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A. Additional experimental results on Branin-Hoo function

In this section, we empirically evaluate the performance of our PO-GP-UCB algorithm using the dataset sampled from
Branin-Hoo benchmark function®. The original inputs for this experiment are 2-dimensional vectors arranged into a uniform
grid and discretized into a 31 x 31 input domain (i.e., d = 2 and n = 961). The function to maximize is sampled from
the negation of Branin-Hoo function. The original output measurements are log-transformed to remove skewness and
extremity in order to stabilize the GP covariance structure. The GP hyperparameters are learned using maximum likelihood
estimation (Rasmussen & Williams, 2006). Similarly to the real-world loan applications dataset in Section 4, the original
inputs are preprocessed to form an isotropic covariance function*. All results are averaged over 50 random runs, each of
which uses a different set of initializations for BO. We set the GP-UCB parameter d,,.;, = 0.05 (Theorem 3) and normalize
the inputs to have a maximal norm of 25. We set the parameter » = 10 (Algorithm 1), DP parameter § = 10~2 (Definition 2)
and the GP-UCB parameter 1" = 50 for this experiment.

Fig. 3 shows the performances of PO-GP-UCB with different values of e and that of non-private GP-UCB. The results are
consistent with the previous experiments. Smaller values of e (tighter privacy guarantees) generally lead to larger simple
regret; PO-GP-UCB with the largest value of € = exp(2.3) satisfying the condition ¢ ,,;,,(X) > w incurs only 0.0040,
more simple regret than non-private GP-UCB after 50 iterations; PO-GP-UCB with some values of ¢ in the single-digit
range satisfying the condition o,,;, (X) < w exhibits small difference in simple regret compared with non-private GP-UCB
after 50 iterations: € = exp(2.0) and € = exp(1.8) result in 0.023¢, and 0.0510, more simple regret respectively.
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Figure 3. Simple regrets achieved by tested BO algorithms (with fixed » = 10 and different values of €) vs. the number of iterations for
the Branin-Hoo function dataset.

Similarly to the experiments in the main text, we investigate the impact of varying the value of the random projection
parameter r on the performance of PO-GP-UCB. We consider 3 different values of DP parameter ¢: ¢ = exp(2.3),
e = exp(2.5) and € = exp(2.7). We fix the value of € and vary the value of r. The largest value of r satisfying the condition
Tmin(X) > wisr = 10 for e = exp(2.3), r = 15 for € = exp(2.5) and r = 20 for € = exp(2.7). Tables 10, 11 and 12
reveal that the largest values of r satisfying the condition ¢,,;,,(X’) > w lead to the smallest simple regret after 50 iterations.
Decreasing the value of r increases the simple regret, which agrees with our analysis in Section 3.4 (i.e., smaller 7 results in
worse regret upper bound). Increasing r such that the condition o,,;, (X) < w is satisfied, on the other hand, also results in
larger simple regret, which is again consistent with the analysis in Remark 2 stating that the regret upper bound becomes
looser in this scenario. These observations are consisted with those for a synthetic GP dataset, a real-world loan applications
dataset and a real-world property price dataset in the main text.

8https://www.sfu.ca/~ssurjano/branin.html.
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Table 10. Simple regrets achieved by PO-GP-UCB with fixed e = exp(2.3) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition omin (X)) > wis r = 10.

r 3 6 8 10 15 20
Sso | 0.53 | 0.184 | 0.038 | 0.0 | 0.005 | 0.024

Table 11. Simple regrets achieved by PO-GP-UCB with fixed e = exp(2.5) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition gmin (X) > wis r = 15.

T 3 9 12 15 20 30
S50 | 0.259 | 0.001 | 0.0 | 0.0 | 0.014 | 0.026

Table 12. Simple regrets achieved by PO-GP-UCB with fixed e = exp(2.7) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition gin (X) > wis r = 20.

T 5 10 15 20 30 50
Sso | 0.152 | 0.0 | 0.0 | 0.0 | 0.005 | 0.073

B. Proofs and derivations
B.1. Proof of Lemma 1
Theorem 4. [Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984)] Let v € (0,1/2), r € Nand d € N be

given. Let M’ be ar x d matrix whose entries are i.i.d. samples from N'(0,1). Then for any vector y € R?

P((=v)lyl2 <M 'y]2 < (1+ v)llgll?) = 1 - 2exp(~v*r/8).

Proof of lemma. Fix x,z' € X. It follows from Theorem 4 by setting vector y = (z — )" and r x d matrix M’ = M "

that
1 — 2exp(—v?r/8)

<SP(A-@-a)TIP<r M (@ —-2)T|? < (1+v)|(z - x')THQ) 2)
=P(A-v)||z—2|? <r Y aM—-2'M|* < (1 +v)|z - ac’||2).

Since there are no more than n?/2 pairs of inputs z;, ' € X, applying the union bound to (2) gives that the probability of
1 =v)llz =2|* < r7HaM =2’ M|* < A+ v)|lz - /|

for all z, 2’ € X is at least 1 — n? exp(—12r/8).
To guarantee that the probability of (1 — v)||z — 2'||> < r71||Mx — M2'|]? < (1 + v)||z — 2'||? forall 7,2’ € X is at
least 1 — p, the value of r has to satisfy the following inequality:

1 —n?exp(—v?r/8) >1—u,

which is equivalent to r > 8log(n?/u)/v>?.

B.2. Privacy guarantee of Algorithm 1
B.2.1. COMPARISON BETWEEN ALGORITHM 1 AND ALGORITHM 3 OF BLOCKI ET AL. (2012)

There are several important differences between our Algorithm 1 and the work of Blocki et al. (2012). Firstly, Algorithm 3
of Blocki et al. (2012) outputs a DP estimate r I XTMTMX (in the notations of Algorithm 1) of the covariance matrix
r~1XT X, while our Algorithm 1 outputs a DP transformation r~1/2X M (or 7~ /2X M) of the original dataset X'. However,
the authors of Blocki et al. (2012) prove the privacy guarantee (see Theorem 4.1, p. 13 of their paper) by showing that
releasing XTMT (using matrix M of size r x n) preserves DP and then apply the post-processing property of DP to
reconstruct r~ X T M T M X. This observation allows us to modify their proof for our Algorithm 1. Additionally, matrix
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XTMmT (in the notations of Algorithm 1) in the proof of Blocki et al. (2012) has size d x r, while matrices r~Y/2X M
and r—1/2X M returned by our Algorithm 1 have size n x r, which requires us to modify the proof of Blocki et al. (2012).
These modifications are discussed in Section B.2.2 below.

