Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Jang-Hyun Kim ' > Wonho Choo '2 Hyun Oh Song ! ?

Abstract

While deep neural networks achieve great per-
formance on fitting the training distribution, the
learned networks are prone to overfitting and
are susceptible to adversarial attacks. In this
regard, a number of mixup based augmentation
methods have been recently proposed. However,
these approaches mainly focus on creating pre-
viously unseen virtual examples and can some-
times provide misleading supervisory signal to
the network. To this end, we propose Puzzle
Mix, a mixup method for explicitly utilizing the
saliency information and the underlying statis-
tics of the natural examples. This leads to an
interesting optimization problem alternating be-
tween the multi-label objective for optimal mix-
ing mask and saliency discounted optimal trans-
port objective. Our experiments show Puzzle
Mix achieves the state of the art generalization
and the adversarial robustness results compared
to other mixup methods on CIFAR-100, Tiny-
ImageNet, and ImageNet datasets, and the source
code is available at https://github.com/
snu-mllab/PuzzleMix.

1. Introduction

Deep neural network models are the bedrock of modern Al
tasks such as object recognition, speech, natural language
processing, and reinforcement learning. However, these
models are known to memorize the training data and make
overconfident predictions often resulting in degraded gen-
eralization performance on test examples (Srivastava et al.,
2014; Zhang et al., 2016). Furthermore, the problem is exac-
erbated when the models are evaluated on examples under
slight distribution shift (Ben-David et al., 2010).

To this end, data augmentation approaches aim to alleviate

'Department of Computer Science and Engineering, Seoul
National University, Seoul, Korea ?Neural Processing Research
Center. Correspondence to: Hyun Oh Song <hyunoh@snu.ac.kr>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Inputl Input Mixup Puzzle Mix (z only)

ﬁ

Figure 1. A visual comparison of the mixup methods. Puzzle Mix
ensures to contain sufficient saliency information while preserving
the local statistics of each input.

some of these issues by improving the model generalization
performance (He et al., 2015; DeVries & Taylor, 2017).
Recently, a line of research called mixup has been proposed.
These methods mainly focus on creating previously unseen
virtual mixup examples via convex combination or local
replacement of data for training (Zhang et al., 2018; Verma
etal.,, 2019; Yun et al., 2019; Guo et al., 2019).

However, the underlying data domains contain rich re-
gional saliency information (i.e. foreground objects in vi-
sion, prominent syllables in speech, informative textual units
in language) (Simonyan et al., 2013; Kalinli & Narayanan,
2007; Erkan & Radev, 2004) and exhibit local regularity
structure far from random matrices of numbers (Huang &
Mumford, 1999; Zhang et al., 2017; Smith, 2003). Thus,
completely disregarding these aspects of data could lead to
creating mixup examples which could misguide the training
model and undermine the generalization performance.

Motivated by this intuition, we propose Puzzle Mix, a mixup
method for explicitly leveraging the saliency information
and the underlying local statistics of natural examples. Our
proposed method jointly seek to find (1) the optimal mask
for deciding how much of the two inputs to reveal versus
conceal in the given region and for (2) the transport for
finding the optimal moves in order to maximize the exposed
saliency under the mask. The optimization process is remi-

https://github.com/snu-mllab/PuzzleMix
https://github.com/snu-mllab/PuzzleMix

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

niscent of the sliding block puzzle and thus the name Puzzle
Mix. Additionally, we impose the objective to respect the
various underlying local statistics encouraging the optimiza-
tion to preserve the structural integrity of each data. The
proposed method alternates between finding the optimal
mask and optimizing the transport plans, and efficiently
generates the mixup examples in a mini-batch stochastic
gradient descent setting.

Furthermore, our method allows us to incorporate adversar-
ial training without any computation overhead. Adversarial
training is a method for training a robust model resistant
to adversarial attacks via optimization (Madry et al., 2017).
We adapt the fast adversarial training method from Wong
et al. (2020) and stochastically include the adversarially
perturbed examples with random restarts for robustness.

Our results on CIFAR-100, Tiny-ImageNet, and ImageNet
datasets show significant improvement both in the general-
ization task and in the adversarial robustness over existing
mixup methods by a large margin.

2. Related Works

Data augmentation Methods that implement data aug-
mentation aim to regularize the models from overfitting
to the training distribution and improve the generalization
performance by generating virtual training examples in the
vicinity of the given training dataset (Bishop, 2006). Some
of the most commonly used data augmentation techniques
are random cropping, horizontal flipping (Krizhevsky et al.,
2012), and adding random noise (Bishop, 1995). Recently,
a data augmentation method called AugMix is proposed to
improve both the generalization performance and the cor-
ruption robustness (Hendrycks et al., 2020). Our method
is complementary to these techniques and could be used in
conjunction in order to further increase the generalization
and robustness performance.

Mixup Input mixup creates virtual training examples by
linearly interpolating two input data and corresponding one-
hot labels (Zhang et al., 2018). The method induces models
to have smoother decision boundaries and reduces over-
fitting to the training data. Manifold mixup extends this
concept from input space to feature space (Verma et al.,
2019). Also, Guo et al. (2019) proposed an adaptive mixup
method, which improves Input mixup by preventing the gen-
eration of improper mixup data. Yun et al. (2019) proposed
CutMix which implants a random rectangular region of the
input into another. However, these methods can generate im-
proper examples by randomly removing important regions
of the data, which may mislead the neural network (see
Figure 1). Our mixup method aims to prevent these issues
by utilizing the saliency signal while preserving the local
properties of the input data.

