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Abstract
We study the question of how to imitate tasks
across domains with discrepancies such as embod-
iment, viewpoint, and dynamics mismatch. Many
prior works require paired, aligned demonstra-
tions and an additional RL step that requires en-
vironment interactions. However, paired, aligned
demonstrations are seldom obtainable and RL
procedures are expensive. We formalize the Do-
main Adaptive Imitation Learning (DAIL) prob-
lem, which is a unified framework for imitation
learning in the presence of viewpoint, embodi-
ment, and dynamics mismatch. Informally, DAIL
is the process of learning how to perform a task
optimally, given demonstrations of the task in a
distinct domain. We propose a two step approach
to DAIL: alignment followed by adaptation. In
the alignment step we execute a novel unsuper-
vised MDP alignment algorithm, Generative Ad-
versarial MDP Alignment (GAMA), to learn state
and action correspondences from unpaired, un-

aligned demonstrations. In the adaptation step we
leverage the correspondences to zero-shot imitate
tasks across domains. To describe when DAIL
is feasible via alignment and adaptation, we in-
troduce a theory of MDP alignability. We exper-
imentally evaluate GAMA against baselines in
embodiment, viewpoint, and dynamics mismatch
scenarios where aligned demonstrations don’t ex-
ist and show the effectiveness of our approach.

1. Introduction
Humans possess an astonishing ability to recognize latent
structural similarities between behaviors in related but dis-
tinct domains, and learn new skills from cross domain
demonstrations alone. Not only are we capable of learn-
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ing from third person observations that have no obvious
correspondence to our internal self representations (Stadie
et al., 2017; Liu et al., 2018; Sermanet et al., 2018), but
we also are capable of imitating experts with different em-
bodiments (Gupta et al., 2017; Rizzolatti & Craighero,
2004; Liu et al., 2020) in foreign environments (Liu et al.,
2020) - e.g an infant is able to imitate visuomotor skills by
watching adults with different biomechanics (Jones, 2009)
acting in environments distinct from their playroom. Previ-
ous work in neuroscience (Marshall & Meltzoff, 2015) and
robotics (Kuniyoshi & Inoue, 1993; Kuniyoshi et al., 1994)
have recognized the pitfalls of exact behavioral cloning in
the presence of domain discrepancies and posited that the
effectiveness of the human imitation learning mechanism
hinges on the ability to learn structure preserving domain
correspondences. These correspondences enable the learner
to internalize cross domain demonstrations and produce a
reconstruction of the behavior in the self domain. Consider
a young child that has learned to associate (or "align") his
internal body map with the limbs of an adult. When the
adult demonstrates running, the child is able internalize the
demonstration, and reproduce the behavior.

Recently, separate solutions have been proposed for imi-
tation learning across three main types of domain discrep-
ancies: dynamics (Liu et al., 2020), embodiment (Gupta
et al., 2017), and viewpoint (Liu et al., 2018; Sermanet et al.,
2018) mismatch. Most works (Liu et al., 2018; Sermanet
et al., 2018; Gupta et al., 2017) require paired, time-aligned

demonstrations to obtain state correspondences and an RL
step involving environment interactions. (see Figure 1a)
Unfortunately, paired, aligned demonstrations are seldom
obtainable and RL procedures are expensive.

In this work we formalize the Domain Adaptive Imitation
Learning (DAIL) problem - a unified framework for imita-
tion learning across domains with dynamics, embodiment,
and/or viewpoint mismatch. Informally, DAIL is the pro-

cess of learning how to perform a task optimally in a self

domain, given demonstrations of the task in a distinct ex-

pert domain. We propose a two-step approach to DAIL:
alignment followed by adaptation. In the alignment step
we execute a novel unsupervised MDP alignment algorithm,
Generative Adversarial MDP Alignment (GAMA), to learn
state, action maps from unpaired, unaligned demonstra-
tions. In the adaptation step we leverage the learned state,
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Figure 1. DAIL Pipeline. (a). Inputs: Illustration of paired, aligned vs unpaired, unaligned demonstrations in the alignment task set
Dx,y containing tasks T1, T2, ... (b). Alignment phase: we learn state, action maps f, g between the self (x) and expert (y) domain
from unpaired, unaligned demonstrations by minimizing a distribution matching loss and an imitation loss on a composite policy ⇡̂x (c)
Adaptation phase: adapt the expert domain policy ⇡y,T or demonstrations to obtain a self domain policy ⇡̂x,T

action maps to zero-shot imitate tasks across domains with-
out an extra RL step. To shed light on when DAIL can be
solved by alignment and adaptation, we introduce a the-
ory of MDP alignability. We conduct experiments with a
variety of domains that have dynamics, embodiment, and
viewpoint mismatch and demonstrate significant gains on
learning from unpaired data. The primary contributions of
this work are as follows:

1. We propose an unsupervised MDP alignment algorithm
that succeeds at DAIL from unpaired, unaligned demonstra-

tions removing the need for costly paired, aligned data.