Secondly, Algorithm 3 of Blocki et al. (2012) does not have the “if/else” condition (line 6 of Algorithm 1) and always
increases the singular values as in line 9 of Algorithm 1, since the authors are able to offset the bias introduced to the
estimate of covariance of the dataset along a given dimension by increasing the singular values. Specifically, they do it by
subtracting w? from the computed estimate (see Algorithm 4 in Blocki et al. (2012)). For our case, however, the distances
between the original inputs from the dataset X" are no longer approximately the same as the distances between their images
from the dataset Z when o, (X) < w (i.e., the “else” clause, line 8 of Algorithm 1), as shown in Theorem 2. Therefore,
the case of i, (X) < w results in a slightly different regret bound (see Theorem 3 and Remark 2) and requires us to
introduce the “if/else” condition into Algorithm 1. Introducing such an “if/else” condition, however, does not affect the proof
of Theorem 4.1 of Blocki et al. (2012) and our proof: the “if”” clause (line 6 of Algorithm 1) is stated in the Corollary (see p.
17 of Blocki et al. (2012)), while the “else” clause (line 8 of Algorithm 1) is proved in Theorem 4.1 of Blocki et al. (2012).

B.2.2. PROOF OF THEOREM 1

Fix two neighboring datasets X and X”. Let E £ X’ — X, such that E is a rank 1 matrix. Without loss of generality, we
assume that in the definition of neighboring datasets (Definition 1) ||z ;.) — #{;.,|| = 1. Then we can write E as the outer

product E = e;«v ' where e;« is the indicator vector of row i* and v is the vector of norm 1. Then the singular values of
are exactly {1,0,...,0} (see Blocki et al. (2012), p. 14).

Similar to Theorem 4.1 of Blocki et al. (2012), the proof is composed of two stages. For the first stage we work under the
premise that both and X’ and X have singular values no less than w (the “if” clause, line 6 of Algorithm 1). For the second
stage we denote X and X" as the respective matrices from “else” clause (line 8 of Algorithm 1) and show what adaptations
are needed to make the proof follow through.

We prove the theorem for the scaled output of the “if” clause of Algorithm 1 X' M (the post-processing property of DP can
be applied after that to reconstruct 7~ /2X M). X M is composed of r columns each is an i.i.d. sample from XY where
Y ~ N(0, I4xq). The following lemma is similar to Claim 4.3 of Blocki et al. (2012)(p. 14):

Lemma 2. Lete >0, € (0,1), r € N, d € N, two neighboring datasets X and X' andY sampled from N (0, I5xq) be
given. Fix eg = ¢/\/4r1og(2/6) and 5y = §/(2r). Denote

S £ {£ € R": exp(—€g)PDFxry (€) < PDFxy (€) < exp(eg)PDF x1y (€)}

where PDF is the probability density function. Then P(S) > 1 — do.

Proof. Similar to the proof of Claim 4.3 of Blocki et al. (2012), first we formally define the PDF of the two distributions.
We apply the fact that XY and X’Y are linear transformations of A(0, Iy q).

_ 1 ox Ly Ty-1
PDFyy (§) = (27r)’”de1t(XXT) p( 261 (xxT) 5)

_ exp [ — =T (X' T)1e).
PPy (€) = e exp (= 567 (X))

If the matrix XX (all the reasoning here is exactly the same for X’X’T) is not full-rank, the SVD allows us to use
similar notation to denote the generalizations of the inverse and of the determinant: The Moore-Penrose inverse of
any square matrix M is Mt £ VE~1UT where M = UXVT is the SVD of matrix M, and the pseudo-determinant

of M is det(M) £ T;“"* ™). (M) where o;(M) are the singular values of matrix M. Furthermore, if XX has

non-trivial kernel space (i.e., is not invertible) then PDF yy in the equation above is technically undefined. However,

if we restrict ourselves only to the subspace V = (Ker(XX' "))+, then PDF% is defined over V and PDFY% (£) £

1 _ 1T Tyt
V(@m)rank (XX T) Jop(X X T) exp ( 2 (XAT) f)

From now on, we omit the superscript from the PDF and refer to the above function as the PDF of X'Y. See p. 4-5 of Blocki
et al. (2012) for more details.
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Similar to the proof of Claim 4.3 of Blocki et al. (2012), first we show that

det(X7X'T)

exp(—€o/2) < W

< exp(eo/2).

The proof copies the derivation of eq. 4 in Blocki et al. (2012) (p. 15) with replacing A to X7, A’ to X'", z to ¢ and
swapping n and d where necessary.

Next we prove an analogue of eq. 5 of Claim 4.3 of Blocki et al. (2012):

ngIﬁT((XXT)‘l - (XXT) e = eo/2> < do- 3
To do this:
(X))t — (') h)e
:fT((XXT) 1 (X X/T) IXXT(XXT)71)§
=& () (@A) A - E)(X - B)T(xxT) )¢
=& ((xx ) -y M AT —BX'T —X'ET + EET)(xXT) )¢ 4)
= ((ax) ™ —xx) T - @A) (-BXT — XET+EET)(XXT) He
:fT(X/X/T) 1(EX/T+XET EET)(XXT)— 5
=TT HEXT BT (X T) e

where the second and the last equalities are due to E = X’ — X. The expression in the last line of (4) is very similar to the
one in the derivation of eq. 5 in Blocki et al. (2012) (p. 15). The difference is that in order for the proof to go through, we
need to multiply (X’X"T)~1 by XX T (XX T)~! in the second line of (4), while the original proof of Blocki et al. (2012)
multiplies (X TX)~1 by X'T X/ (X’TX’)~! (in our notations), see eq. in the bottom of p. 15 of Blocki et al. (2012).

Now denoting singular value decompositions of X = UXV " and X’ = U’AV'T, and the fact that £ = e;«v', we
continue (4):
T XYY EXT + X ET)(xxT) e
— ET(X/XIT)—lEXT(XXT)flf + ET(XIX/T)le/ET(XXT)flf
= gT(U'AV'TV'AU’T)— (e - TVZUT)(UEVTVEUT)— 13 5)
+T(UAV TV AU ) LWU'AV T - e ) (USVTVEU )7L
=ETUA2U e -0 VETW T+ ETUN W T e US2UTE
where the last equality is due to the properties of singular value decomposition.

