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A. Additional experimental results on Branin-Hoo function
In this section, we empirically evaluate the performance of our PO-GP-UCB algorithm using the dataset sampled from
Branin-Hoo benchmark function8. The original inputs for this experiment are 2-dimensional vectors arranged into a uniform
grid and discretized into a 31 × 31 input domain (i.e., d = 2 and n = 961). The function to maximize is sampled from
the negation of Branin-Hoo function. The original output measurements are log-transformed to remove skewness and
extremity in order to stabilize the GP covariance structure. The GP hyperparameters are learned using maximum likelihood
estimation (Rasmussen & Williams, 2006). Similarly to the real-world loan applications dataset in Section 4, the original
inputs are preprocessed to form an isotropic covariance function4. All results are averaged over 50 random runs, each of
which uses a different set of initializations for BO. We set the GP-UCB parameter δucb = 0.05 (Theorem 3) and normalize
the inputs to have a maximal norm of 25. We set the parameter r = 10 (Algorithm 1), DP parameter δ = 10−3 (Definition 2)
and the GP-UCB parameter T = 50 for this experiment.

Fig. 3 shows the performances of PO-GP-UCB with different values of ε and that of non-private GP-UCB. The results are
consistent with the previous experiments. Smaller values of ε (tighter privacy guarantees) generally lead to larger simple
regret; PO-GP-UCB with the largest value of ε = exp(2.3) satisfying the condition σmin(X ) ≥ ω incurs only 0.004σy
more simple regret than non-private GP-UCB after 50 iterations; PO-GP-UCB with some values of ε in the single-digit
range satisfying the condition σmin(X ) < ω exhibits small difference in simple regret compared with non-private GP-UCB
after 50 iterations: ε = exp(2.0) and ε = exp(1.8) result in 0.023σy and 0.051σy more simple regret respectively.

Figure 3. Simple regrets achieved by tested BO algorithms (with fixed r = 10 and different values of ε) vs. the number of iterations for
the Branin-Hoo function dataset.

Similarly to the experiments in the main text, we investigate the impact of varying the value of the random projection
parameter r on the performance of PO-GP-UCB. We consider 3 different values of DP parameter ε: ε = exp(2.3),
ε = exp(2.5) and ε = exp(2.7). We fix the value of ε and vary the value of r. The largest value of r satisfying the condition
σmin(X ) ≥ ω is r = 10 for ε = exp(2.3), r = 15 for ε = exp(2.5) and r = 20 for ε = exp(2.7). Tables 10, 11 and 12
reveal that the largest values of r satisfying the condition σmin(X ) ≥ ω lead to the smallest simple regret after 50 iterations.
Decreasing the value of r increases the simple regret, which agrees with our analysis in Section 3.4 (i.e., smaller r results in
worse regret upper bound). Increasing r such that the condition σmin(X ) < ω is satisfied, on the other hand, also results in
larger simple regret, which is again consistent with the analysis in Remark 2 stating that the regret upper bound becomes
looser in this scenario. These observations are consisted with those for a synthetic GP dataset, a real-world loan applications
dataset and a real-world property price dataset in the main text.

8https://www.sfu.ca/∼ssurjano/branin.html.

https://www.sfu.ca/~ssurjano/branin.html
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Table 10. Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.3) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition σmin(X ) ≥ ω is r = 10.

r 3 6 8 10 15 20
S50 0.53 0.184 0.038 0.0 0.005 0.024

Table 11. Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.5) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition σmin(X ) ≥ ω is r = 15.

r 3 9 12 15 20 30
S50 0.259 0.001 0.0 0.0 0.014 0.026

Table 12. Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.7) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition σmin(X ) ≥ ω is r = 20.

r 5 10 15 20 30 50
S50 0.152 0.0 0.0 0.0 0.005 0.073

B. Proofs and derivations
B.1. Proof of Lemma 1

Theorem 4. [Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984)] Let ν ∈ (0, 1/2), r ∈ N and d ∈ N be
given. Let M ′ be a r × d matrix whose entries are i.i.d. samples from N (0, 1). Then for any vector y ∈ Rd

P
(

(1− ν)‖y‖2 ≤ r−1‖M ′y‖2 ≤ (1 + ν)‖y‖2
)
≥ 1− 2 exp(−ν2r/8).

Proof of lemma. Fix x, x′ ∈ X . It follows from Theorem 4 by setting vector y = (x− x′)> and r × d matrix M ′ = M>

that
1− 2 exp(−ν2r/8)

≤ P
(

(1− ν)‖(x− x′)>‖2 ≤ r−1‖M>(x− x′)>‖2 ≤ (1 + ν)‖(x− x′)>‖2
)

= P
(

(1− ν)‖x− x′‖2 ≤ r−1‖xM − x′M‖2 ≤ (1 + ν)‖x− x′‖2
)
.