Saliency Simonyan et al. (2013) detects object saliency by
computing gradients of a pre-trained deep neural network.
Subsequently, other methods were introduced to obtain more
precise saliency (Zhao et al., 2015; Wang et al., 2015). How-
ever, these methods require modifying the pre-trained net-
work or training new models to compute the saliency. Zhou
et al. (2016) and Selvaraju et al. (2017) proposed meth-
ods with the reduced computation cost but at the cost of
saliency resolution. We follow the method from Simonyan
et al. (2013), which does not require any modification to
the model, to compute the saliency map. The saliency infor-
mation has been used in various fields of machine learning
(Ren et al., 2013; Wei et al., 2017).

Optimal transport A transport plan that moves a given
distribution to another at the minimal cost is called the
optimal transport (Villani, 2008). Also, the optimal transport
with discrete domain can be represented as a linear program
or an assignment problem (Munkres, 1957; Villani, 2008).
The optimal transport problem is widely applied in various
applications areas such as color transfer (Rabin et al., 2014)
and domain adaptation (Courty et al., 2016). We formulate
a binary transport problem for the optimal move, which
maximizes the exposed saliency under the mask.

3. Preliminaries

Let us define x € X to be an input data and y €) be its
output label. Let D be the distribution over X x). In mixup
based data augmentation method, the goal is to optimize the
model’s loss £ : X x Y x © — R given the data mixup
function A(-) and the mixing distribution ¢ as below.

L(h(x0,71), 9(yo,y1);0), (1)

minimize E

4 (20,50):(z1,¥1)€ED A~g
where the label mixup function is g(yo,y1) = (1 — N)yo +
Ay1. Input mixup uses h(zg, x1) = (1 —N)xg+ Az;. Mani-
fold mixup employs h(zg, x1) = (1—X) f(xo)+Af(z1) for
some hidden representation f. CutMix defines h(xg, z1) =
(1—1p)®xo+ 15 ©x; forabinary rectangular mask 1 g,
where B = [ry, 7y + 7] X [y, 7y +75] With A = 32 and
© represents the element-wise product. In other words, B
is a randomly chosen rectangle covering A proportion of the

input. We propose the following mixup function,

hzo,z1) = (1 — 2) @ I{xo + 2 ©] 1, 2)

where z; represents a mask in [0,1] with mixing ratio
A= %ZT z;. Iy and II; represent n X n transportation
plans of the corresponding data with n dimensions. IL;;
encodes how much mass moves from location ¢ to j after
the transport. From now on, we omit the dependence of y
and 6 from the loss function / for clarity. Table 1 summa-
rizes various mixup functions described above. We begin
Section 4 with the formal desiderata for our mixup function
and the corresponding optimization objective.

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Puzzle

Input —— Manifold —— CutMix

2
1<)
=
[
=N

Saliency
o
&
I
Loss

[
Total variation
o
f=1
wn
I
[o)

[o4 L 1 || o L1

|

Top-1 acc.
N o
'S 2N

[[

| | 0 | | | | | |

0 02 04 06 08 1.0 0 02 04 06 08 1.0
Mixing ratio A Mixing ratio A

(a) (b)

0 02 04 06 08 1.0
Mixing ratio A

()

.2 0
0 02 04 06 08 1.0 0 02 04 06 08 1.0
Mixing ratio A Mixing ratio A

(d) (e)

Figure 2. (a) Mixed saliency ||h(s(x0), s(z1))||1. Note the saliency map of each input s(xx) is normalized to sum up to 1. (b) Total
variation of mixed data. (c) Cross entropy loss of mixup data and the corresponding soft-label evaluated by the vanilla classifier (ResNet18).
(d) Top-1 prediction accuracy of mixed data. Prediction is counted as correct if the Top-1 prediction belongs to {yo,y1}. (e) Top-2
prediction accuracy of mixed data. Prediction is counted as correct if the Top-2 predictions are equal to {yo, y1 }. Manifold mixup is
omitted in (a) and (b) as manifold mixup generates mixup examples in the hidden space not in the input space.

Method Mixup function h(zo, z1)

(1 — /\)ZE() + \z1
(1= \)f(z0) + Af(w1)
(1-13)G0x0+ 10 x1
1-2)0I0z0+ 2z Iz,

Input mixup
Manifold mixup
CutMix

Puzzle Mix

Table 1. Summary of various mixup functions.

4. Methods

Our goal is to maximally utilize the saliency information of
each input while respecting the underlying local statistics
of the data. First, in order to maximally utilize the saliency
information, we seek to find the optimal mixing mask z and
the optimal transport plans II under the following criteria.

e Given a pair of transported data and a specific region,
the mask z should optimally reveal more salient data
of the two while masking the less salient one in the
given region.

e Given a data x and the mask z, the transport II
should find the optimal moves that would maximize
the saliency of the revealed portion of the data.

The criteria above motivates us to maximize for (1 — 2) ®
17 s(x0)+2®II] s(x1). Note, we denote the saliency of the
input z as s(x) which is computed by taking ¢5 norm of the
gradient values across input channels. Figure 2 (a) shows
the proposed mixup function well preserves the saliency
information after mixup. Second, in order to respect the
underlying local statistics of the data (Huang & Mumford,
1999; Zhang et al., 2017; Smith, 2003), we consider the
following criteria.

e The saliency information can be noisy, which could
lead to a suboptimal solution. Therefore, we add spatial
regularization terms v and ¢; ; to control the smooth-
ness of the mask and regional smoothness of the result-

ing mixed example. Figure 2 (b) compares the local
smoothness measured in total variation.

e We ensure the structural integrity within each data is
generally preserved by considering the transport cost
C;; (defined as the distance between the locations 4 and
7). Also, to further ensure the local salient structure
of the data is preserved without being dispersed across
after the transport, we optimize for the binary transport
plans as opposed to continuous plans.

