inanimate attention ratios.

Active World Model Learning with Progress Curiosity

H.1. Details of early indicator analysis

We look to predict final performance Pfinal of a given agent, which we take to be the average of the final four validation runs.
To make the modeling problem simple, we discretize this into a classification task by dividing validation performance into 3
equal-sized classes (“high”, “medium”, and “low”, computed separately for each external agent behavior), intuitively chosen
to reflect performance around, at, and below that of random policy.

We consider two predictive models of final performance, one that takes as input early attention of the agent, and the other,
early performance. Early performance may be quantified simply: given time T (“diagnostic age”) during training, let PT

be the vector containing all validation losses measured up to time T . Early attention, however, is very high-dimensional,
so we must make a dimensionality-reducing choice in order to tractably model with our modest sample size. Hence, we
“bucket” average. Given choice of integer B, let

AT,B = (f anim
0:

T
B

, f rand
0:

T
B

, f animT
B :

2T
B
, f randT

B :
2T
B
, . . . f anim(B�1)T

B :T
, f rand(B�1)T

B :T
), (11)

where f anima:b and f randa:b are the fraction of the time t = a and t = b spent looking at the animate external agent and random
external agents respectively (so AT,B is the attentional trajectory up to time T discretized into B buckets).

Finally, both models must have knowledge of the external agent behavior to which the agent is exposed — we expect this to
both have an effect on attention as well as the meaning of early performance and expected final performance as a result. Let
�BHR be the one-hot encoding of which external animate agent behavior is shown.

We then consider models

1. PERFT , which takes as input PT and �BHR, and

2. ATTT , which takes as input AT,B and �BHR.

Figure 5b shows the plot of PERFT and ATTT accuracy as T varies. We see that, up to a point, ATTT makes a better
predictor of final performance, and then PERFT dominates. This confirms the intuition that attention patterns precede
performance improvements. Intuitively, early attention predicts performance by being able to predict the sort of curiosity
signal the agent is using, which predicts the full timecourse of attention (see H.2), which in turn predicts performance.

H.2. Determinants of attention pattern

To gain a finer-grained understanding of what, of the factors we vary (curiosity signal, world model architecture, and
stimulus type) drives the attentional behavior of these active learning systems, we perform a linear regression. Specifically,
we regress

Ranimate/noisy = a+ b · �CS + c�causal + d · �BHR + �causal ⇤ e · �IM + ✏ (12)

Here Ranimate/noisy is the ratio of animate to noisy attention, �CS is a one-hot encoding of curiosity signal (all zeros if
random policy), �causal is an indicator set to 1 if the architecture is causal, �BHR is a one-hot encoding of animate external
agent behavior shown (all zeros if deterministic reaching), and a, b, c, d, e are fixed effects (e measures an interaction effect).

Over 371 individual active learning runs, an ordinary least squares regression achieves an adjusted R
2 of .44. Please see

Table 3 for details. We found that �-Progress receives significant positive weight, while Disagreement and Adversarial
receive significant negative weight, with the other curiosity signals having an effect close to that of random policy. In
addition, we fail to find a significant effect due to architecture and most external agent behaviors, with two external agent
behavior exceptions. In sum, we find that, of the architectural and curiosity signal variations we tested, curiosity signal
strongly drives behavior whereas architecture plays an insignificant role.

Active World Model Learning with Progress Curiosity

Table 3. Attention regression. Regression model of animate/noisy attention, according to Equation 12. Coefficient values found, and
uncorrected p-value for 2-sided t-tests, with significance at the .05 level in bold.

COEFFICIENT VALUE P > |T|

CONSTANT .80 .001
�-PROGRESS 2.24 .000
�-PROGRESS .08 .788
RND -.53 .064
DISAGREEMENT -.70 .014
ADVERSARIAL -.79 .006

CAUSAL ARCHITECTURE .014 .959

STOCHASTIC REACHING .14 .493
DETERMINISTIC CHASING .25 .222
STOCHASTIC CHASING .45 .029
DETERMINISTIC PEEKABOO -.08 .682
STOCHASTIC PEEKABOO .02 .920
MIMICRY .56 .006

CAUSAL ⇥�-PROGRESS -.32 .408
CAUSAL, ⇥�-PROGRESS .06 .868
CAUSAL ⇥ RND .03 .935
CAUSAL ⇥ DISAGREEMENT .23 .555
CAUSAL ⇥ ADVERSARIAL -.09 .813