(2)

Since there are no more than n2/2 pairs of inputs x, x′ ∈ X , applying the union bound to (2) gives that the probability of

(1− ν)‖x− x′‖2 ≤ r−1‖xM − x′M‖2 ≤ (1 + ν)‖x− x′‖2

for all x, x′ ∈ X is at least 1− n2 exp(−ν2r/8).

To guarantee that the probability of (1 − ν)‖x − x′‖2 ≤ r−1‖Mx −Mx′‖2 ≤ (1 + ν)‖x − x′‖2 for all x, x′ ∈ X is at
least 1− µ, the value of r has to satisfy the following inequality:

1− n2 exp(−ν2r/8) ≥ 1− µ,

which is equivalent to r ≥ 8 log(n2/µ)/ν2.

B.2. Privacy guarantee of Algorithm 1

B.2.1. COMPARISON BETWEEN ALGORITHM 1 AND ALGORITHM 3 OF BLOCKI ET AL. (2012)

There are several important differences between our Algorithm 1 and the work of Blocki et al. (2012). Firstly, Algorithm 3
of Blocki et al. (2012) outputs a DP estimate r−1X̃>M>M X̃ (in the notations of Algorithm 1) of the covariance matrix
r−1X>X , while our Algorithm 1 outputs a DP transformation r−1/2XM (or r−1/2X̃M ) of the original datasetX . However,
the authors of Blocki et al. (2012) prove the privacy guarantee (see Theorem 4.1, p. 13 of their paper) by showing that
releasing X̃>M> (using matrix M of size r × n) preserves DP and then apply the post-processing property of DP to
reconstruct r−1X̃>M>M X̃ . This observation allows us to modify their proof for our Algorithm 1. Additionally, matrix



Private Outsourced Bayesian Optimization

X̃>M> (in the notations of Algorithm 1) in the proof of Blocki et al. (2012) has size d × r, while matrices r−1/2XM
and r−1/2X̃M returned by our Algorithm 1 have size n× r, which requires us to modify the proof of Blocki et al. (2012).
These modifications are discussed in Section B.2.2 below.

Secondly, Algorithm 3 of Blocki et al. (2012) does not have the “if/else” condition (line 6 of Algorithm 1) and always
increases the singular values as in line 9 of Algorithm 1, since the authors are able to offset the bias introduced to the
estimate of covariance of the dataset along a given dimension by increasing the singular values. Specifically, they do it by
subtracting ω2 from the computed estimate (see Algorithm 4 in Blocki et al. (2012)). For our case, however, the distances
between the original inputs from the dataset X are no longer approximately the same as the distances between their images
from the dataset Z when σmin(X ) < ω (i.e., the “else” clause, line 8 of Algorithm 1), as shown in Theorem 2. Therefore,
the case of σmin(X ) < ω results in a slightly different regret bound (see Theorem 3 and Remark 2) and requires us to
introduce the “if/else” condition into Algorithm 1. Introducing such an “if/else” condition, however, does not affect the proof
of Theorem 4.1 of Blocki et al. (2012) and our proof: the “if” clause (line 6 of Algorithm 1) is stated in the Corollary (see p.
17 of Blocki et al. (2012)), while the “else” clause (line 8 of Algorithm 1) is proved in Theorem 4.1 of Blocki et al. (2012).

B.2.2. PROOF OF THEOREM 1

Fix two neighboring datasets X and X ′. Let E , X ′ −X , such that E is a rank 1 matrix. Without loss of generality, we
assume that in the definition of neighboring datasets (Definition 1) ‖x(i∗) − x

′
(i∗)‖ = 1. Then we can write E as the outer

product E = ei∗v
> where ei∗ is the indicator vector of row i∗ and v is the vector of norm 1. Then the singular values of E

are exactly {1, 0, . . . , 0} (see Blocki et al. (2012), p. 14).

Similar to Theorem 4.1 of Blocki et al. (2012), the proof is composed of two stages. For the first stage we work under the
premise that both and X and X ′ have singular values no less than ω (the “if” clause, line 6 of Algorithm 1). For the second
stage we denote X̃ and X̃ ′ as the respective matrices from “else” clause (line 8 of Algorithm 1) and show what adaptations
are needed to make the proof follow through.