Evaluation results on the pretrained vanilla classifier in Fig-
ure 2 (c), (d), (e) show our mixup examples have the small-
est loss and the highest accuracy compared to other meth-
ods, verifying our intuitions above. Moreover, we optimize
the main objective after down-sampling the saliency infor-
mation s(x) with average pooling to support multi-scale
transport and masking. From now on, we denote n as the
down-sampled dimension. In practice, we select the down-
sampling resolution randomly per each mini-batch.

To optimize the mask z, we first discretize the range
of the mask value. Let £ denote the discretized range
{L|¢t=0,1,...,m}. In addition, to control the mix-
ing ratio of given inputs, we add a prior term p(z;), which
follows a binomial distribution. We now formalize the com-
plete objective in Equation (3).

minimize — |[(1 — 2) © Hgs(zo)ll, 3)
Ig,II; €{0,1} ™™

= [lz @ His(z1)ll;

+B8 Y Pz +y Y iz)

(i,5)EN (i,5)EN
—nY logp(z:)+& > (I, C)
i k=0,1

subject to xl, = 1, IIJ1, =1, fork=0,1.

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Saliency Before Transport After Transport

Before Transport

e

fter Transport

V

Figure 3. Illustration of Puzzle Mix process. After the transport,
the salient regions (highlighted in green) replace the other regions,
so that the salient information still remains after the mixup. The
first row represents the saliency information after down-sampling,
i.e., s(x), the masked saliency (z® s(z)), and the masked saliency
after transport (z © I17s(x)) respectively. The second row shows
the corresponding data.

After solving the optimization problem in Equation (3), we
obtain the mixed example h(zq,z1) = (1 — 2*) © [Tz +
z* ® I}z which is then used for the model training as
in Equation (1). Figure 3 illustrates the mask z and the
transport plan IT optimized with Equation (3).

We solve this optimization problem via alternating min-
imization through iterating first over z and then simulta-
neously over Ily and II;. In mixup augmentation, how-
ever, one needs to be able to efficiently generate the mixed
examples as the generation process takes place per each
mini-batch. Therefore, we optimize for one complete cycle
of the alternating minimization, as repeated cycles require
additional network evaluations, for efficiency. As for the
initialization, we optimize the mask z with Il initialized
as identity transport, and then optimize each II; with the
previously solved z. We now formally discuss individual
optimization problems in Section 4.1 and Section 4.2.

4.1. Optimizing Mask

Given Il and I, we seek to solve the following discrete
optimization problem over z in Equation (4). The objective
is to decide how to best mix the two transported inputs
jointly based on the region saliency measure (unary), the
label and data local smoothness (pairwise), and the mixing
weight log prior (mix prior) criteria.

> (%) “)

een ()N
—nYy_logp(z),

minimize ui(zi) + B
i

v D bz, 2)

(1,5)EN

d)i,j(of 1)
o8 J(l, 1)
/ J \1‘
X e
T u; (0) ZLJ(I)
$3,5(0,0)
h(zo,z1)
\- (0, 1)

Figure 4. Visualization of different components in the mask opti-
mization. Two rectangles in the top show the two inputs z¢ and z1,
and the rectangle in the bottom show the mixed output h(zo, 1).
Figure reproduced with permission from Julien Mairal.

where the unary term w;(z;) is defined as z; (I s(zo)); +
(1—2;)(I1] s(1));. We define the neighborhood N as a set
of adjacent regions, and use the following pairwise terms
and the prior term. Figure 4 visualizes different components
in Equation (4).

Definition 1. (Label smoothness) (2, z;) = (2i — 2z;)*

For data local smoothness, we measure the distance between
input regions. Let d,, denote the distance function. First,
we define pairwise terms under the binary case, £ = {0, 1},
and then extend them to the multi-label case.

Definition 2. (Data local smoothness for binary labels)

Let xy,; represent the ith region of data xy. Then,
b

ZJ(Z“ Z]) =d (Izma ‘szaj)'

The discrete optimization problem in Equation (4) is a type
of multi-label energy minimization problem and can be
efficiently solved via -3 swap algorithm (Boykov et al.,
2001), which is based on the graph-cuts. In the binary label
case, finding the minimum s-t cut in the graph returns an
equivalent optimal solution if the pairwise term satisfies the
submodularity condition (Kolmogorov & Zabih, 2004). In
our problem, the pairwise termis e; ; (2, z;) = B(2i, 2j)+
~v®i.; (%, z;). We now assume that the function values of d,
are bounded in [0,1], which is generally satisfied when data
values are bounded in [0,1].

Proposition 1. Suppose d,, function is bounded in [0,1] and
¢ = ¢°. If v < B, then e; (2, z;) satisfies submodularity
for z;, z; € {0,1}.

Proof. €(0,0)+e(1,1
28 = B(0,1) + By(

Y, (0,

) =)+’Y¢Z,j(17 1) <2y <
1,0) < e(0,).