2. We achieve zero-shot imitation, thereby removing a
costly RL procedure involving environment interactions.

3. We propose a unifying theoretical framework for imita-
tion learning across domains with dynamics, embodiment,
and/or viewpoint mismatch.

2. Domain Adaptive Imitation Learning
An infinite horizon Markov Decision Process (MDP) M 2
⌦ with deterministic dynamics is a tuple (S,A, P, ⌘, R)
where ⌦ is the set of all MDPs, S is the state space, A
is the action space, P : S ⇥ A ! S is a (deterministic)
transition function, R : S ⇥A ! R is the reward function,
and ⌘ is the initial state distribution. A domain is an MDP
without the reward, i.e (S,A, P, ⌘). Intuitively, a domain
fully characterizes the embodied agent and the environment
dynamics, but not the desired behavior. A task T is a la-
bel for an MDP corresponding to the high level description
of optimal behavior, such as "walking". T is analogous
to category labels for images. An MDP with domain x
for task T is denoted by Mx,T = (Sx,Ax, Px, ⌘x, Rx,T ),
where Rx,T is a reward function encapsulating the behav-
ior labeled by T . For example, different reward functions
are needed to realize the "walking" behavior in two mor-
phologically different humanoids. A (stationary) policy for
Mx,T is a map ⇡x,T : Sx ! B(Ax) where B is the set of
probability measures on Ax and an optimal policy ⇡⇤

x,T =

argmax
⇡x

J(⇡x) achieves the highest policy performance
J(⇡x) = E⇡x [

P1
t=0 �

tRx,T (s
(t)
x , a(t)x )] where 0 < � < 1

is a discount factor. A demonstration ⌧Mx,T of length H
for an MDP Mx,T is a sequence of state, action tuples
⌧Mx,T = {(s(t)x , a(t)x )}H

t=1 and DMx,T = {⌧ (k)Mx,T
}K
k=1 is

a set of demonstrations.

Let Mx,T ,My,T be self and expert MDPs for a target task
T . Given expert domain demonstrations DMy,T

, Domain
Adaptive Imitation Learning (DAIL) aims to determine an
optimal self domain policy ⇡⇤

x,T without access to the re-
ward function Rx,T . In this work we propose to first solve
an MDP alignment problem and then leverage the align-
ments to zero-shot imitate expert domain demonstrations.
Like prior work (Gupta et al., 2017; Liu et al., 2018; Ser-
manet et al., 2018), we assume the availability of an align-
ment task set Dx,y = {(DMx,Ti

,DMy,Ti
)}N

i=1 containing
demonstrations for N tasks {Ti}Ni=1 from both the self and
expert domain. Dx,y could, for example, contain both robot
(x) and human (y) demonstrations for a set primitive tasks
such as walking, running, and jumping. Unlike prior work,
demonstrations are unpaired and unaligned, i.e (s(t)x , s(t)y )
may not be a valid state correspondence (see Figure 1(a)).
Paired, time-aligned cross domain data is expensive and may
not even exist when task execution rates differ or there ex-
ists systematic embodiment mismatch between the domains.
For example, a child can imitate an adult running, but not
achieve the same speed. Our set up emulates a natural set-
ting in which humans compare how they perform tasks to
how other agents perform the same tasks in order to find
structural similarities and identify domain correspondences.
We now proceed to introduce a theoretical framework that
explains how and when the DAIL problem can be solved by
MDP alignment followed by adaptation.

3. Alignable MDPs
Let ⇧⇤

M be the set of all optimal policies for MDP M.
We define an occupancy measure (Syed et al., 2008) q⇡ :



Domain Adaptive Imitation Learning

S⇥A ! R for policy ⇡ executed in MDP M as q⇡(s, a) =
⇡(a|s)

P1
t=0 �

t Pr(s(t) = s;⇡,M). We further define the
optimality function OMx : Sx ⇥ Ax ! {0, 1} for an
MDP Mx as OMx(sx, ax) = 1 if 9⇡⇤

x
2 ⇧⇤

Mx
such that

(sx, ax) 2 supp(q⇡⇤
x
) and OMx(sx, ax) = 0 otherwise.

We are now ready to formalize MDP reductions: a class of
structure preserving maps between MDPS.