So now, assume ¢ is sampled from X’Y (the case of XY is symmetric). That is, assume that we’ve sampled x from
Y ~ N(0, I;xq) and we have € = X’y = U'’AV'T x and equivalently £ = (X + E)x = ULV "y + e;=v | x. Plugging it
into (5) gives:

IETUA2U ey -0 VETIWU e+ TUA IV Tw - e, UST2U T¢|

= |(UAV'TY)TUA2U T e -0 TVETUT(USV T + €500 X)

+HU'AV' ) TUAV T e LUST2UT(USV T x +e-0 T X))

=|x"V'AU'TU'A U Tepe -0 TVETTUT(WUSV T X + €00 x)

+x VAUTU' AV o e L UST2UT(USV T x + e-v T X))

< termy - termso + termsg - termy

where for i = 1,2, 3, 4 we have term; = |vec; - x| and

vecy
_ / ITrrrA—=2711T , \T
= (V'AUTU'A2U T ;1)
_ (V/A—lU/Tei*)T

so |lvect|| < 1/Ag;
vecy
=0 VETIUT(UZVT +epv")
=v! + UTVZ_lUTei*UT
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80 ||vecs|| <1+ 1/04;
vecs
(V AU'TU AWV To) T

—1)

s0 ||vecs|| < 1;

vecy
= US2UT(USVT +epv])
= e USTWT 4+ US2U T epn”

s0 |[vecq|| < 1/0q+1/0% where o4 and A, are the smallest singular values of X’ and X”, respectively. The remainder of the
proof now follows the proof of Claim 4.3 of Blocki et al. (2012) with replacing Ato X' T, A’ to X’ T, x to £ and swapping n
and d where necessary. O

For the second stage we assume that “else” clause (line 8 of Algorithm 1) is applied and denote X' £ U /32 + w1l qV "

and X' £ U’\/A2? 4+ w?I,,xqV'". The theorem requires an analogue of Lemma 2 to hold, which depends on the following
two conditions:

v/ viT
exp(—e0/2) < ‘m < expleo/2). ©)
P (;gT((»&F)l — (XX Te| > m/?) < do. 2

Derivation of (6) copies tlle derivation of eq. 6 in Blocki et al. (2012) (p. 16). To derive (7), we start with an observation
regarding X’ X7 and X' X' T

XX T =X4+E)(X+E) =xXT +XE" + EXT
XXT=UR2+’ DU = USRS + T =xX7 + %1

XXT =U N+ 2DUT =UANU'T +0 T =X'X'T +0%T ®)
— XX -XXT =X'ET+EXT.
Now we can follow the same outline as in the proof of (3). Fix &, then
T((X")EvT)—l _ ( ~/‘);//T -1 §

— ST((‘)E)ET)—I _ (‘)E-/‘)EIT)—I‘)E- v (./?.)E'T)_l)f

:gT((‘)E')ET)—l_(‘)E‘/‘)E/T)—l()?/‘)e XET_EXT XXT 1)

— T ((RXT) ! - (RAT) T (W) (-X'ET - P e

= (WX THAET + BXT)(XX )7 ©)

="(XXT)YWX'ET -EET + EET + EXT)(XXT) Le

=T (XT) (X - B)ET + BT + ET)(X2T) ¢
— T(X/X/T)—l(X/ —E)U-e;»l;(.)é./f—r)_lf

_"_gT()E/‘)EvIT)—lei* "UT(XT —‘rET)(‘)E.)ET)_lg

where the second equality follows from (8) and the last equality follows from F = e;-v . The expression in the last line
of (9) is very similar to the one in the derivation of equation in Blocki et al. (2012) (p. 17, second equation array from the
top). The difference is that in order for the proof to go trhough, we need to multiply (X’X’T)~! by XX T (XX T)~!
the second line of (9), while the original proof of Blocki et al. (2012) multiplies ()ET)E)*I by )?’T/'E"()E’T)?')’l (in our
notations), see second equation array from the top, p. 17 of Blocki et al. (2012). The remainder of the proof now follows the
proof of Theorem 4.1 of Blocki et al. (2012) (p. 17).
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B.3. Proof of Theorem 2
Proof. Fix z, 2’ € X and their images z, 2" € Z. If 0,4, (X) > w, according to Algorithm 1, Z = r12x M (line 7) and

Iz —2'|?
_ ||7’71/2£ZJM o T71/217/M||2
=r Y aM — o' M|

and Lemma 1 can be immediately applied.
If 0pin (X) < w, according to Algorithm 1, Z = r—/2X M (line 10) and

lz — 2|
= |lr Y2 M — 2 M2
=r Y EM — &' M|
<1 +v))E -
< (L4 0)(1+07/0% (X)) 2 — ']
where the first inequality follows from Lemma 1 and the second inequality follows from Lemma 7. Similarly,
Iz — ']
_ ||7’71/253M o ,r,fl/Qi,/M”Z
=r Y EM — &' M|
> (1-v)[& - &
> (1 )|w - ']

where the first inequality follows from Lemma 1 and the second inequality follows from Lemma 7. O

B.4. Bounding the covariance change

Theorem 5. Let a dataset X C R? be given and 0, (X) > 0 be the smallest singular value of X. Let v € N be the input
parameter of Algorithm 1, a dataset Z C R" be the output of Algorithm 1 and w be defined in line 5 of Algorithm 1. Let
d = diam(X)/l where diam(X) is the diameter of the dataset X. Let v € (0,1/2), u € (0,1) be given. If v < 2/d? and
r > 8log(n?/p)/v?, then the probability of

|kzz’ - kzz’| S C : kzz’

forall z,x' € X and their images under Algorithm I z,z' € Z is at least 1 — j where

o2 {Vd2 ifo'min(X) > w,

10
max (l/d2, 1 —exp (—0.5(v + vw? /o2, (X) + w?/02,,,(X))d?) ) otherwise. (19)

Remark 5. Tt immediately follows from Theorem 5 that the probability of k. < (1 4 C) - ky,s for all z, 2" € X and their
images z, 2’ € Zis atleast 1 — p.

