FACT: A Diagnostic for Group Fairness Trade-offs

A. Proof of Theorem 1

A useful strategy is to solve (10) for a set of solutions, then ask if any of these solutions satisfies an additional fairness
constraint ¢*)(z) = 0. This proof, as well as many of the ones below, illustrate this strategy in practice.

Proof. First, set K = 1 and A(®©) = A in (10). Since vy # v1, the matrix A is full rank and therefore admits the solution
(11). Considering zy > 0 yields immediately the condition (12).

Next, set K > 1. Then either zg is a solution (which is the case when all other fairness notions are linear and linearly

CG

dependent on ( Ao

)), or otherwise no solution exists to both (10) and ¢ (z) = - - - = (K=Y (z) = 0 simultaneously.

O

This theorem states that ® ={CG} is incompatible when vy # v1, since it is a singleton set of incompatible fairness.

The condition vy # v; is necessary in Theorem 1, which is reasonable to assume as we would expect the positive class
to have a higher score than the negative class in the definition of CG. We can prove the necessity of this condition by
contradiction. In the degenerate case vg = v; = v, ® ={CG} is a set of compatible fairness notions. It turns out that (10)
with K = 1is only on rank 6. Denoting (?) as the ith row of the matrix, we have two linear dependencies, )+ ® +vD = @
and @) + ® + v@ = @. There is no longer a unique solution to the (10); instead, we have a two-parameter family of
solutions,
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Furthermore, this family of solutions satisfies AconstZo = beonst if and only if v = My/Ny = M; /Ny, i.e. the base rates
are equal and furthermore the score for both bins is equal to the base rate.

B. Proof of Corollary 1

Proof. Consider the product

A M;Ng — MoN Yy
(APCB) 20 = % ( QMo (15)
NCB (Mo—No)(M1—N1)
This product equals the zero vector (and hence satisfies both PCB and NCB) if and only if either of the conditions of the
Corollary hold. (The last solution, vg = 1 and v; = 0, is inadmissible since vy < v; by assumption.) O
C. Proof of Corollary 2
Proof. The result follows from solving
MiNy — MyN;
A = —F——=0. 16
pPZ0 NQ(Ul — 'UO) (16)

D. Proof of Corollary 3

Proof. The result follows from solving

¢pp(Z0) = 1)1(1 - 1}1) ((Ml - Nl’l}o)2 - (M() - N0U0)2) =0 (]7)



FACT: A Diagnostic for Group Fairness Trade-offs

which is true if and only if either condition in the Corollary is true. (The last case, v = 0, is inadmissible by assumption.) [J

In addition, here is a situation of fairness “for free”, in the sense that one notion of fairness automatically implies another.

Corollary 4. Consider a classifier that satisfies CG fairness. Then, the classifier also satisfies EFOR fairness. In other
words, {CG, EFOR} is incompatible.

Proof. ¢gror(zo) = 0 vanishes identically. O

E. Proof of Theorem 2

Proof. Finding the solution to ¢pp(z) = Gprpr(2) = Prenr(2) = 0 and also the linear system A onstZ = beonst yields the
three conditions of the Theorem. O]

F. CG-accuracy trade-offs

In the paper, we have only considered the case when A\ = oo in the LAFOP: we only consider when the fairness criteria
are satisfied exactly yielding several fairness—fairness trade-off results without heed to the accuracy of the classifiers.
Nonetheless, recall that LAFOP allows us to express both fairness—accuracy and fairness—fairness trade-offs by introducing
an accuracy objective along with a fairness regularizer. In this section, we show how the LAFOP can be used to theoretically
analyze a simple fairness—accuracy trade-off. We present a small result that is relevant to the CG—accuracy trade-off
considered in (Liu et al., 2019).

Theorem 3. Let o« = (Mo + M7)/N be the base rate. Consider a classifier that satisfies CG with 0 < vy < vy < 1. Then,
perfect accuracy is attained if and only if
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Proof. The case of necessity (=) follows immediately from solving c - zg = 0, where zg is defined in Theorem 1. The
inequality conditions follow immediately from the constraint 0 < vy < v; < 1. The case of sufficiency (<) follows
immediately from Theorem 1 and substituting the equality condition. O

The condition of this theorem relates the scores vy and v; to the base rate of the data, thus providing simple, explicit data
dependencies that are necessary and sufficient.

G. Experiment Details
G.1. Optimization

For solving the optimization problems, we used solvers in the scipy package for Python (Jones et al., 2001). For linear
fairness constraints, we used the simplex algorithm (Dantzig, 1963), and for other constrained optimization forms, we used
sequential least-squares programming (SLSQP) solver (Kraft, 1988; 1994).