1) + (1,0 O

For multi-label case, the a- swap algorithm iteratively
applies graph-cut as a sub-routine and converges to a

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Figure 5. (Top row) Puzzle Mix images with increasing mixing weight A. (Bottom row) Puzzle Mix images with increasing smoothness
coefficients, 5 and . Note that the results are obtained without transport.

local-minimum if the pairwise term satisfies pairwise-
submodularity (Schmidt & Alahari, 2011). We can guar-
antee pairwise-submodularity by slightly modifying qﬁﬁ?, j
as

#75(0,0) = ¢} ;(0,0) + (#};(0,1) + ¢! ;(1,0)) /2
#75(0,1) = 60 ;(0,1) + (},,(0,0) + ¢¥;(1,1))/2
#75(1,0) = 67 ;(1,0) + (#},,(0,0) + ¢} ;(1,1))/2
#75(1,1) = 85 (1,1) + (6},;(0, 1) + ¢! 5(1,0)) /2.

It is important to note that, qSi?:j(l, 0) + ¢l7:-(0, 1) —
¢0;(0,0) — ¢';(1,1) = 0.

Definition 3. (Data local smoothness for the multi labels)
i (2, 25) = 2280 (1, 1) + 2(1 — 2)0% ;(1,0) + (1 —
2i)%j ?:j((), 1)+ (1—2z)(1— zj)qﬁi»’:j(0,0), Vi, zj € L.

Proposition 2. With ¢; ; defined as Definition 3, e; ; satis-
fies pairwise submodularity.

Proof. We can represent ¢; ; as follows:

bi5(2i, 25)

_ foszy) P (L0 + 685(0,1) - 915(0,0) — #7;(1,1)
L, 80,0) + 6151, 1) ; 05(0.0) — 615(0.1)
+%wwan+waLngwﬂ&m—aﬂLm
+6,,(0,0),

where f(z;,2;) = (1 — 2i)z; + z;(1 — z;). By definition
g,j(lvo) + d)g,j(oa 1) - ¢?,j(070) - ?,j(Ll) =0, ?nd
thus, ¢; ;j(z;, z;) can be represented as the form of z; qﬁflj +

Zd + e Thus, Yo,y € L, ¢ij(@.y) + dijly,z) =

b b v b,
Tty tetyd i tad e = éi (@, x)+di 5y,),
which means ¢; ; satisfies pairwise submodularity.

By definition) satisfies pairwise submodularity, and by
Lemma 1, e; ; satisfies pairwise submodularity. O

Lemma 1. If), ¢ satisfies pairwise submodularity and j3,
v € Ry, then B + ¢ satisfies pairwise submodularity.

Proof. See Supplementary A.1. O

Finally, we use the prior term to control the ratio of inputs
in the mixed output. For the given mixing weight A, which
represents the ratio of x1 with respect to xy, we define the
prior term p to satisfy E., ., [z;] = A, Vi. Specifically, for
the label space £ = {-L|t =0, ...,m}, we define the prior
termas p(z; = +) = Z"tn))\t(l—)\)m_t for t =0,1,...,m.
In other words, z; ~ - B(m, \).

In Figure 5, we provide the resulted mixup images using the
optimal mask from Equation (4). Specifically, we visualize
how the Puzzle Mix images change by increasing the mixing
weight A and the coefficients of the smoothness terms, 3
and 7.

4.2. Optimizing Transport

After optimizing the mask z, we optimize the transportation
plans for the input data under the optimal mask z*. Our ob-
jective with respect to transportation plans is the following.

minimize
M,IT; €{0,1}™ %™

= I(z" © Mis(21)lly

+€) (I, C)
k=0,1

subject to gln = 1, IJ1, =1,

— 11 = 2") © Is(zo)ll,

fork=0,1.

Note the problem is completely separable as two inde-
pendent optimization problems of each II;. Let s(x1);

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Algorithm 1 Masked Transport

Input: mask z*, cost C”, large value v
Initialize C© = C’, t =0

repeat
target = argmin(C®, dim = 1)
II= Onxn

fori=0ton —1do
I0[i, target[i]] = 1
end for
Cconflict = C(t) oI+ U(l - H)
source = argmin(Ceon fiict, dim = 0)
ITwin = Onxn
forj =0ton —1do
ILyin[sourcelj],j] = 1
end for
Myin = Hyin © 11
Mipse = (1 - szn) oIl
c+l) — o) 4 vIT}pse
t=t+1
until convergence
Return: I1,,;,

denote the i*" entry of the n-dimensional column vector
s(z1). The term [|z* ® II] s(x1)||; can be represented as
> 7is(@1)ill ;= (Ili, s(21)2"T). Finally, the trans-
port optimization problem of I1I; becomes

minimize (II;,C") (%)

Hle{O,l}"X”
subject to 111, = 1,, [I]1, = 1,

where C’ = £C — s(w1)2*T. O}, is the cost of moving the
it" region to the j*" position, which consists of two com-
ponents. The first component is the distance £C};, which is
defined as a distance from ¢ to j. The second component is
the saliency term, which discounts the transport cost with
the saliency value of the i* region if the mask of ;%" posi-
tion is non-zero. Briefly speaking, the larger the saliency

value, the more the discount in the transport cost.

The optimization problem in Equation (5) can be solved
exactly by using the Hungarian algorithm and its variants
with time complexity of O(n?) (Munkres, 1957; Jonker &
Volgenant, 1987). As we need to efficiently generate mixup
examples per each mini-batch, this can be a computational
bottleneck as n increases. Thus, we propose an approximate
algorithm that can be parallelized on GPUs and efficiently
computed in batches. The proposed algorithm can quickly
decrease the objective (II, C’) and converges to a local-
minimum within n(n —1)/2+1 steps. Experimental results
comparing the wall clock execution time and the relative
error are in Supplementary B.