Proof.
kzz’ - ka:a:’
— o3 oxp (<05 — /%) = oF exp (~0.5]c — o' /?)
< o, exp (=0.5(1 — v)||z — 2'||*/1%) — 05 exp (—0.5]|z — 2'||*/1?)
== kmr’ (exp (05V||:C - x/HQ/l?) - 1)
< kxa:’ (2 : g051/Hx - ‘rl||2/l2))
< ka:a:’ -vd

where the first inequality follows from Theorem 2 (since the condition (1 — v/)||z — 2’||? < ||z — 2’||? holds in both cases
Omin(X) > w and otherwise), and the second inequality follows from the identity exp ¢ < 1 + 2¢ for ¢ € (0, 1) by setting
c = 0.5v||z — 2'||?/1? since v < 2/d? and

0.5v||z — 2/||? /12

< 0.5v (diam(X))? /12 11)
< 0.5-2/d? - (diam(X))2 /1 (
=1.
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If Um?n(X) Z w,
ka:a:’ - kzz’
=o2exp (—0.5ng — x’||2/l2) — 02 exp (—O.5||z — Z’H2/l2)
< oo (-0 — o [2/12) — obexp (~05(1-+ 1) — 22 1)
= kya (1 — exp (—0.5v||z — 2'||?/1?))
= ko (oxp (0.5v ] —2'|*/1%) = 1) exp (~0.5v]|w — a’|[*/17)
< ko (exp (050 ]lz — 2'|[* /%) 1)
< ko (2- (050l = 2'|*/1%))
< kpz -vd

< NN

where the first inequality follows from Theorem 2, since if 0y, (X) > w, C' = 1 in the statement of Theorem 2, the
second inequality follows from 0.5v||z — 2’||?/I? > 0 and the third inequality follows from the identity exp ¢ < 1 + 2¢ for
c € (0,1) by setting ¢ = 0.5v||z — 2’||?/1% and (11).

Similarly, if 6,5, (X) < w,

kwx’ - kzz’
=o2exp (—0.5|lz — 2'||*/I?) — ol exp (—0.5||z — 2/||* /1)
4 _ EITT IO _ 2/ 2 22

<o, exp (—0.5]z — 2| /1?) 05 exp (—0.5(1 + v)(1 + w? /o7, (X)) ||z — &' ||?/17)

= ko (1= exp (=0.5(v + 102 /07, (X) + w2 [07,5, (X)) |2 — 2|2 /17))

< kpa (1 — exp (—0.5(u +vw?/o?, (X)) + w2/0,2nm(X))d2))
where the first inequality follows from Theorem 2, since if &, (X) < w, €' = 1 4+ w?/02,;,(X) in the statement of
Theorem 2.

O

B.5. Proof of Theorem 3

First we recall and introduce a few notations which we will use throughout this section. Let X C R? be a dataset and
its image under Algorithm 1 be a dataset Z C R", Z;_; £ {#z1,...,2t—1} be a set of transformed inputs selected by
Algorithm 2 run on transformed dataset Z after ¢ — 1 iterations and the preimage of Z;_; under Algorithm 1 be a set
Xo_q 2 {z1,...,2_1}. Let z € Z be an (unobserved) transformed input and x € X be its preimage under Algorithm 1.
Let f be a latent function sampled from a GP. Define

f(z) & f(x)
(@, Xo1) 2 () + B o ()
Oét(Z, Zt—l) é [Lt(Z) + 5151/25'15(2)

A
2 = argmax o (z, Z¢_1).
zEZ

12)

That is, f is the latent function f defined over the transformed dataset Z, ay(z, Z¢—1) is the function maximized by
Algorithm 2 at iteration ¢, oy (x, X;—1) is the function maximized by GP-UCB algorithm run on the original dataset, z; is
the transformed input selected by Algorithm 2 at iteration ¢ and x; is the preimage of z; under Algorithm 1.

Lemma 3. Let &' € (0,1) be given and 3; = 21og(nt>m%/65"). Then
£ (@) — me(@)| < B or(x) Vo € X VtEN
holds with probability at least 1 — §'.

Proof. Lemma 3 above corresponds to Lemma 5.1 in Srinivas et al. (2010); see its proof therein. O

Lemma 4. Let &' € (0,1) be given and 3; = 2log(nt?m?/65"). Then the probability of

(&) = F(z0) < 2max|an(z, Zi-1) — aulw, Xp)| + 28, %0 ()

forallt € Nis at least 1 — 0’ where z* is the maximizer off and x € X is the preimage of z € Z under Algorithm 1.
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Proof.
f(2%) = f(z)
= f(z") = f(2)
< oy(x*, Xe1) — flay)
= o (2", Xy1) — (2%, Zi-1) + (27, Zi-1) — f(x0)
< ou(r", K1) — (27, Zi-1) +Oét(zt73t 1) — f(zt)
= oy (", Xio1) — o (2%, Zem1) + (2t Zio1) — @y, Xp—q) + oy, X—q) — fae)

< 2max|at(z Zi 1) — oy

) — ap(z, Xe1)| + o, Xeo1) — fxe)
) — ax(

< 2max | (2, 241 a(x, Xo1)| + 263/20)5(30,5)

where the first equality is due to (12) and ™ is the maximizer of f, the first and the last inequalities are due to Lemma 3 and
the second inequality is due to the choice of z; in (12). O

Lemma 4 resembles Lemma 5.2 of Srinivas et al. (2010) with an added term 2 max, , |oy (2, Zi—1) — au(z, Xp—1)]. It
suggests that in order to bound regret f(z*) — f(z;) incurred by Algorithm 2 at iteration ¢, we need to bound | (z, Z1—1) —
at(x, X;—1)|. Using the diagonal dominance assumption (Definition 3), we do it in the following two lemmas:

Lemma 5. Let C > 0 be given. If for all z,x’ € X and their images under Algorithm 1 z,2' € Z holds |k, — kzp| <
C kg, forallt =1,...,T matrix Kx,_, x,_, is diagonally dominant, then for every unobserved transformed input z € Z
and its preimage under Algorithm 1 x € X

| ()_Ut |<Cl/\/|Xt1
Cy 2 Coyy\ 207 + ag(ﬂ(l +C)2%02/02 + (2 + C)C).

where

Proof.