Definition 1. An MDP reduction from Mx =
(Sx,Ax, Px, ⌘x, Rx) to My = (Sy,Ay, Py, ⌘y, Ry) is a

tuple r = (�, ) where � : Sx ! Sy, : Ax ! Ay are

maps that preserve:

1. (⇡-optimality) 8(sx,ax,sy,ay) 2 Sx⇥Ax⇥Sy ⇥Ay :

OMy (�(sx), (ax)) = 1 ) OMx(sx,ax) = 1 (1)

OMy (sy,ay) = 1 ) ��1(sy) 6= ;, �1(ay) 6= ; (2)

2. (dynamics) 8(sx,ax,sy,ay) 2 Sx⇥Ax⇥Sy⇥Ay such

that OMy (sy,ay) = 1,sx 2 ��1(sy),ax 2  �1(ay) :

Py(sy,ay) = �(Px(sx,ax)) (3)

where we define ��1(sy) = {sx|�(sx) = sy},  �1(ay) =
{ax| (ax) = ay}. Furthermore, r is an MDP permutation
if and only if �, are bijective.

In words, Eq. 1 states that only optimal state, action pairs in
x can be mapped to optimal state, action pairs in y and Eq.
2 states that r must be surjective on the set of optimal state,
action pairs in y. These properties imply that a policy in
Mx should have more flexibility choosing optimal actions
than one in My . Eq. 3 states that a reduction must preserve
(deterministic) dynamics. We use the notation Mx ��, 
My to denote that (�, ) is a reduction from Mx to My,
and the shorthand Mx � My to denote that Mx reduces to
My . To gain an intuitive understanding of MDP reductions,
picture the execution trace of an optimal policy as a directed
graph with colored edges in which the nodes correspond to
states visited by an optimal policy, and the colored edges
correspond to actions taken. An MDP reduction from Mx to
My homomorphs the execution graph of an optimal policy
in Mx to a execution graph of an optimal policy in My.
Figure 2 shows an example of a valid reduction from Mx

to My: states 1, 2 in Sx are mapped (merged) to state a in
Sy and the blue, red actions in Ax are mapped to the green
action in Ay. Intuitively, if Mx ��, My, then (�, )
compresses Mx by merging all optimal state, action pairs
that have identical dynamics properties.

Definition 2. Two MDPs Mx,My are alignable if and

only if Mx � My or My � Mx.

Definition 2 states that MDPs are alignable if reductions
exists between them, meaning that they share structure. We
use �(Mx,My) = {(�, )|Mx ��, My} to denote the

�
1

2 3 4

5

a b c

d

a

b c

d

Figure 2. MDP Reduction Example between execution traces in
Mx (Left) and My (Right), where Mx � My . States correspond
to nodes and actions to colors. The shown reduction merges nodes
in dotted boxes to their corner label, e.g �(1) = �(2) = a, and
both blue, red actions in Mx to the green action in My .

set of all valid reductions from Mx to My. Reductions
have a particularly useful property which is that they adapt
policies across alignable MDPs. Consider a state map f :
Sx ! Sy, an inverse action map g : Ay ! Ax, and a
composite policy ⇡̂x = g � ⇡y � f (see Figure 1(b)). In
words, ⇡̂x maps a self state to an expert state via f , simulates
the expert’s action choice for the mapped state via ⇡y , then
chooses a self action that corresponds to the simulated expert
action with g. The following lemma holds for ⇡̂x.
Theorem 1. Let Mx,My be MDPs satisfying Assumption

1 (see Appendix F), Mx ��, My, and ⇡y be optimal in

My. Then, 8g : Ay ! Ax s.t  � g(ay) = ay 8ay 2
{ay|9sy 2 Sy s.t OMy (sy, ay) = 1}, it holds that ⇡̂x =
g � ⇡y � � is optimal in Mx.

Theorem 1 states that the state, action maps (f, g�1) cho-
sen to be a reduction can adapt optimal policies between
alignable MDPs. Here onwards we interchangeably refer
to (f, g) as "alignments". We now show how the DAIL
problem can be solved by first solving an MDP alignment
problem followed by an adaptation step.
Definition 3. Let (Mx,My), (Mx

0,My
0) 2 ⌦2

be two

MDP pairs. Then, (Mx,My) ⇠ (Mx
0,My

0), i.e they are

joint alignable, if �(Mx,My) \ �(Mx
0,My

0) 6= ;.