We prove the theorem for the scaled output of the “if” clause of Algorithm 1 XM (the post-processing property of DP can
be applied after that to reconstruct r−1/2XM ). XM is composed of r columns each is an i.i.d. sample from XY where
Y ∼ N (0, Id×d). The following lemma is similar to Claim 4.3 of Blocki et al. (2012)(p. 14):

Lemma 2. Let ε > 0, δ ∈ (0, 1), r ∈ N, d ∈ N, two neighboring datasets X and X ′ and Y sampled from N (0, Id×d) be
given. Fix ε0 , ε/

√
4r log(2/δ) and δ0 , δ/(2r). Denote

S , {ξ ∈ Rn : exp(−ε0)PDFX ′Y (ξ) ≤ PDFXY (ξ) ≤ exp(ε0)PDFX ′Y (ξ)}

where PDF is the probability density function. Then P (S) ≥ 1− δ0.

Proof. Similar to the proof of Claim 4.3 of Blocki et al. (2012), first we formally define the PDF of the two distributions.
We apply the fact that XY and X ′Y are linear transformations of N (0, Id×d).

PDFXY (ξ) =
1√

(2π)n det(XX>)
exp

(
− 1

2
ξ>(XX>)−1ξ

)
PDFX ′Y (ξ) =

1√
(2π)n det(X ′X ′>)

exp
(
− 1

2
ξ>(X ′X ′>)−1ξ

)
.

If the matrix XX> (all the reasoning here is exactly the same for X ′X ′>) is not full-rank, the SVD allows us to use
similar notation to denote the generalizations of the inverse and of the determinant: The Moore-Penrose inverse of
any square matrix M is M† , V Σ−1U> where M = UΣV > is the SVD of matrix M , and the pseudo-determinant
of M is d̃et(M) , Π

rank(M)
i=1 σi(M) where σi(M) are the singular values of matrix M . Furthermore, if XX> has

non-trivial kernel space (i.e., is not invertible) then PDFXY in the equation above is technically undefined. However,
if we restrict ourselves only to the subspace V = (Ker(XX>))⊥, then PDFVXY is defined over V and PDFVXY (ξ) ,

1√
(2π)rank(XX>)d̃et(XX>)

exp
(
− 1

2ξ
>(XX>)†ξ

)
From now on, we omit the superscript from the PDF and refer to the above function as the PDF of XY . See p. 4–5 of Blocki
et al. (2012) for more details.
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Similar to the proof of Claim 4.3 of Blocki et al. (2012), first we show that

exp(−ε0/2) ≤

√
det(X ′X ′>)

det(XX>)
≤ exp(ε0/2).

The proof copies the derivation of eq. 4 in Blocki et al. (2012) (p. 15) with replacing A to X>, A′ to X ′>, x to ξ and
swapping n and d where necessary.

Next we prove an analogue of eq. 5 of Claim 4.3 of Blocki et al. (2012):

Pξ

(
1

2
|ξ>
(
(XX>)−1 − (X ′X ′>)−1

)
ξ| ≥ ε0/2

)
≤ δ0. (3)

To do this:

ξ>
(
(XX>)−1 − (X ′X ′>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1XX>(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1(X ′ − E)(X ′ − E)>(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1(X ′X ′> − EX ′> −X ′E> + EE>)(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (XX>)−1 − (X ′X ′>)−1(−EX ′> −X ′E> + EE>)(XX>)−1

)
ξ

= ξ>(X ′X ′>)−1(EX ′> + X ′E> − EE>)(XX>)−1ξ

= ξ>(X ′X ′>)−1(EX> + X ′E>)(XX>)−1ξ

(4)

where the second and the last equalities are due to E = X ′ −X . The expression in the last line of (4) is very similar to the
one in the derivation of eq. 5 in Blocki et al. (2012) (p. 15). The difference is that in order for the proof to go through, we
need to multiply (X ′X ′>)−1 by XX>(XX>)−1 in the second line of (4), while the original proof of Blocki et al. (2012)
multiplies (X>X )−1 by X ′>X ′(X ′>X ′)−1 (in our notations), see eq. in the bottom of p. 15 of Blocki et al. (2012).

Now denoting singular value decompositions of X = UΣV > and X ′ = U ′ΛV ′>, and the fact that E = ei∗v
>, we

continue (4):
ξ>(X ′X ′>)−1(EX> + X ′E>)(XX>)−1ξ

= ξ>(X ′X ′>)−1EX>(XX>)−1ξ + ξ>(X ′X ′>)−1X ′E>(XX>)−1ξ

= ξ>(U ′ΛV ′>V ′ΛU ′>)−1(ei∗ · v>V ΣU>)(UΣV >V ΣU>)−1ξ

+ξ>(U ′ΛV ′>V ′ΛU ′>)−1(U ′ΛV ′>v · e>i∗)(UΣV >V ΣU>)−1ξ

= ξ>U ′Λ−2U ′>ei∗ · v>V Σ−1U>ξ + ξ>U ′Λ−1V ′>v · e>i∗UΣ−2U>ξ

(5)

where the last equality is due to the properties of singular value decomposition.