52(2) — o2 (x)

= |(k227KZZf 1(KZt 1Zf , T o I)ilKZf 12) (er* i S 1(KXt 1 X1 +O—T21,I)71KXt—lz)|
- |KZZt I(Kzt 12¢— 1+0 I) lKZt 12 IXt I(KXt 1 X1 +021) IKXt 151?‘

< |KZZt—1(KZt—IZt71 +o I) 1KZt712 - ZZt 1<KXt71Xt71 +0nl) 1KZt713|

+ |Kzzt71(KXt—1Xt71 to I) 1KZt 12 7 IXt I(K-Xt—lxt—l +0-121[)_1K2t712|

+ |K$Xt—1(KXt—1Xt—l +021) 1KZt 12 KxXt—l(KXt—IXt—l +U$LI)71KXt—1$|

< (1+ CP (Ko, |l - 03 /o7 - V2C/ /[ Xeoa| + (2 + C)C - | Koz, |1/ VX1 ]

= Cll Ko, I/ V%] (V2(1+ C)202 /0% + (24 C)C)

< Coyy\/202 + 0% /\/|X— 1( 2(14 C)’0 /o +(2+C)C)

where the first equality is due to (1), the second equality is due to k,, = k., = 05 for every x and z, the first inequality is
due to triangle inequality, the second inequality is due to

13)

|K23t71(KZt713t71 + UiI)_lKthlz - KZZt—l(KXt—lXt—l + Uil)_lKthyz‘

= |KZZt71 ((KZt—lzt—l + 0721[)_1 - (KXt—lXt—l + U?LI)_l)KZt71Z|

< HKZZt—l ”2 ’ ||(Kzt—1zt—1 + 0'721])71 - (KXt—lxt—l + 0-721[)71”2

(1 + C)QHKTCXt,—l H2 : ||(KXt—1Xt,—1 + 0'721[)71 - (KXt—l-Xt—l + U?LI)71H2

(1 + C)2HK96Xf,—1 H2 : ||(K2t—lzt—l + U’?II)il(KZt—lzt—l - KXt—l-Xt—l)||2 : ||(KXt—1Xt—1 + J?LI)71||2
1+ OV Ko oI - 1Kz, sz, +on D) o 1Kz, 1200 — Kaoyxa 2 [(Kxee oy + 00 D)7
1+ OV Koo |IP - Vop - 1Kz, 2y — Ka el [(Ka vy +0nD) 7o

(1+ CP | Ko, |I* - 1/07, - V2C0 /| X | - [(Kxy sy + 00 D)o
( )
( )
( )

[ VAN VAN VAR VAN VAR VAN

L+ O || Ko,y [P - 1oy - V2005 /\/1Xea] - 1/ (VI X[ K, )
L+ O Koy |l - 0y /oy - V20| X4
L+ OV || K, || - 0y /ory - V20/ /] Xea|

IN
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where the first inequality is due to property of quadratic forms |v " Av| < ||v||? - || A2 for any vector v (see Theorem 2.11,
Section I1.2.2 in Stewart & Sun (1990)), the second inequality follows from the statement of the lemma and Remark 5
to Theorem 5, the third inequality follows from Theorem 2.5 (see Section II1.2.2 in Stewart & Sun (1990)), the fourth
inequality is due to the submultiplicativity of the spectral norm (see Section I1.2.2, p. 69 in Stewart & Sun (1990)), the
fifth inequality follows from Lemma 8, the sixth inequality follows from Lemma 9, the second last inequality follows from
Lemma 10 and the last inequality follows from |X;_1| > 1;

and
|KZZt—1 (Kthlthl + O'ZI)_lth71Z - KxXt—l (KXt—IXt—l + U?LI)_lKthl)Z'
+ ‘Kth—1<KXt—1Xt—l + UZI)_lKthlz - Kﬂ?Xt—l(KXt—lXt—l + U?LI)_lKXt—lwl
= |(Kzzt71 - K$Xt71)(KXt71Xt71 + Uil)_lKZt71Z‘
+ ‘K:E?Qfl (K-Xt—lxt,—l + Uil)il(KZf,flz - KXt,lx)‘
<Koz — Koxo |- (K yaey + 00 D)o Kz, o2
+ ||K€I/’Xt—1|| ' ||(KXt—1Xt—1 + 07211)_1||2 ) ||Kzt—lz - KXt—le
Q+1+0) Koz — Koo o |- 1(Kx ey + 00 D) 7o [ K|
2+0) ClEpa |l [(Kxy gy +on D)™ iz [ Ko, |
2+0) - ClKex, || - 1/ (VX1 Kzxe, ) - ([ Ko, |
2+O)C - [ Kex,_, ||/ VX1

where the first inequality is due to property of bilinear forms |u " Av| < |lu| - ||A]|2 - ||v|| for any vectors u, v (see Theorem
2.11, Section I1.2.2 in Stewart & Sun (1990)), the second and the third inequalities follow from the statement of the lemma
and Remark 5 to Theorem 5 and the last inequality follows from Lemma 10.

VAN VARVAN

The last inequality in (13) follows from

L
= HKme,_lu KXt 1Xt—1 +o I) 1{}

( IIT(KXf 1 X — 1+U I)
= HKIXt—l‘I wmtn( K/Yf 1 X1 +U I

(

(

( ) wmafﬂ(KXf 1 X¢— L +J2I)
= HKIXth * Vmin (KXt 1 X T O I) ||KXt—1Xt—1 +JnI||2
= HKIXt—IH * Vi (KXt 1 X T O I) ! ||KXt 1 X~ 1||2+072L)
S HKJJXt—l‘I wmzn((KXt 1Xt—1 +o I) 1) (20 +02)
< Kax, I(K/Yr 1Xt 1 +Unl) IKthlT (20 +o, )
< km . (20 + o2)

(20 +02)

)
.
)

where V4. (+) and ¥, () denote the largest and the smallest eigenvalues of a matrix, respectively, the first fourth equalities
are properties of eigenvalues, the first inequality is due to Lemma 11, the second inequality follows from Lemma 12, the third

inequality follows from the fact that conditioning does not increase variance and the last equality is due to k;, = 05. O