Algorithm 1 progressively alternates between row-wise and
column-wise optimizations. The algorithm first minimizes

(IT, C") only with the II1,, = 1,, constraint. However, since
the optimization is done without the column constraint, there
can be multiple 1 values in a column of II. In the following
step, the column with multiple 1 values leaves only one 1
in the row with the smallest cost. We denote the result as
IL,i in Algorithm 1. The corresponding cost entries for
the rows that do not remain in II,,;, are penalized with a
large additive value, and the 1 values are moved to the other
columns in the next iteration.

Our algorithm can also take advantage of intermediate I1,,;,
as a solution, supported by the following two properties. We
suppose that transport cost matrix C' has zeros in diagonal
entries and positive values in others. In addition, let m®

and ngn denote II and II,,;, at the end of t*" step in
Algorithm 1.

Proposition 3. Suppose z* has values in {0,1}. Then for
©)

jst zy =1, j* column of 1},

has exactly one 1.

Proof. By the definition of C(©) = £C' — s(x¢)2*T, for j
st. 2z =1, j row of C©) has a minimum at j* entry.
(0)

Thus, jth column of II,; has exactly one 1 and others

are 0. Suppose that, the claim is satisfied for ngn and
1) [i(4), j] is 1 for j s.t. 27 = 1. Then, by the definition

of ng)'n’ C’L(fl)n [i(4), 4] is the minimum of 3(§)*" row of C'*)
and the row will not be updated in C**1). Thus, i(5)" row

of C*+1) has a minimum at j** entry and j** column of
H(t+1)

win

has exactly one 1. By induction, the claim holds. []

Proposition 4. Under the assumption of Proposition 3, the
()

partial objective < 11, ;. C'2* > decreases as t increases.

*

j
of ngn has exactly one 1. Let i(j;¢) denote the corre-
sponding row index with the entry 1. Then, it is enough
to prove that C'[i(j;t + 1),5] < C'[i(j;1),j]. However,
in the last part of the proof of Proposition 3, we showed
that i(j;t)*" row of C**1) has a minimum at j** entry,
and thus TtV [i(j:¢), 5] = 1. By Algorithm 1, index
i(j;t + 1) satisfies CEHV[i(5;t + 1), 5] < CEHY[4],
Vi s.t. TOHD[§] = 1. Thus, CEFV[i(5;t + 1),5] <
C#+D[i(4;t), 4] Finally, TI¢+1[i, 5] = 1 means that cost
from i to j is not updated, i.e., C*+tV[i, j] = C'[i,5]. O

Proof. By Proposition 3, for j s.t. zi = 1, 5" column

Finally, we introduce the convergence property of Algo-
rithm 1.

Proposition 5. Algorithm 1 converges to a local-minimum
with respect to the update rule at most n(n —1)/2+ 1 steps.

Proof. See Supplementary A.2. O

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Algorithm 2 Stochastic Adversarial Puzzle Mix

Input: data x(, z1, attack ball ¢, step 7, probability p
Tj clean = T; fori=10,1
Sample v; ~ B(1,p) fori=0,1
fori=1,2do
if v; == 1 then
ki ~ Uniform(—e,e)
X; — T + K4
end if
end for
Calculate gradient V;I(z;) fori = 0,1
Optimize z* and II} in Equation (3)
Sample 0 ~ Uniform(0,1)
for:=0,1do
if v; == 1 then
Ki < ki + 7 sign(Vgl(x;))
ki + clip(k;, —¢€,€)
Ti < Tjclean +94 Rj
end if
end for
Return: (1 — z*) © IIjTxg + 2* © T2y

4.3. Adversarial Training

Since our mix-up strategy utilizes the gradients of the loss
function with respect to the given inputs for saliency compu-
tation, we can incorporate adversarial training in our mix-up
method without any additional computation cost.

For adversarial training on mixup data, we adapt the fast ad-
versarial training method of Wong et al. (2020), which adds
a uniform noise before creating an adversarial perturbation.
As shown in Algorithm 2, we add the adversarial perturba-
tion to the proper location of the mixed output, :.e., adding
an adversarial signal to the corresponding input and loca-
tion specified by z. Note that the adversarial perturbation
is added to each data probabilistically to prevent possible
degradation in the generalization performance.

5. Implementation Details

First, to solve the discrete optimization problem with respect
to the mask z, we use a-3 swap algorithm from the pyGCO
python wrapper'. Although the minimization is performed
example-wise in CPUs, the o-3 swap algorithm converges
quickly, since we restrict the size of the graph with down-
sampling. Note that, in our experiments, the computational
bottleneck of the method is in the forward-backward passes
of the neural network. In our experiments, we use label
space £ = {0, 3, 1}. In addition, we randomly sample the
size of the graph, i.e., size of mask z, from {2 x 2, 4 x
4, 8 X 8, 16 x 16}, and down-sample the given mini-batch

"https://github.com/Borda/pyGCO

for all experiments.

We normalize the down-sampled saliency map, which is
used as the unary term, to sum up to 1. This allows us to
use consistent hyperparameters across all the models and
datasets. To measure the distance between the two adjacent
data regions, we compute the mean of the absolute values
of differences on the boundaries. For the mixing ratio A,
we randomly sample A from Beta(a,) at each mini-batch.
All of the computations in our algorithm except -3 swap
are done in mini-batch and can be performed in parallel in
GPUs. Note that for-loops in Algorithm 1 can be done in
parallel by using the scatter function of PyTorch (Paszke
et al., 2017).

