
Supplementary Material for
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Jang-Hyun Kim 1 2 Wonho Choo 1 2 Hyun Oh Song 1 2

A. Proofs
A.1. Proof of Lemma1

Lemma 1. If ψ, φ satisfy pairwise submodularity and β,
γ ∈ R+, then βψ + γφ satisfies pairwise submodularity.

Proof. By the assumption, β, γ ∈ R+, and by using pair-
wise submodularity of ψ and φ, ∀x, y ∈ L,

(βψ + γφ)(x, x) + (βψ + γφ)(y, y)

= β(ψ(x, x) + ψ(y, y)) + γ(φ(x, x) + φ(y, y))

≤ β(ψ(x, y) + ψ(y, x)) + γ(φ(x, y) + φ(y, x))

= (βψ + γφ)(x, y) + (βψ + γφ)(y, x).

A.2. Proof of Proposition 5

Proposition 5. Algorithm 1 converges to a local-minimum
with respect to the update rule at most n(n−1)/2 + 1 steps.

Proof. Let C(0) has a minimum at (i1, j1). Then, ∀t =

0, 1, ..., Π
(t)
win[i1, j1] = 1. Next, let’s define I2 =

{(i, j)|i 6= i1, j 6= j1} and (i2, j2) = argmin(i,j)∈I2
C(1)[i, j]. If Π(0)[i2, j1] = 1, C(0)[i2, j1] will be added
by the large value, and thus, Π

(1)
win[i2, j2] = 1. Otherwise,

if Π(0)[i2, j1] = 0, then C(0)[i2, j2] ≤ C(0)[i2, j1] and
Π

(0)
win[i2, j2] = 1. By the definition of (i2, j2), ∀t ≥ 1,

Π
(t)
win[i2, j2] = 1.

To use induction, let’s define Ik = {(i, j)|i /∈
{i1, ..., ik−1}, j /∈ {j1, ..., jk−1}} and let ak−1 denote a
minimal step number at which Π

(t)
win[ik−1, jk−1] = 1,

∀t ≥ ak−1. Let’s define (ik, jk) = argmin(i,j)∈Ik

C(ak−1+1)[i, j]. If ∃j ∈ {j1, ..., jk−1}, Π
(ak−1)
win [ik, j] = 1,

then ∀t ≥ ak−1 + k − 1, Π
(t)
win[ik, jk] = 1. If not,

1Department of Computer Science and Engineering, Seoul
National University, Seoul, Korea 2Neural Processing Research
Center. Correspondence to: Hyun Oh Song <hyunoh@snu.ac.kr>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Π
(ak−1)
win [ik, jk] = 1, and ∀t ≥ ak−1, Π

(t)
win[ik, jk] = 1.

Thus, ak ≤ ak−1 + k − 1.
Finally, by induction, an ≤ n(n− 1)/2 which means there
are no more updates of Πwin after n(n−1)/2+1 steps.

B. Analysis of Algorithms
B.1. Comparison Experiments for Algorithm 1

Figure 1 and Figure 2 show the comparison results of Algo-
rithm 1 with the exact Hungarian algorithm on 100 random
samples per each vertex size n. Note that, the size of a
transport plan is n × n. In the simulation, we generate a
random cost matrix C ′ = C − s(x)zᵀ, where s(x) is sam-
pled from a uniform distribution and the mask z is sampled
from a bernoulli distribution with probability p = 0.5. In
the case of n = 1024, Algorithm 1 is about 8.6 times faster
than the exact algorithm, with relative error of 0.0005. For
comparison, we use lapjv solver from library1 as the exact
optimizer, which to the best of our knowledge is the fastest
solver.

4 8 16 32 64 128 256 512 1,024

0.0001

0.001

0.01

0.1

1

Number of Vertices, n

A
ve

ra
ge

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Exact
Algorithm 1

Figure 1. Comparison of average execution time (log-log scale) to
solve Equation (5) between the exact solver (black) and Algorithm
1 (blue). Execution times are mean of 100 trials.

1https://github.com/berhane/LAP-solvers



Supplementary Material for Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

4 8 16 32 64 128 256 512 1,024
0

0.01

0.02

0.03

0.04

1

Number of Vertices, n

R
el

at
iv

e
E

rr
or

Relative Error≈

Figure 2. Relative errors of objective function value f between
Algorithm 1 (alg) and random assignment (random). Relative error
is calculated as ea/(ea + er), where ea = falg − fexact, er =
frandom − fexact.