Lemma 6. Let C > 0 be given. If for all z,x’ € X and their images under Algorithm 1 z,z' € Z holds |k, — kzy| <
C kg, forallt =1,...,T matrix Kx,_, x,_, is diagonally dominant and |y;| < L, then for every unobserved transformed
input z € Z and its preimage under Algorithm [ © € X

|fit(2) — pe(z)| < CL + Co/\/| X1

where

Cy=V2(1+C) Co2/o? - L

Proof.
| (2) — ()]
=K.z, (Kz, 2, + 0, 1) vy — Ko (Kxyyxy + o)y
< |KZZt,—1(KXt—1Xt—1 + Uil)ilyt—l - Kﬁthl(Kthlxt—l + G?LI)ilyt—”
+ |KZZt—1(KZt—1Zt—1 + O—ZI)ilyt—l - KZZt—l(KXt—lXt—l + O—?’LI)ilyt—”
= |(K23t71 - Kthfl)(Kthlthl + U?zI)_lytfﬂ
Koz (K22, +on D)™ = (Kxyxy + 00 D)7 )y

< C-L+Cy/\/|X—1|
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where the first equality is due to (1), the first inequality is due to triangle inequality and the second inequality follows from

|(KZZt—1 - Kﬂb’Xt—l)(KXt—lXt—l + 0721])712th11|
< HKZZt—l - Kthfln : ||(K-Xt—1)2(t—1_—1~_ JnI)_ ||2 : ”yt*l”
< Ol Kpx, o || [(Kx o y + 00 D) 7 |2 - [[ye-all

< Ol Kpx, o |- 1/ (VX || Kz, []) - lye—all
<C-L

where the first inequality is due to property of bilinear forms |u " Av| < |lu|| - ||A]|2 - ||v|| for any vectors u, v (see Theorem
2.11, Section I1.2.2 in Stewart & Sun (1990)), the second inequality follows from the statement of the lemma, the third
inequality follows from Lemma 10 and the last inequality follows from the condition |y;| < L forallt = 1,...,T;

and

|K22t—1 ((Kzt—lzt—l + 0'721‘[)71 - (KXt—lXt—l + J?LI)il)ytfl‘

<Kozl 1Kz, 2,y 00 ]) ™ = (Kxy v, + 0 D)7z lyeall

<Kz ol (K22, + 02 D) 2 (K220 — Kyt (K, + 00 1)l - [yl

< ||KZZt71 H ' H(Kzt—lzt—l =+ 0'721[)71“2 : ||K3t712t71 - K/Yt—lxt—l ||2 ' ||(KXt—1Xt71 + 0-7211)71”2 : Hyt—l‘l
< ||KZZt,—1 H ' 1/0721 ! ||KZt,—1Zf,—1 B KXt—l-Xt—lnz : H(KXt—l-Xt—l =+ 021)71“2 : ||yt—1||

<NK.z, |- 105 - V2Co [N X | - (K ey +on D) 2 lye-all

<|K.z, |- 1)o7 - V200, /31X 1] - 1/ (VX Al Kz ) - lyel

< (14 O)|Kzex,_, || - 1)o7 - V2Ca3 /1% | - 1/ (VX | Kex, ) - lye-all

<V2(1+0)-Col/o? - L/\/]X|

= Ca/V/| X1

where the first inequality is due to property of bilinear forms |u " Av| < ||ul| - ||A]|2 - ||v|| for any vectors u, v (see Theorem
2.11, Section I1.2.2 in Stewart & Sun (1990)), the second inequality follows from Theorem 2.5 (see Section II1.2.2 in Stewart
& Sun (1990)), the third inequality is due to the submultiplicativity of the spectral norm (see Section I1.2.2, p. 69 in Stewart
& Sun (1990)) the fourth inequality follows from Lemma 8, the fifth inequality follows from Lemma 9, the third last
inequality follows from Lemma 10, the second last inequality follows from the statement of the lemma and Remark 5 to
Theorem 5 and the last inequality follows from the condition |y;| < L forallt =1,...,T. O

Proof of the theorem. By Lemma 4 for 6’ = 6,,.5/2 and 3; = 2log(nt?m?/35,) forall t € N:

Tt

= f(=*) - (@)

= f(z") — f(=) (14)
< 2max (2, Zim1) — (@, Xo)| + 268, o (x2)

< 2max |fie(2) — ()| + 28, max |57 (2) — oF («)] + 28, %01 ()

with probability at least 1 — 0,05 /2 where the second equality follows from (12), the first inequality follows from Lemma 4
and the second inequality follows from triangle inequality. Suppose v € (0, min(1/2,2/d?)), u € (0,1) are given (we
will set the exact values of j, v later) and the input parameter of Algorithm 1 7 > 8log(n?/u)/v?. By Theorem 5 for all
x,2’ € X and their images under Algorithm 1 z, 2’ € Z holds |k, — kzar| < C - kg with probability at least 1 — p. Let
1t = Oueb/2. Then we can apply Lemma 5 and Lemma 6 to (14). Using the union bound we obtain that forall ¢t = 1,...,T

Tt
< 2max |jie(2) — ()| + 28, max |57 (2) — o} ()] + 28, %o (1) (15)

< 2(CL + Co/V1X1]) + 2018, | TX 1] + 28,01 (1)

with probability at least 1 — d,,, where C; and C are defined in Lemma 5 and Lemma 6, respectively. Summing over
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M=
ejm

o~
Il
N

<4

(CL + Co/VTXa] + C182 VTl + B o))

M*ﬂ

t

IN

M-

1237 (C2L? 4 (Co + C18 )2 | X1 | + Bro? (1))

t

1 . -
(16)
= 12C2 LT +12) (Co + C1B° X | + 12 Brof (1)

t=1 t=1
T

<1202 LT + 24(Cy + C1 5% log T+ 1267 Y 0 (we)
t=1

T
<1202 LT + 24(Co + C187 %) log T + 1287/ log(1 + 0,2) Y log(1 + 0,207 (1))
t=1

< 12C2L2T + 24(Cy + C1 B3/ *)log T + 2487/ log(1 + 0,%) - vr

where the first inequality follows from (15), the second inequality follows from identity (a + b + ¢)? < 3(a® + b% + ¢?),
the third inequality follows from Zf:l 1/|X%-1] < Zthl 1/t < 2logT and the fact that ; is nondecreasing, the fourth
inequality corresponds to an intermediate step of Lemma 5.4 in Srinivas et al. (2010) and the last step follows from Lemma
5.3 and Lemma 5.4 in Srinivas et al. (2010) where y7 £ maxx, cx I[fx;yi—1] = O((log 7)) and fx £ (f(2)) c
(see Theorem 5 in Srinivas et al. (2010)). Therefore,

5%
< R%/T?
T
<t i
< 1202L2 +24(Cy + C1 B %) log T/T + 2487/ log(1 + 0, *)yr /T

where the second inequality follows from Cauchy-Schwarz inequality and the last inequality follows from (16). If
Omin(X) > w then, according to Theorem 5, C' = vd?. To guarantee that 12C?L? < €2 , and to satisfy the premise of
Lemma 1 (i.e. v < 1/2) and Theorem 5 (i.e. v < 2/d?), we need to set the value of v = min(e,/(2v/3d?L),2/d?,1/2).