Since we calculate the saliency information by back-
propagating the gradient of loss function through the model,
we can utilize this gradient information without any com-
putational overhead. We regularize the gradient of the
model with mixup data as Vgl(h(xo, z1),9(yo,v1);0) +
%)\Clean(VgZ(aco, yo;0) + Vol(x1,y1;0)). This additional
regularization helps us to improve generalization perfor-
mance on Tiny-ImageNet and ImageNet.

6. Experiments

We train and evaluate classifiers on CIFAR-100 (Krizhevsky
& Geoffrey, 2009), Tiny-ImageNet (Chrabaszcz et al., 2017),
and ImageNet (Deng et al., 2009) datasets. We first study
the generalization performance and adversarial robustness
of our method (Section 6.1). Next, we show that our method
can be used in conjunction with the existing augmentation
method (AugMix) to simultaneously improve the corruption
robustness and generalization performance (Section 6.2).
Finally, we perform ablation studies for our method (Sec-
tion 6.3).

6.1. Generalization Performance and Adversarial
Robustness

6.1.1. CIFAR-100

We train two residual neural networks (He et al., 2015):
WRN28-10 (Zagoruyko & Komodakis, 2016) and PreAc-
tResNet18 (He et al., 2016). We follow the training protocol
of Verma et al. (2019), which trains WRN28-10 for 400
epochs and PreActResNet18 for 1200 epochs. Hyperpa-
rameter settings are available in Supplementary C.1. We
reproduce the mixup baselines (Zhang et al., 2018; Verma
et al., 2019; Yun et al., 2019; Hendrycks et al., 2020) and
compare the baselines with our method under the same
experimental settings described above. We denote the exper-
iments as Vanilla, Input, Manifold, CutMix, AugMix, Puzzle
Mix in the experiment tables.

Note however, our mixup method requires an additional

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

forward-backward evaluation of the network per mini-batch
to calculate the saliency signal. For some practitioners, a
fairer comparison would be to compare the performances at
a fixed number of network evaluations (i.e. for power con-
servation). In order to compare our method in this condition,
we also test our method trained for half the epochs and with
twice the initial learning rate. We denote this experiment as
Puzzle Mix (half) in the experiment tables.

In addition, we report experiments with the adversarial train-
ing described in Algorithm 2 with p = 0.1. We denote this
experiment as Puzzle Mix (adv) in the tables. We assess
the adversarial robustness against FGSM attack of 8/255
£ epsilon ball following the evaluation protocol of Zhang
et al. (2018); Verma et al. (2019); Yun et al. (2019) for fair
comparison. The results are summarized in Table 2 and
Table 3, and adversarial robustness results against the PGD
attack (Madry et al., 2017) are in Supplementary D.2.

We observe that Puzzle Mix outperforms other mixup
baselines in generalization and adversarial robustness with
WRN28-10 (Table 2) and PreActResNet18 (Table 3). With
WRN28-10, Puzzle Mix improves Top-1 test error over the
best performing baseline by 1.45%, and Puzzle Mix (half)
outperforms by 1.17%. Puzzle Mix (adv) improves FGSM
error rate over 8.41% than AugMix while achieving 1.39%
lower Top-1 error rate than Manifold mixup, which had
the best Top-1 score among baselines. We observe similar
results with PreActResNet18. Puzzle Mix (adv) reduces
the Top-1 error rate by 1.14% and the FGSM error rate by
12.98% over baselines.

Top-1 Top-5 FGSM
Method Error(%) Error(%) Error(%)
Vanilla 21.14 6.33 63.92
Input 18.27 4.98 56.60
Manifold 17.40 4.37 60.70
Manifoldf 18.04 - -
CutMix 17.50 4.69 79.34
AugMix 20.44 5.74 55.59
Puzzle Mix 15.95 3.92 63.71
Puzzle Mix (half) 16.23 3.90 66.74
Puzzle Mix (adv) 16.01 391 47.18
Puzzle Mix (half, adv) 16.39 3.94 46.95

Table 2. Top-1 / Top-5 / FGSM error rates on CIFAR-100 dataset
of WRN28-10 trained with various mixup methods (400 epochs).
1 denotes the result reported in the original paper. Top-1 and Top-5
results are median test errors of models in the last 10 epochs.

6.1.2. TINY-IMAGENET

We train PreActResNetl8 network on Tiny-ImageNet
dataset, which contains 200 classes with 500 training im-
ages and 50 test images per class with 64 x 64 resolution
(Chrabaszcz et al., 2017). Training settings are described in

Top-1 Top-5 FGSM
Method Error(%) Error(%) Error(%)
Vanilla 23.67 8.98 88.89
Input 23.16 7.58 70.09
Manifold 20.98 6.63 73.09
CutMix 23.20 8.09 86.38
AugMix 24.69 8.38 76.99
Puzzle Mix 19.62 5.85 79.47
Puzzle Mix (half) 20.09 5.59 75.72
Puzzle Mix (adv) 19.84 6.11 57.11
Puzzle Mix (half, adv) 19.96 6.20 59.33

Table 3. Top-1/ Top-5 / FGSM error rates on CIFAR-100 dataset
of PreActResNet18 trained with various mixup methods.