In addition to the simulation test, we train classifiers with
ten different random seeds to compare the Top-1 accuracy
between using the Hungarian algorithm and Algorithm 1.
In this experiment, we train WRN28-10 on CIFAR100 for
400 epochs. In summary, the mean difference of the Top-
1 accuracy is −0.025, with a standard deviation of 0.239.
Besides, we perform a two-sided paired t-test to check the
statistical insignificance. As a result, T-statistics is -0.105
with a P-value of 0.919, which means there is no evidence
for a statistical difference between the two methods.

B.2. Convergence of Alternating Minimization

We solve the optimization problem of a mask and trans-
port plans via alternating minimization for one-cycle for
computational efficiency. In this subsection, we analyze
the convergence property of the alternating algorithm by
optimizing 1,000 CIFAR100 image pairs with various num-
bers of regions. As a result, we observe that the most of
optimal masks of the images are not changed after the first
cycle (i.e., comparison between one-cycle and multi-cycle),
and hence the optimal transport plans are not changed. For
transport cost coefficient ξ in [0.5, 0.8], which shows the
best performance, less than 0.2% of the final mixed images
change after the first cycle. Also, the ratio of pixels changed
after the first cycle is less than 0.001%.

We believe that this result is due to the mutual comple-
ment of the optimal mask and the optimal transport. That
is, the optimal mask assigns the output regions so that the
remained saliency of each input is maximized, and the trans-
port enhances the assignment. Therefore, after a cycle, there
is little room for a change of the optimal mask when the

optimization is performed again.

C. Hyperparameter Settings
C.1. CIFAR-100

We train models via stochastic gradient descent (SGD) with
initial learning of 0.1 decayed by factor 0.1 at epochs 200
and 300 for WRN28-10 and epochs 400 and 800 for PreAc-
tResNet18. We set the momentum as 0.9 and add a weight
decay of 0.0001. Mixing weight λ is randomly sampled
fromBeta(1, 1) for all experiments except Manifold mixup,
which uses Beta(2, 2) in the original paper. Puzzle Mix has
hyperparameters of β for the label smoothness term, γ for
the data smoothness term, η for the prior term, and ξ for
the transport cost. In the CIFAR-100 experiment, we use
(β, γ, η, ξ) = (1.2, 0.5, 0.2, 0.8). For adversarial training,
we use 10/255 epsilon-ball with the step size τ of 12/255
according to the step size protocol of Wong et al. (2020).

C.2. Tiny-ImageNet

We follow the training protocol of Verma et al. (2019) ex-
cept for the learning schedule. Verma et al. (2019) train
Tiny-ImageNet for 2000 epochs with an initial learning rate
of 0.1, but we train models for 1200 epochs with an initial
learning rate of 0.2. As in the CIFAR-100 experiment, we
use SGD and decay learning rate by factor 0.1 at epochs
600 and 900. We set momentum as 0.9 and weight decay
as 0.0001. In case of mixing weight λ, for Input mixup
and Manifold mixup, we follow the setting α = 0.2 as
described in Manifold mixup (Verma et al., 2019). For
CutMix, we choose α = 0.2, which showed the best per-
formance among [0.2, 0.5, 1.0], and for Puzzle Mix, we
use α = 1.0. In the Tiny-ImageNet experiment, we use
(β, γ, η, ξ) = (1.2, 0.5, 0.2, 0.8), which is the same with
the CIFAR-100 experiment. However, we apply regulariza-
tion using clean input with λclean = 1 for all experiments
regarding Puzzle Mix, and use the same initial learning rate
of 0.2 for Puzzle Mix (half).

C.3. ImageNet

For ImageNet, we modify the training protocol in Wong
et al. (2020) and train models for 100 epochs. The learning
rate starts from 0.5, linearly increases to 1.0 for 8 epochs,
and linearly decreases to 0.125 until 15th epoch. Then, the
learning rate jumps to 0.2 and linearly decreases to 0.02
until 40th epoch, 0.002 until 65th epoch, 0.0002 until 90th

epoch, and 0.00002 until 100th epoch. In addition, we resize
images to 160×160 for the first 15 epochs, and use images
pre-resized to 352×352 for the next 85 epochs following
the prescription in Wong et al. (2020). Mixing distribution
parameter α is 0.2, 0.2, 1.0, 1.0 each for Input mixup, Mani-
fold mixup, CutMix, Puzzle Mix, which follows the settings



Supplementary Material for Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

of the original papers. In the case of Manifold mixup, there
is no experiments on ImageNet, and thus, we tune α in [0.2,
1.0] and report the best result. In the case of ImageNet, we
use hyperparameter (β, γ, η, ξ) = (1.5, 0.5, 0.2, 0.8) and
apply clean input regularization of λclean = 1 for the first
40 epochs.