Since v < 2/d? and hence C' = vd? < 2
&
_Cay,/2a2+02( 2(14C)%a; Jor +(2+C)C)
< 20,\/203 + 02 (V2(1 +2)%02 o2 + (2+2) - 2)
= 0oy + o202 /02 + 1)

and

S

V2(1+C)- 002/02
V2(1+2)- 202/0
O(o 2/0

where C and (5 are defined in Lemma 5 and Lemma 6, respectlvely.

A

Remark 6. If 0,,in(X) < w, a similar form of regret bound to that of (17) can be proven: According to Theorem 5,
C = max(vd? 1 — exp (—0.5(v + vw?/02,,,(X) + w? /02, (X))d?)) instead of C = vd? and the entire proof of
Theorem 3 can be directly copied to reach (17). In this case, however, the term 12C2L? in (17) cannot be set arbitrarily
small. That is explained by the fact that when o, (X) < w, Algorithm 1 increases the singular values of dataset X’ (see
line 9) and the pairwise distances between the original inputs from &" are no longer approximately the same as the distances
between their respective transformed images (see Theorem 2) resulting in a looser regret bound.
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B.6. Auxiliary results

Lemma 7. Let a dataset X C R? be given. Let a dataset X c R be defined in line 9 of Algorithm 1 (i.e., X =

Y2 + w21, qV " where X = UXV' T is the singular value decomposition of X). Let 0 pin(X) > 0 be the smallest
singular value of X. Then for all v,x' € X and their corresponding ©,7' € X (when viewing datasets X and X as
matrices)

[z —a'[| < | = &) < \/1+w?/op,;, (X) [l — 2.

Proof. Denote the rows of U as u;) so that

U(1)
U= :
U(n)
Fori =1,...,n denote the input in the i-th row of the datset X’ (X) viewed as matrix as % () (Z(;)). From the singular value

decomposition, z(;y = u;» XV " and Z(;) = u(j)\/S? + Inxqw?V " Thenfori,j=1,...,n
12 — 2 I”

~ g~ 22+ VP T
wi) = u))VE + & hxaV VI + @l (up) —ug)'

(
= (us) — u)VEZ T Ploea /T2 + WP la (ugy — )T

1n(n d)
= D (ugr —ug)*(of +w?)
o (18)
min(n,d)
< >0 (e — ) or(1+ w? ok, (X))
k=1
=1+ wz/Uann(X))(u( ) —u)) ST’ (%-) —ugy) " .
= (14 w*/07,i0 (X)) (u@y — ugs )EV vyl (u@y — ug))
=(1 +wz/072nzn(‘)(>)”(u(z) — g )EV 1%
= (14 w?/07in (X)) @) — x(a)”

where the second and the second last equalities follow from ||v||? = vo T for any row vector v, the third and the third last
equalities follow from orthonormality of matrix V, and the inequality follows from

U]% + w?

=0 k(l +w?/a7)

< ak(l + w2/0mzn(X))
where the inequality follows from oy > i, (X) for every k = 1,...,min(n, d).
Similarly,
1) — Z( 1
min(n,d)
= > (uaw —ugw)’on +o?)
k=1
min(n,d) min(n,d)
= > (wpn—ug)ot+ @ D (uk — ug)’ (19)
k=1 k=1
min(n,d)
> Y (ur —ugw)oq

k=1
= llz@) — 2 II?
where the first and the last equalities follow from the fourth and the fifth equalities of (18), respectively. Since (18) and (19)
both hold for all 7,5 = 1, ..., n, the lemma follows. O]
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Lemma 8. In the notations of Section B.5, forallt = 1,...,T holds ||(Kz,_,z,_, +02I)7 ]2 < 1/02.

Proof. Since (Kz, ,z,_, + O’TQLI )*1 is positive definite, by definition of spectral norm forallt =1,...,7 and Z;_4

[(Kz,_.z_, +0’72J)_1H22 X
= wﬁLax((KZt,flth—l + O-nl)i )

B z/)min(KthiZt71 + 0-721[)

" Ymin(Kz,_,z,_,)+02
<1/o;,

where ¥,,44(+) and ¥4, (+) denote the largest and the smallest eigenvalues of a matrix, respectively, the second and
the third equalities are properties of eigenvalues and the inequality is due to the fact that matrix Kz, ,z, , is positive
semidefinite. 0

Lemma 9. In the notations of Section B.5, if for all x,x’' € X and their images under Algorithm 1 z,7z" € Z holds
koot — kpar| < C - kyyr, and forallt = 1,. .., T matrix Kx,_, x,_, is diagonally dominant (Definition 3), then

||Kzt—15t71 - KthlXt,lHQ < \/50(7;/\/ ‘Xt,1|.
Proof. Fixt=1,...,T.Forsomei=1,...,t—1:

||Kzt—lzt—1 - KXt71Xt71 ”% T

= wmar((KZt—lzt—l - KXt—l-Xt—l)2 (Kzt—lzt—l - KXt—lXt—l))

= ,l/}mam((Kthlztfl - KXt—IXt—l) )

< Z |[(Kzt712t71 - Kthlxt—l)Q}ij| + [(Kzt—lzt—l - KXt71Xt71)2]7:7;
J.j#i

<20%4 ) (V1 Xa] — 1+ 1)°

< 2C%0, /| X |

where .4, (+) denotes the largest eigenvalue of a matrix, the first equality is the definition of spectral norm, the second
equality follows from the fact that matrices Kz, ,z, , and Kx,_, x,_, are symmetric, the first inequality is due to Gershgorin

circle theorem, the last inequality follows from /| X;—1| — 1 + 1 > /| X;—1]| and the second last inequality follows from