Top-1 Top-5 FGSM

Method Error(%) Error(%) Error(%)
Vanilla 42.77 26.35 91.85
Input 43.41 26.98 88.68
Manifold 41.99 25.88 89.25
Manifoldf 41.30 26.41 -
CutMix 43.33 24.48 87.19
AugMix 44.03 25.32 90.00
Puzzle Mix 36.52 18.95 92.52
Puzzle Mix (half) 37.64 19.37 92.57
Puzzle Mix (adv) 38.55 20.48 82.07
Puzzle Mix (half, adv) 38.14 19.70 83.91

Table 4. Top-1 / Top-5 / FGSM error rates on Tiny-ImageNet
dataset for PreActResNet18 trained with various mixup methods.

Supplementary C.2.

As in the CIFAR-100 experiment, Puzzle Mix shows sig-
nificant performance gains both on the generalization per-
formance and the adversarial robustness compared to other
mixup baselines (Table 4).

Puzzle Mix trained with the same number of epochs
achieves 36.52% in Top-1 test error, 5.47% lower than the
strongest baseline, and the model trained with same network
evaluations (half) outperforms the best baseline by 4.35%.
Puzzle Mix trained with stochastic adversarial method (adv)
achieves best Top-1 and FGSM error rate (e = 4/255) com-
pared to other mixup baselines providing 3.44% lower Top-1
error rate and 5.12% lower FGSM error rate.

6.1.3. IMAGENET

In ImageNet experiment, we use ResNet-50 to compare the
performance. In order to train the model on ImageNet more
efficiently, we utilize the cyclic learning rate, and use pre-
resized images following the training protocol in Wong et al.
(2020). Hyperparameter settings are in Supplementary C.3.
Consistent with the previous experiments on CIFAR-100
and Tiny-ImageNet, Puzzle Mix shows the best performance

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

in both Top-1 / Top-5 error rate, achieving 0.43%, 0.24%
improvement each, compared to the best baseline (Table 5).

Top-1 Top-5
Model Error(%) Error(%)
Vanilla 24.31 7.34
Input 22.99 6.48
Manifold 23.15 6.50
CutMix 22.92 6.55
AugMix 23.25 6.70
Puzzle Mix 22.49 6.24

Table 5. Top-1 / Top-5 error rates on ImageNet on ResNet-50.

6.2. Robustness Against Corruption

Hendrycks et al. (2020) proposed AugMix which performs
Input mixup between clean and augmented images to im-
prove robustness against corrupted datasets as well as the
generalization performance. AugMix uses Jensen-Shannon
divergence (JSD) between network outputs of a clean image
and two AugMix images as a consistency loss. However,
computing the JSD term requires triple the network evalua-
tions compared to other mixup methods to train the network.

We found that simply using our mixup algorithm between
two AugMix images, improves both the generalization and
corruption robustness over the training strategy with the JSD
objective. Note that our method requires only one additional
(versus two) network evaluation per each mini-batch. We
denote this experiment setting as Puzzle Mix (aug).

We use CIFAR-100-C dataset (Hendrycks & Dietterich,
2019) to evaluate the corruption robustness. The dataset
consists of 19 types of corruption, including noise, blur,
weather, and digital corruption types. In Table 6, we report
average test errors on CIFAR-100-C dataset as well as test
errors on the clean CIFAR-100 test dataset. Table 6 demon-
strates that our method using AugMix images improves both
the generalization performance and the corruption accuracy
by 3.95% and 2.31% each over AugMix baseline.

Top-1 Corruption
Method Error(%) Error(%)
Vanilla 21.14 49.08
AugMix 20.45 32.22
Puzzle Mix 15.95 42.46
Puzzle Mix (aug) 16.50 2991

Table 6. Top-1 / Corruption error rates on CIFAR-100 and CIFAR-
100-C on WRN28-10.
6.3. Ablation Study

The generalization performance of Puzzle Mix stems from
saliency-based multi-label masking and transport. We ver-

ified the effectiveness of these two factors in comparative
experiments on CIFAR-100 with WRN28-10. Table 7 shows
that Puzzle Mix with the binary label space (binary) has
1.44% higher Top-1 error rate than multi-label case, and
Puzzle Mix without transport (mask only) has 0.43% higher
Top-1 error rate than Puzzle Mix with transport.

Top-1 Top-5
Method Error(%) Error(%)
Vanilla 21.14 6.33
Puzzle Mix 15.95 3.92
Puzzle Mix (binary) 17.39 4.34
Puzzle Mix (mask only) 16.38 3.78

Table 7. Top-1/ Top-5 rates on CIFAR-100 dataset of WRN28-10
trained with our mixup methods.

We also verify the effects of different factors in stochastic
adversarial training. In Algorithm 2, we add an adversarial
perturbation to each data based on each Bernoulli sample
v; and apply linear decay with § sampled from the uniform
distribution. From Table 8, we observe that using two in-
dependent random variables vy and v (adv) has significant
improvement in adversarial robustness over using one vari-
able (vy = r1). In the absence of linear decaying (fgsm),
there is improvement in the FGSM error rate of 4.02%, but
the Top-1 error increases by 0.41%. In all experiments, p is
set to 0.1. We use FGSM attack of 8/255 ¢, epsilon-ball
and 7-step PGD attack with a 2/255 step size. Additional
experiments regarding the effect of p value in adversarial
training are available in Supplementary D.1.

Top-1 FGSM PGD
Method Error(%) Error(%) Error(%)
Puzzle Mix (adv) 16.01 47.18 90.18
Puzzle Mix (fgsm) 16.42 43.16 91.19
Puzzle Mix (vp=v1) 16.66 65.90 94.05

Table 8. Top-1/ FGSM / PGD error rates on CIFAR-100 dataset
of WRN28-10 trained with our adversarial mixup methods.