In words, two MDP pairs are joint alignable if there
exists a shared reduction. We define an equivalence
class [(Mx,My)]⇠ = {(Mx

0,My
0) | (Mx

0,My
0) ⇠

(Mx,My)} of MDP pairs that share reductions. Overload-
ing notation, �({(Mx

i,My
i)}N

i=1) = {(�, ) | (�, ) 2
�(Mx

1,Mx
1)\· · ·\�(Mx

N ,Mx
N )}. We now formally

state the MDP alignment problem: Let (Mx,T ,My,T )
be an MDP pair for a target task T . Given an align-
ment task set Dx,y = {(DMx,Ti

,DMy,Ti
)}N

i=1 compris-
ing unpaired, unaligned demonstrations for MDP pairs
{(Mx,Ti

,My,Ti
)}N

i=1 ✓ [(Mx,T ,My,T )]⇠, determine
(�, ) 2 �({(Mx,Ti

,My,Ti
)}N

i=1) such that (�, ) 2
�(Mx,T ,My,T ). As shown in Figure 3, with more MDP
pairs, there are likely a smaller the number of joint align-
ments |�({(Mx,Ti

,My,Ti
)}N

i=1)| and, as a result, (�, ) 2
�({(Mx,Ti

,My,Ti
)}N

i=1) is more likely to "generalize" to
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Figure 3. MDP Alignment Problem. Blue/red, and green regions
denote sets of MDP alignments for two alignment tasks and the
target task, respectively. White hatches cover the solution set to
the MDP alignment problem which is the intersection of all sets

an MDP pair for a new target task (Mx,T ,My,T ) in the
equivalence class. Analogously, in a standard supervised
learning problem, more training data is likely to shrink the
set of models performing optimally on the training set but
poorly on the test set. We can then use (�, ) for DAIL:
given cross domain demonstrations DMy,T

for the target
task T , learn an expert domain policy ⇡y,T , and adapt it
into the self domain using (�, ) according to Theorem 1.

We can now assess when domains with embodiment and
viewpoint mismatch have meaningful state correspondences,
i.e MDP reductions, thus allowing for domain adaptive im-
itation. The states of a human expert with more degrees
of freedom than a robot imitator can be merged into the
robot states if the task only requires the robot’s degrees of
freedom and the execution traces share structure, e.g traces
are both cycles. However, if the task requires all degrees
of freedom possessed only by the human, the robot cannot
find meaningful correspondences, and also cannot imitate
the task. Two MDPs for different viewpoints of an agent
performing a task are MDP permutations since there is a
one-to-one correspondence between state, actions at same
timestep in the execution trace of an optimal policy.

4. Learning MDP Reductions
We now derive objectives that can be optimized to learn
MDP reductions. We propose distribution matching and
policy performance maximization. We first define the distri-
butions to be matched.

Definition 4. Let Mx, My be two MDPs and ⇡̂x = g �
⇡y � f for f : Sx ! Sy, g : Ay ! Ax and policy ⇡y. The

co-domain policy execution process P⇡̂x = {ŝ(t)y , â(t)y }t�0

is realized by running ⇡̂x in Mx, i.e:

s(0)
x

⇠ ⌘x, ŝ(t)
y

= f(s(t)
x
), â(t)

y
⇠ ⇡y(·|ŝ(t)y

),

a(t)
x

= g(â(t)
y
), s(t+1)

x
= Px(s

(t)
x
, a(t)

x
) 8t � 0 (4)

The target distribution �y

⇡y
is over transitions uniformly

sampled from execution traces of ⇡y in My and the proxy
distribution �x!y

⇡̂x
is over cross domain transitions uniformly

sampled from realizations of P⇡̂x , i.e running ⇡̂x in Mx.

�y

⇡y
(sy, ay, s

0
y
):=

lim
T!1

1

T

TP
t=0

Pr(s(t)y =sy, a
(t)
y =ay, s

(t+1)
y =s0

y
;⇡y) (5)

�x!y

⇡̂x
(sy, ay, s

0
y
):=

lim
T!1

1

T

TP
t=0

Pr(ŝ(t)y =sy, â
(t)
y =ay, ŝ

(t+1)
y =s0

y
;P⇡̂x) (6)

We now propose two concrete objectives to optimize for:
1. optimality of ⇡̂x, 2. �x!y

⇡̂x
= �y

⇡y
. In other words, we

seek to learn f, g that matches distributions over transition
tuples in domain y while maximizing policy performance in
domain x. The former captures the dynamics preservation
property from Eq. 3 and the latter captures the optimal
policy preservation property from Eq. 1, 2. The following
theorem uncovers the connection between our objectives
and MDP reductions.
Theorem 2. Let Mx,My be MDPs satisfying Assumption

1 (see Supp Materials). If Mx � My, then 9f : Sx !
Sy, g : Ay ! Ax, and an optimal covering policy ⇡y (see

Appendix F) that satisfy objectives 1 and 2. Conversely, if

9f : Sx ! Sy, an injective map g : Ay ! Ax and an

optimal covering policy ⇡y satisfying objectives 1 and 2,

then Mx � My and 9(�, ) 2 �(Mx,My) s.t f = �
and  � g(ay) = ay, 8ay 2 Ay .