S Bz, z_, — Kx,_,x_,)%l

Jyj#i

- Z ‘Z[Kzt—lzt—l - KXt—l?(f,—l]iP[KZt—lzt—l - KXf,—lXt—l]Pj|
J,J#i P

- Z ‘ Z(kzizp - kwiwp)(kzpq - ka:pwj)‘
J.Jj#i P

= Z ‘ Z (kzizp - kwiwp)(kzpzj - kwpmj)|

J,J#t p,p#£di

<D0 D ke = Raay| - [Rapey — oy

J,JF1 P, pF# ]y

< 02 Z Z k':c,i:cp 'k'x,,zj

J,J#1 P, pF#]

=C* Y kow, Y kapa,

D,pFJ 5t J:dFip

é 02 Z kmimpkxp:cp/(\/ |Xt71| -1+ ]-)
P,PFJyi

20205/(\/|Xt_1| —1+1) Z kmimp

P.p#],%

< C?0l ) (VIXi—a] = 1+ Dk, / (VX2 ] — 14 1)
= % (VX —1+1)
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where the third, the fifth and the last equalities follow from kzp 2 = kmp% = 05 for every p, the first inequality follows
from triangle inequality, the second inequality follows from the statement of the lemma, the third and the last inequalities
follow from the diagonal dominance property of K, ,x,_, (Definition 3); and

[(Kzt—lzt—l - KXt—lxt—l)Q]ii
= Z[Kzt713t71 - KXt—lXt—l]ip[KZt—lzt—l - KXt—lXt—l]pi

p
— 2
= E [Kzt—lzt—l - KXt—1Xt—1]ip
p

= Z(kz,;zp - kLzI,)z

p

= 3 (hersy — ki)’

p.pFi

<C*> kL,

p,pFi

< Cz( Z kxixp)Z

P,p#i

<2, | (VX —1+1)

=%/ (VX - 1+1)

where the second equality follows from the fact that Kz, ,z, , and Kx, ,x, , are symmetric, the fourth and the last
equalities follow from k. = kg2, = 03 for every p, the first inequality follows from the statement of the lemma and the
last inequality follows from the diagonal dominance of Ky, ,x,_, (Definition 3). O

Lemma 10. In the notations of Section B.5, if forallt =1,...,T matrix Ky, ,x, , is diagonally dominant (Definition 3),
then for any unobserved original input x € X at iteration t

(B sy + 00 )7 l2 < 1/ (VX | Ko,y ).

Proof. By applying Gershgorin circle theorem for Ky, ,x, ;:

wmin(KXt—lthl)
Z min (kzlm, - RXt—l(:Ei))

TiE€EXp_1
= kww - a:}él)%tx_l R-Xt—l('ri)
> Xy 1 R i) — R ;
Z (VX +1)  max R oy (z) - max R, (2:)

where i, (+) denotes the smallest eigenvalue of a matrix, Ry, ,(x;) £ 3 ;X 1\ {z2) ks, the first equality follows
from the fact that k,, = 05 = kg, for all z; and z, and the second inequality holds because K (x, | u{z})(x,_ Ufz}) 1S as-
sumed to be diagonally dominant. On the other hand, since = ¢ X; 1, Ry, ,ufa} (i) = Rx,_, (i) +ke,, forallz; € Xy,
which immediately implies max,, ex, ,ufz} Bx,_ 0z} (Ts) > maxg e, , Ry, ugey (7)) > maxg,ex, , Rx,_, (z:).
Plugging this into above inequality,

wmin(KXt,lthl)

Z (VIdial+1)  max R ue)(@i) - max R ()

> VX1l max R uy(wi)

z; €Xp_1U{z}

> VX 1R, oy ().

Since [[Kox, [l = /Xucar k2o < Ywcx,, kaie = Ra_,uga} (@), it follows that ¢y (Kx, ,x,_,) >
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VI|Xe-1| | Kz x,_, |- Finally,

(K% 2y +onD) o

= 1/(¢min(KXt71Xt71) + J?LI)
< 1/(1/}min(KXt71Xt71)>

< 1/ (VX || Ko, ).

O

Lemma 11. In the notations of Section B.5, if forallt =1,...,T matrix Ky, ,x, , is diagonally dominant (Definition 3),
then ||K-Xf,—1Xt_1 ||2 S 20-:3

Proof. Fixallt =1,...,T. By applying Gershgorin circle theorem to matrix K, ,x, ,,for some point z; € X;_;:

|¢mam(KXt—1Xt—1) - kTﬂ%

< Y ke,

T;€EX_1\z;

1717 (\/ Xt 1|_ +1)
*05/(v|Xt—1I* +1)

where ;4. (+) denotes the largest eigenvalue of a matrix, the second inequality is due to diagonal dominance property of
matrix Ky, ,x, , and the equality is due to k,,, = 05 for every x;. Since K x, ,x, , 1S a symmetric, positive-semidefinite
matrix, it follows that

||KXt—1Xt—l ”2
= wmax(KXt—lXt—l)

< 02/( |Xt 1| — ) + k:ﬂm
<ay(1+1/ \/|Xf 1| —1+1))
< 20
O
Lemma 12. In the notations of Section B.5, for all t = 1,...,T and any unobserved input x € X at iteration t

| Kox, 17 - Ymin(Kx,_y 2o, +021)7Y) < Kpn, , (Kx,_,x,_, +021) 1 Kx,_,» where 1, (+) denotes the smallest
eigenvalue of a matrix.

Proof. Since (Kx,_,x,_, +021)~! is a symmetric, positive-definite matrix, there exists an orthonormal basis comprising
the eigenvectors E £ [e1...ex, ,|] (e]e; = 1 and e/ e; = 0 for i # j) and their associated positive eigenvalues
U1 £ Diag[y; !, ... ,1/1‘;(1#1‘] such that (K, ,x, , +02I)~' = EU1ET (i.e., spectral theorem). Denote {p; }|~; '
as the set of coefficients when Ky, ,. is projected on E. Then

KZI/’thl (KXt—lXt—l + Uil)_lKthﬂﬂ

[Xe—1] | X—1]

= < Z pi€;r> KX,: 1 X—1 +U I < Z pzez>
=1
[Xe—1] [ X 1]

= < > pieiT>< > pilKxx,, +U%I)1ei>

i=1 =1
[ 1] [ X 1]

= < E pﬁj) < E piiﬁ{lei)
i=1 =1

[Xe—1]

_ }: 2,1
= pﬂ/)i
i=1
[Xe—1]

> wmin((KXt 1 X1 T O I Z pz

= 'l)/}min((KXt—lXt—l + 0721[) ) ||K$Xt 1 || .