C.4. Hyperparameter Sensitivity

We analyze the sensitivity of the hyperparameters with
WRN28-10 on CIFAR100 trained for 400 epochs. In detail,
we sweep hyperparameters one by one while others being
fixed, and calculate the mean and standard deviation of Top-
1 accuracy. Note that, the hyperparameter setting (β, γ, η, ξ)
of the main experiment is (1.2, 0.5, 0.2, 0.8) which achieves
15.95% Top-1 test error.

Table 1 shows the mean Top-1 error rates and standard devi-
ations of various hyperparameter settings. From the table,
we can find that there exists a well of hyperparameters of
which performance is superior to that of baselines (manifold
mixup: 17.40%).

Parameter Range Mean Top-1 Error(%) (SD)

β [0.8, 1.6] 16.19% (0.22)
γ [0.0, 1.0] 16.43% (0.20)
η [0.1, 0.35] 16.37% (0.18)
ξ [0.4, 1.0] 16.25% (0.27)

Table 1. Mean Top-1 error rates and standard deviations (SD) for
various hyperparameter settings on CIFAR 100 with WRN28-10.
For β, γ, and ξ, we sweep the range with 0.1 step size, and for η,
we sweep the range with 0.05 step size.

D. Effect of Adversarial Training
D.1. Trade-off between Generalization and Adversarial

Robustness

Since adversarial training increases the adversarial robust-
ness at the expense of clean accuracy (Madry et al., 2017),
we introduced adversarial probability p, a probability of
whether to add adversarial perturbation or not, to control the
intensity of adversarial training. Table 2 shows the inverse
relationship between clean error and FGSM error.

D.2. Robustness against PGD Attack

We test the adversarial robustness of various mixup meth-
ods against the PGD attack (Madry et al., 2017). In this
experiment, we train PreActResNet18 on CIFAR-100 with
each mixup method and test with PGD attack of 4/255 l∞
epsilon-ball with 2/255 step size. For comparison, we test
Puzzle Mix with stochastic adversarial training of p = 0.1,
which outperforms other baselines at Top-1 Accuracy given
a clean test dataset. Figure 3 demonstrates that Puzzle Mix

Adversarial
Probability

Top-1
Error(%)

Top-5
Error(%)

FGSM
Error(%)

0.00 37.58 19.40 92.70
0.05 37.60 19.10 89.12
0.10 37.16 19.25 86.09
0.15 38.14 19.70 83.91
0.20 38.65 20.01 82.25
0.25 39.46 20.40 80.37
0.30 40.52 21.47 79.76

Table 2. Top-1 / Top-5 / FGSM error rates on Tiny-ImageNet
dataset for PreActResNet18 trained with various adversarial prob-
ability p.

is more robust against the PGD attack than the existing
mixup methods.

0 5 10 15 20
0

10

20

30

40

50

PGD iteration

To
p-

1
A

cc
ur

ac
y

Puzzle
V anilla
Input

Manifold
CutMix
AugMix

Figure 3. Adversarial robustness of various mixup methods against
the PGD attack.

E. Puzzle Mix Qualitative Results
E.1. Effect of Prior and Smoothness Term

In this section, we provide Puzzle Mix results while adjust-
ing the hyperparameters associated with the optimal mask.
In Figure 4, we visualize how the Puzzle Mix images change
by increasing the mixing weight λ, and in Figure 5, we visu-
alize how the results change as we increase the coefficients
of the smoothness terms, β and γ.

E.2. More Samples

In this section, we provide Puzzle Mix results with various
resolutions of the optimal mask and transport. Figure 6
visualizes the Puzzle Mix results along with the given inputs.



Supplementary Material for Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

References
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. NeurIPS, 2017.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas,
I., Courville, A., Lopez-Paz, D., and Bengio, Y. Manifold
mixup: Better representations by interpolating hidden
states. ICML, 2019.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free:
Revisiting adversarial training. ICLR, 2020.



Supplementary Material for Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Figure 4. Puzzle Mix images with increasing mixing weight λ.



Supplementary Material for Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Figure 5. Puzzle Mix images with increasing smoothness coefficient β and γ.



Supplementary Material for Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Figure 6. Various Puzzle Mix image samples. Each row consists of input image 1 (left), Puzzle Mix image (middle), and input image 2
(right).