Theorem 2 states that if two MDP are alignable, then objec-
tives 1 and 2 can be satisfied. Conversely, if 1 and 2 can be
satisfied for two MDPs with state map f and an injective
action map g, then the MDPs must be alignable and all solu-
tions (f, g) are reductions. While Theorem 2 requires that
MDPs be alignable to guarantee identifiability of solutions
obtained via optimizing for objectives 1 and 2, our experi-
ments will also run on MDPs that are "weakly" alignable,
i.e. Eq. 1, 2, 3 do not hold exactly, but intuitively share
structure. In the next section, we derive a simple algorithm
to learn MDP reductions.

5. Generative Adversarial MDP Alignment
Building on Theorem 2, we propose the following training
objective for aligning MDPs:

min
f,g

�J(⇡̂x) + �d(�x!y

⇡̂x
,�y

⇡y
) (7)

where J(⇡̂x) is the performance of ⇡̂x, d is a distance met-
ric between distributions, and � > 0 is a Lagrange multi-
plier. In practice, we found that injectivity of g is unnec-
essary to enforce in continuous domains. We now present
an instantiation of this framework: Generative Adversar-
ial MDP Alignment (GAMA). Recall that we are given an
alignment task set Dx,y = {(DMx,Ti

,DMy,Ti
)}N

i=1. In
the alignment step, we learn ⇡⇤

y,Ti
, 8Ti and parameterized
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state, action maps f✓f : Sx ! Sy, g✓g : Ay ! Ax that
compose ⇡̂x,Ti = g✓g � ⇡⇤

y,Ti
� f✓f . To match �x!y

⇡̂x
,�y

⇡y
,

we employ adversarial training (Goodfellow et al., 2014) in
which separate discriminators D✓

i
D

per task are trained to
distinguish between "real" transitions (sy, ay, s0y) ⇠ ⇡⇤

y,Ti

and "fake" transitions (ŝy, ây, ŝ0y) ⇠ ⇡̂x,Ti , where ŝy =
f✓f (sx), ây = ⇡y(ŝy), ŝ0y = f✓f (P

x

✓P
(sx, g(ây))), and P x

✓P

is a fitted model of the x domain dynamics. (see Figure 1(b))
The generator, consisting of f✓f , g✓g , is trained to fool the
discriminator while maximizing policy performance. The
distribution matching gradients are back propagated through
the learned dynamics, ⇡⇤

y,Ti
is learned by Imitation Learning

(IL) on DMy,Ti
, and the policy performance objective on

⇡̂x,Ti is achieved by IL on DMx,Ti
. In this work, we use

behavioral cloning (Pomerleau, 1991) for IL. We aim to find
a saddle point {f, g}[{D✓

i
D
}N
i=1 of the following objective:

min
f,g

max
{D✓i

D
}

NP
i=1

�
Esx⇠⇡⇤

x,Ti
[DKL(⇡

⇤
x,Ti

(·|sx)||⇡̂x,Ti(·|sx))]

+ �(E⇡⇤
y,Ti

[logD✓
i
D
(sy, ay, s

0
y
)]

+ E⇡⇤
x,Ti

[log(1�D✓
i
D
(ŝy, ây, ŝ

0
y
))]

�
(8)

where DKL is the KL-divergence. We provide the execution
flow of GAMA in Algorithm 1. In the adaptation step, we
are given expert demonstrations DMy,T

of a new target task
T , from which we fit an expert domain policy ⇡y,T which
are composed with the learned alignments to construct an
adapted self policy ⇡̂x,T = g✓g � ⇡y,T � f✓f . We also exper-
iment with a demonstration adaptation method which addi-
tionally trains an inverse state map f�1 : Sy ! Sx, adapts
demonstrations DMy,T

into the self domain via f�1, g, and
applies behavioral cloning on the adapted demonstrations.
(see Figure 1(c)) Notably, our entire procedure does not
require paired, aligned demonstrations nor an RL step.

Related Works: Closely related to DAIL, the field of cross
domain transfer learning in the context of RL has explored

approaches to use state maps to exploit cross domain demon-
strations in a pretraining procedure for a new target task for
which self domain reward function is available. Canonical
Correlation Analysis (CCA) (Hotelling, 1936) finds invert-
ible projections into a basis in which data from different
domains are maximally correlated. These projections can
then be composed to obtain a direct correspondence map
between states. (Ammar et al., 2015; Joshi & Chowdhary,
2018) have utilized an unsupervised manifold alignment
(UMA) algorithm which finds a linear map between states
with similar local geometric properties. UMA assumes the
existence of hand crafted features along with a distance met-
ric between them. This family of work commonly uses a
linear statemap to define a time-step wise transfer reward
and executes an RL step on the new task. Similar to our
work, these works use an alignment task set of unpaired, un-
aligned trajectories to compute the state map. Unlike these
works, we learn maps that preserve MDP structure, use deep
neural network state, action maps, and achieve zero-shot
transfer to the new task without an RL step. More recent
work in transfer learning across embodiment (Gupta et al.,
2017) and viewpoint (Liu et al., 2018; Sermanet et al., 2018)
mismatch obtain state correspondences from an alignment
task set comprising paired, time-aligned demonstrations
and use them to learn a state map or a state encoder to a
domain invariant feature space. In contrast to this family
of prior work, our approach learns both state, action maps
from unpaired, unaligned demonstrations. Also, we remove
the need for additional environment interactions and an ex-
pensive RL procedure on the target task by leveraging the
action map for zero-shot imitation. (Stadie et al., 2017) have
shown promise in using domain confusion loss and gener-
ative adversarial imitation learning (Ho & Ermon, 2016)
for learning across small viewpoint mismatch without an
alignment task set, but fails in dealing with large viewpoint
differences. Unlike (Stadie et al., 2017), we leverage the
alignment task set to succeed in imitating across larger view-