G.2. Model-agnostic multi-way fairness—accuracy trade-offs

We have only considered situations where zero or one parameter is sufficient to simultaneously specify the fairness strength
for every fairness function, i.e. A = A\g = --- = Ax_1. In this section, we generalize this and allow each regularization
parameter to vary freely. It is then natural to consider the multilinear least-squares accuracy—fairness optimality problem
(MLAFOP): arg min, ¢y (c - z)? + ZZK;Ol \i||A)z||2, where the regularization parameters \; now take different values
across each of the K fairness constraints. This allows for a general inspection of the individual effect of fairness constraints
in a group.

For instance, a three-way trade-off among EOd, DP, and accuracy can be visualized as a contour plot, similar to the one
shown in Figure 4. And for general (K + 1)-way trade-offs involving K fairness constraints and accuracy, we visualize
two-dimensional slices along the K + 1-dimensional surface. For example, consider a four-way trade-off between a group
of three fairness definitions (DP, EOd, PCB) and accuracy. Figure 2 already showed that imposing PCB given (DP, EOd)
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Figure 4. Fairness—fairness—accuracy trade-off analysis using contour plot of accuracy with varying regularization strengths of Demo-
graphic Parity (DP) and Equalized Odds (EOd) for the unbiased synthetic dataset (left), biased synthetic dataset (middle), and Adult
dataset (right). The contours show how the regularization strength of each fairness individually influence the accuracy (1 — §) given the
other (accuracy of 1.0 being the accuracy of the Bayes classifier). For the unbiased synthetic data, the accuracy change along the vertical
axis (DP) is practically nonexistent given EOd, while along the horizontal axis (EOd) the change is drastic. Other datasets demonstrate
more complex relationships.
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Figure 5. The four-way trade-off between accuracy, PCB, EOd, and DP in the biased synthetic dataset (Section 6.1). Shown here is the
(1—0) value as a function of some regularization strength Ay for some fairness function ¢, while holding all other A4/s constant (accuracy
of 1.0 being the accuracy of the Bayes classifier). The value next to each colored line in the legend represents constant values for the fixed
Agrs. Sweeping through PCB while keeping DP and EOd fixed (left) does not change the accuracy, whereas the other plots show multiple
levels of variations. For EOd (right), the accuracy levels converge quickly to the limiting value of 0.392 as shown in Figure 2, suggesting
that the accuracy is more sensitive to changes in EOd constraint strength compared to the others.

does not affect §, which implies that PCB is the weakest in terms of its influence on §. To get more information, for the
S(B) dataset, we show in Figure 5 three cases of varying one A for one fairness constraint while keeping the other A values
fixed in MLAFOP. Sweeping through PCB condition (left) does not affect 1 — ¢ at fixed EOd and DP levels, confirming the
observation from Figure 2. Sweeping through DP conditions while keeping PCB and EOd strengths fixed (middle) results in
a slight drop, but not big enough to make all levels to converge to values reported in Figure 2 (0.392). Sweeping through
EOd while keeping PCB and DP strengths fixed (right) on the other hand results in significant changes for all levels and
convergence to the value 0.392, suggesting EOd is stronger than DP in terms of its influence on changing ¢. This notion of
relative influence of fairness deserves further investigation, to see if these preliminary results are robust across other slices
and datasets. Nonetheless, such analysis demonstrates a clear picture of how different notions of fairness interact with one
another when they are to be imposed together.
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G.3. Connection to the post-processing methods for fair classification

We can explicitly rewrite the constraints in (8) using Z and Z, which respectively correspond to the fairness—confusion tensor
of the given pre-trained classifier Y and the derived fair classifier Y:
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where the subscript ¢ of the fairness—confusion tensor corresponds to the i-th element in their vector representation as in
Section 3. By setting the objective function to be the classification error, imposing EOd fairness constraint and the model-
dependent feasibility constraints in (19) and (20), MS-LFAQP is the same optimization problem as the post-processing
methods, now over the space of the fairness—confusion tensors. The FACT Pareto frontier obtained by solving MS-LAFOP
therefore can assess the trade-off exhibited by any classifier post-processed in such ways.

In practice, the post-processing method solves (8) by parameterizing Y with two variables for each group a = 0, 1:
Pr(Y =1|Y =1,A=a),Pr(Y =1|Y =0, A = a). (Hardt et al., 2016). These values are called the mixing rates, as they
indicate the probability of labels that should be flipped or kept for each group when post-processing the given classifier Y.
The algorithm then randomly selects the instances for each group to flip according to these mixing rates. These mixing rates
can also be written in terms of the fairness—confusion tensor z and Z, by using the fact that

Pr(Y =glY =y, A=a)=Pr(Y =§|Y =1, A=a)Pr(Y = 1|Y =y, A = a)+
Pr(Y =§|Y =0,A=a)Pr(Y =0|Y =y, A = a),

and that Pr(Y = g|Y =y, A = a), Pr(Y = g|Y = y, A = a) terms are essentially what Z and Z encode. Therefore, by
using z obtained from the MS-LAFOP above, we can compute the mixing rates to post-process the given classifier.