7. Conclusion

We have presented Puzzle Mix, a mixup augmentation
method for optimally leveraging the saliency information
while respecting the underlying local statistics of the data.
Puzzle Mix efficiently generates the mixup examples in a
mini-batch stochastic gradient descent setting and outper-
forms other mixup baseline methods both in the general-
ization performance and the robustness against adversar-
ial perturbations and data corruption by a large margin on
CIFAR-100, Tiny-ImageNet, and ImageNet datasets.

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Acknowledgements

This research was supported in part by Samsung Electronics
and Institute of Information & communications Technology
Planning & Evaluation (II'TP) grant funded by the Korea
government (MSIT) (No. 2020-0-00882, (SW STAR LAB)
Development of deployable learning intelligence via self-
sustainable and trustworthy machine learning). Hyun Oh
Song is the corresponding author.

References

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F.,, and Vaughan, J. W. A theory of learning from
different domains. Machine learning, 79(1-2):151-175,
2010.

Bishop, C. M. Training with noise is equivalent to tikhonov
regularization. Neural computation, 7(1):108-116, 1995.

Bishop, C. M. Pattern recognition and machine learning.
springer, 2006.

Boykov, Y., Veksler, O., and Zabih, R. Fast approximate
energy minimization via graph cuts. IEEE Transactions
on pattern analysis and machine intelligence, 23(11):
1222-1239, 2001.

Chrabaszcz, P., Loshchilov, 1., and Hutter, F. A downsam-
pled variant of imagenet as an alternative to the cifar
datasets. arXiv preprint arXiv:1707.08819, 2017.

Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A.
Optimal transport for domain adaptation. /EEE transac-
tions on pattern analysis and machine intelligence, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li,
F. F. Imagenet: a large-scale hierarchical image database.
CVPR, 2009.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Erkan, G. and Radev, D. R. Lexrank: Graph-based lexical
centrality as salience in text summarization. Journal of
artificial intelligence research, 22:457-479, 2004.

Guo, H., Mao, Y., and Zhang, R. Mixup as locally linear
out-of-manifold regularization. Proceedings of the AAAI
Conference on Artificial Intelligence, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. CVPR, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. ECCV, 2016.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. ICLR, 2019.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer,
J., and Lakshminarayanan, B. AugMix: A simple data
processing method to improve robustness and uncertainty.
ICLR, 2020.

Huang, J. and Mumford, D. Statistics of natural images and
models. In Proceedings. 1999 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(Cat. No PR0O0149), volume 1, pp. 541-547. IEEE, 1999.

Jonker, R. and Volgenant, A. A shortest augmenting path
algorithm for dense and sparse linear assignment. Com-
puting, 38(4):325-340, 1987.

Kalinli, O. and Narayanan, S. S. A saliency-based audi-
tory attention model with applications to unsupervised
prominent syllable detection in speech. In Eighth Annual
Conference of the International Speech Communication
Association, 2007.

Kolmogorov, V. and Zabih, R. What energy functions can be
minimizedvia graph cuts? IEEE Transactions on Pattern
Analysis & Machine Intelligence, 26(2):147-159, 2004.

Krizhevsky, A. and Geoffrey, H. Learning multiple layers of
features from tiny images. University of Toronto, 2009.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
NeurlPS, 2012.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Munkres, J. Algorithms for the assignment and transporta-
tion problems. Journal of the Society for Industrial and
Applied Mathematics, 1957.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. NeurIPS, 2017.

Rabin, J., Ferradans, S., and Papadakis, N. Adaptive color
transfer with relaxed optimal transport. In 2074 IEEE
International Conference on Image Processing (ICIP),
2014.

Ren, Z., Gao, S., Chia, L.-T., and Tsang, I. W.-H. Region-
based saliency detection and its application in object
recognition. IEEE Transactions on Circuits and Systems
for Video Technology, 24(5):769-779, 2013.

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Schmidt, M. and Alahari, K. Generalized fast approximate
energy minimization via graph cuts: Alpha-expansion
beta-shrink moves. arXiv preprint arXiv:1108.5710,
2011.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization.
ICCV, 2017.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Smith, C. S. Modes of discourse: The local structure of
texts, volume 103. Cambridge University Press, 2003.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas,
L., Courville, A., Lopez-Paz, D., and Bengio, Y. Manifold
mixup: Better representations by interpolating hidden
states. ICML, 2019.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Wang, L., Lu, H., Ruan, X., and Yang, M.-H. Deep networks
for saliency detection via local estimation and global
search. CVPR, 2015.

Wei, Y., Feng, J., Liang, X., Cheng, M.-M., Zhao, Y., and
Yan, S. Object region mining with adversarial erasing: A
simple classification to semantic segmentation approach.
CVPR, 2017.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free:
Revisiting adversarial training. /CLR, 2020.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y.
Cutmix: Regularization strategy to train strong classifiers
with localizable features. ICCV, 2019.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. /CLR, 2018.

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Bengio, C.
L. Y., and Courville, A. Towards end-to-end speech recog-
nition with deep convolutional neural networks. arXiv
preprint arXiv:1701.02720, 2017.

Zhao, R., Ouyang, W., Li, H., and Wang, X. Saliency
detection by multi-context deep learning. CVPR, 2015.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
A. Learning deep features for discriminative localization.
CVPR, 2016.