Algorithm 1 Generative Adversarial MDP Alignment (GAMA)
input: Alignment task set Dx,y = {(DMx,Ti

,DMy,Ti
)}N

i=1 of unpaired trajectories, fitted ⇡⇤
y,Ti

while not done do:
for i = 1, ..., N do:
Sample (sx, ax, s0x) ⇠ DMx,Ti

, (sy, ay, s0y) ⇠ DMy,Ti
and store in buffer Bi

x
,Bi

y

for j = 1, ...,M do:
Sample mini-batch j from Bi

x
,Bi

y

Update dynamics model with: �Ê⇡⇤
x,Ti

[r✓P (P
x

✓P
(sx, ax)� s0

x
)2]

Update discriminator: Ê⇡⇤
y,Ti

[r✓
i
D
logD✓

i
D
(sy, ay, s0y)] + Ê⇡⇤

x,Ti
[r✓

i
D
log

�
1�D✓

i
D
(ŝy, ây, ŝ0y)

�
]

Update alignments (f✓f , g✓g ) with gradients:

�Ê⇡⇤
x,Ti

[r✓f logD✓D (ŝy, ây, ŝ
0
y
)] + Ê⇡⇤

x,Ti
[r✓f (⇡̂x,Ti(sx)� ax)

2]

�Ê⇡⇤
x,Ti

[r✓g logD✓D (ŝy, ây, ŝ
0
y
)] + Ê⇡⇤

x,Ti
[r✓g (⇡̂x,Ti(sx)� ax)

2]
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Figure 4. MDP Alignment Visualization. The state maps learned by GAMA and two representative baselines - CCA and IF - are shown
for pen$pen (Top Left), pen$cart (Top Right), snake4$snake3 (Bottom Left), reach2$reach3 (Bottom Right). See Appendix E to see
more baselines. GAMA is able to recover MDP permutations for alignable pairs pen$pen, pen$cart and find meanigful correspondences
between "weakly alignable" pairs snake4$snake3, reach2$reach3. See https://youtu.be/l0tc1JCN_1M for videos

Table 1. MDP Alignment Performance. Mean `2 loss between the learned state map predictions and the ground truth permutation. On
average, GAMA has 17.3⇥ lower loss than the best baseline. Results are averaged across 5 seeds.

GAMA (OURS) CCA UMA IF IFO RANDOM

PEN $ PEN 0.057 ± 0.017 0.72± 0.25 >100 2.50± 1.08 2.24± 0.82 >100
PEN $ CART 0.178 ± 0.051 3.92± 3.77 >100 1.62± 0.52 3.31± 1.2 >100

REACH2$REACH2-TP 0.092 ± 0.043 10.14± 5.31 >100 12.41± 3.12 5.12± 2.41 >100

point mismatch and do not require an RL procedure. Some
recent works (Liu et al., 2020) have proposed matching
only state occupancy measures for imitation across dynam-
ics mismatch. We compare our method to an appropriate
distillation of such methods. MDP homomorphisms (Ravin-
dran & Barto, 2002) have been explored with the aim of
compressing state, action spaces to facilitate planning. In
similar vein, related works have proposed MDP similarity
metrics based on bisimulation methods (Ferns et al., 2004)
and Boltzmann machine reconstruction error (Ammar et al.,
2014). While conceptually related to our MDP alignability
theory, these works have not proposed scalable procedures
to discover the homomorphisms and have not drawn con-
nections to domain adaptive learning.

6. Experiments
Our experiments were designed to answer the following
questions: (1). Can GAMA uncover MDP reductions? (2).
Can the learned alignments (f✓f , g✓g ) be leveraged to suc-
ceed at DAIL? We propose two metrics to measure DAIL
performance. First, alignment complexity which is the num-
ber of MDP pairs, i.e number of tasks, in the alignment
task set needed to learn alignments that enable zero-shot
imitation, given ample cross domain demonstrations for
the target tasks. Second, adaptation complexity which is
the amount of cross domain demonstrations for the target
tasks needed to successfully imitate tasks in the self domain
without querying the target task reward function, given a
sufficiently large alignment task set. Note that we include
experiments with MDP pairs that are not perfectly alignable,

%20https://youtu.be/l0tc1JCN_1M
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Figure 5. Adaptation Complexity. Notably, adaptation complexity of GAMA is close to that of the Self-demo baseline. Baselines fail at
DAIL, mostly due to failing the alignment step. Results are averaged across 5 runs.

yet intuitively share structure, to show general applicability
of GAMA for DAIL. We experiment with environments
which are extensions of OpenAI Gym (Brockman et al.,
2016): pen, cart, reacher2, reacher3, reach2-tp, snake3, and
snake4 denotes the pendulum, cartpole, 2-link reacher, 3-
link reacher, third person 2-link reacher, 3-link snake, and
4-link snake environments, respectively. (self domain) $
(expert domain) specify an MDP pair in the alignment task
set. Model architectures and environment details are further
described Appendix B, C, D. We study two ablations of
GAMA and compare against the following baselines:

GAMA - Policy Adapt (GAMA-PA): learns alignments
by Algorithm 1, fits an expert policy ⇡y,T to DMy,T

for
a new target task T and zero-shot adapts ⇡y,T to the self
domain via ⇡̂x,T = g✓g � ⇡y,T � f✓f .

GAMA - Demonstration Adapt (GAMA-DA): trains f�1

in addition to Algorithm 1, adapts DMy,T
into the self

domain via (f�1, g), and fits a self domain policy on the
adapted demonstrations.

Self Demonstrations (Self-Demo): We behavioral clone
on self domain demonstrations of the target task. This base-
line sets an "upper bound" for the adaptation complexity.

Canonical Correlation Analysis (CCA) (Hotelling,
1936): finds invertible linear transformations to a space
where domain data are maximally correlated when given
unpaired, unaligned demonstrations.

Unsupervised Manifold Alignment (UMA) (Ammar
et al., 2015): finds a map between states that have similar
local geometries from unpaired, unaligned demonstrations.

Invariant Features (IF) (Gupta et al., 2017): finds invert-
ible maps onto a feature space given state pairings. Dynamic
Time Warping (Muller, 2007) is used to obtain the pairings.

Imitation from Observation (IfO) (Liu et al., 2018):
learns a statemap conditioned on a cross domain observation
given state pairings. Dynamic Time Warping (Muller, 2007)
is used to obtain the pairings.

Third Person Imitation Learning (TPIL) (Stadie et al.,
2017): simultaneously learns a domain agnostic feature
space while matching distributions in the feature space.

State-Alignment Imitation Learning (Liu et al., 2020):

Distribution matching imitation learning with a state occu-
pancy matching objective.

6.1. MDP Alignment Evaluation

Figure 4 visualizes the learned state map f✓f for several
MDP pairs. The pen $ pen alignment task (Figure 4, Top
Left) and reach$reach-tp (Table 1) task exemplify MDP
pairs that are permutations. Similarly, the pen $ cart align-
ment task (Figure 4, Top Right) has a reduction that maps
the pendulum’s angle and angular velocity to those of the
pole, as the cart’s position and velocity are redundant state
dimensions once an optimal policy has been learned. Re-
fer to Figure 7 in the Appendix for an explanation of poor
UMA performance. Table 1 presents quantitative evalua-
tions of these simple alignment maps. For pen$pen and
reach2$reach2-tp we record the average `2 loss between
the learned statemap prediction and the ground truth permu-
tation. As for pen$cart, we do the same on the dimensions
for the pole’s angle and angular velocity. Both Figure 4 and
Table 1 shows that GAMA is able to learn simple reduc-
tions while baselines mostly fail to do so. The key reason
behind this performance gap is that many baselines (Gupta
et al., 2017; Liu et al., 2018) obtain state maps from time-
aligned demonstration data using Dynamic Time Warping
(DTW). However, the considered alignment tasks contains
unaligned demonstrations with diverse starting states, up to
2x differences in demonstration lengths, and varying task
execution rates. We see that GAMA also outperforms base-
lines that learn from unaligned demonstrations (Hotelling,
1936; Ammar et al., 2015) by learning maps that preserve
MDP structure with more flexible neural network function
approximators. For snake4 $ snake3 and reach2 $ reach3,
the MDPs may not be perfectly alignable, yet they intu-
itively share structure. From Figure 4 (Bottom Left) we see
that GAMA identically matches two adjacent joint angles of
snake4 to the two joint angles of snake3 and the periodicity
of the snake’s wiggle is preserved. On reacher2$reacher3,
GAMA learns a state map that matches the first joint angles
and states that have similar extents of contraction.

6.2. DAIL Performance

We evaluate DAIL performance on six problems that span
embodiment, viewpoint, and dynamics mismatch scenarios.
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D-R2P D-R2R E-R2P E-R2R V-R2R V-R2W

Figure 6. Alignment Complexity. Baselines cannot perform zero-shot imitation. Pretrain baseline shows the zero-shot performance of a
policy directly pretrained on the self domain alignment tasks, when possible. Results are averaged across 5 runs.

See Appendix D for further details on each problem.

Dynamics-Reach2Reach (D-R2R): Self domain is reach2
and expert domain is reach2 with isotropic gaussian noise
injected into the dynamics. We use the robot’s joint level
state-action space. The N alignment tasks are reaching for
N goals and the target tasks are reaching for 12 new goals,
placed maximally far away from the alignment task goals.

Dynamics-Reach2Push (D-R2P): Same as D-R2R except
the target task is pushing a block to a goal location.

Embodiment-Reach2Reach (E-R2R): Self domain is
reach2 and expert is reach3. Rest is the same as D-R2R.

Embodiment-Reach2Push (E-R2P): Self domain is
reach2 and expert is reach3. Rest is the same as D-R2P.

Viewpoint-Reach2Reach (V-R2R): Self domain is reach2
and expert domain is reach2-tp1 that has the same "third
person" view state space as that in (Stadie et al., 2017) with a
30� planar offset. We use the robot’s joint level state-action
space. The alignment/target tasks are the same as D-R2R.

Viewpoint-Reach2Write (V-R2W): Self domain is reach2
and expert domain is reach2-tp2 that has a different "third
person" view state space with a 180� axial offset. We use
the robot’s joint level state-action space. The N alignment
tasks are reaching for N goals and the target task is tracing
letters as fast as possible. The transfer task differs from the
alignment tasks in two key aspects: the end effector must
draw a straight line from a letter’s vertex to vertex and not
slow down at the vertices in order to trace.

Alignment complexity on the six problems is shown in Fig-
ure 6. GAMA (light blue) is able to learn alignments that
enable zero-shot imitation on the target task, showing clear
gains over a simple pretraining procedure (orange) on the
self domain MDPs in the alignment task set. Other baselines
require an additional expensive RL step and thus cannot
zero-shot imitate. Figure 5 shows the adaptation complexity.
Notably, GAMA (light blue) produces adapted demonstra-
tions of similar usefulness as self demonstrations (olive
green). Most baselines fail to learn alignments from un-
paired, unaligned demonstrations and as a result fails at
DAIL. TPIL succeeds at V-R2R, but fails at V-R2W which
has a significantly larger viewpoint mismatch than V-R2R.

SAIL outperforms GAMA and even the self-Demo baseline,
but it’s important to note that SAIL uses the self domain
environment simulator unlike GAMA and Self-Demo.

6.3. DAIL with Visual Inputs

The non-visual environment experiments in the previous
section demonstrate the limitations of the time-alignment
assumptions made in prior work without confounding
variables such as the difficulty of optimization in high-
dimensional spaces. In this section, we introduce two more
variants of our method, GAMA-PA-vis and GAMA-DA-vis,
which demonstrate that GAMA scales to higher dimensional,

visual environments with 64⇥ 64⇥ 3 image states. Specif-
ically, we train a deep spatial autoencoder on the align-
ment task set to learn an encoder with the architecture from
(Levine et al., 2016), then apply GAMA on the (learned)
latent space. Results are shown in Figure 6, 5. We see that
the alignment and adaptation complexity of GAMA-PA-
vis (dark-blue, solid), GAMA-DA-vis (dark-blue, dotted)
are both similar to that of GAMA-DA (light blue, solid),
GAMA-PA (light blue, dotted) and better than baselines
trained with the robot’s joint-level representation.

7. Discussion and future work
We’ve formalized Domain Adaptive Imitation Learning
which encompasses prior work in transfer learning across
embodiment (Gupta et al., 2017) and viewpoint differences
(Stadie et al., 2017; Liu et al., 2018) along with a practical al-
gorithm that can be applied to both scenarios. We now point
out directions future work. Our MDP alignability theory is
a first step towards formalizing possible shared structures
that enable cross domain imitation. While we’ve shown that
GAMA empirically works well even when MDPs are not
perfectly alignable, upcoming works may explore relaxing
the conditions for MDP alignability to develop a theory that
covers an even wider range of real world MDPs. Future
works may also try applying GAMA in the imitation from
observations scenario, i.e actions are not available, by align-
ing observations with GAMA and applying methods from
(Sermanet et al., 2018; Liu et al., 2018). Finally, we hope
to see future works develop principled ways design a mini-
mal alignment task set, which is analogous to designing a
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minimal training set for supervised learning.
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