So now, assume ξ is sampled from X ′Y (the case of XY is symmetric). That is, assume that we’ve sampled χ from
Y ∼ N (0, Id×d) and we have ξ = X ′χ = U ′ΛV ′>χ and equivalently ξ = (X +E)χ = UΣV >χ+ ei∗v

>χ. Plugging it
into (5) gives:

|ξ>U ′Λ−2U ′>ei∗ · v>V Σ−1U>ξ + ξ>U ′Λ−1V ′>v · e>i∗UΣ−2U>ξ|
= |(U ′ΛV ′>χ)>U ′Λ−2U ′>ei∗ · v>V Σ−1U>(UΣV >χ+ ei∗v

>χ)

+(U ′ΛV ′>χ)>U ′Λ−1V ′>v · e>i∗UΣ−2U>(UΣV >χ+ ei∗v
>χ)|

= |χ>V ′ΛU ′>U ′Λ−2U ′>ei∗ · v>V Σ−1U>(UΣV >χ+ ei∗v
>χ)

+χ>V ′ΛU ′>U ′Λ−1V ′>v · e>i∗UΣ−2U>(UΣV >χ+ ei∗v
>χ)|

≤ term1 · term2 + term3 · term4

where for i = 1, 2, 3, 4 we have termi = |veci · χ| and

vec1
= (V ′ΛU ′>U ′Λ−2U ′>ei∗)

>

= (V ′Λ−1U ′>ei∗)
>

so ‖vec1‖ ≤ 1/λd;
vec2
= v>V Σ−1U>(UΣV > + ei∗v

>)

= v> + v>V Σ−1U>ei∗v
>
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so ‖vec2‖ ≤ 1 + 1/σd;
vec3
= (V ′ΛU ′>U ′Λ−1V ′>v)>

= v>

so ‖vec3‖ ≤ 1;

vec4
= e>i∗UΣ−2U>(UΣV > + ei∗v

>)

= e>i∗UΣ−1V > + e>i∗UΣ−2U>ei∗v
>

so ‖vec4‖ ≤ 1/σd + 1/σ2
d where σd and λd are the smallest singular values of X and X ′, respectively. The remainder of the

proof now follows the proof of Claim 4.3 of Blocki et al. (2012) with replacing A to X>, A′ to X ′>, x to ξ and swapping n
and d where necessary.

For the second stage we assume that “else” clause (line 8 of Algorithm 1) is applied and denote X̃ , U
√

Σ2 + ω2In×dV
>

and X̃ ′ , U ′
√

Λ2 + ω2In×dV
′>. The theorem requires an analogue of Lemma 2 to hold, which depends on the following

two conditions:

exp(−ε0/2) ≤

√
det(X̃ ′X̃ ′>)

det(X̃ X̃>)
≤ exp(ε0/2). (6)

Pξ

(
1

2
|ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1

)
ξ| ≥ ε0/2

)
≤ δ0. (7)

Derivation of (6) copies the derivation of eq. 6 in Blocki et al. (2012) (p. 16). To derive (7), we start with an observation
regarding X ′X ′> and X̃ ′X̃ ′>:

X ′X ′> = (X + E)(X + E)> = XX> + X ′E> + EX>
X̃ X̃> = U(Σ2 + ω2I)U> = UΣ2U> + ω2I = XX> + ω2I

X̃ ′X̃ ′> = U ′(Λ2 + ω2I)U ′> = U ′Λ2U ′> + ω2I = X ′X ′> + ω2I

=⇒ X̃ ′X̃ ′> − X̃ X̃> = X ′E> + EX>.

(8)

Now we can follow the same outline as in the proof of (3). Fix ξ, then

ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1X̃ X̃>(X̃ X̃>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1(X̃ ′X̃ ′> −X ′E> − EX>)(X̃ X̃>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1(−X ′E> − EX>)(X̃ X̃>)−1

)
ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′E> + EX>)(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′E> − EE> + EE> + EX>)(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1((X ′ − E)E> + E(X> + E>))(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′ − E)v · e>i∗(X̃ X̃>)−1ξ

+ξ>(X̃ ′X̃ ′>)−1ei∗ · v>(X> + E>)(X̃ X̃>)−1ξ

(9)

where the second equality follows from (8) and the last equality follows from E = ei∗v
>. The expression in the last line

of (9) is very similar to the one in the derivation of equation in Blocki et al. (2012) (p. 17, second equation array from the
top). The difference is that in order for the proof to go trhough, we need to multiply (X̃ ′X̃ ′>)−1 by X̃ X̃>(X̃ X̃>)−1 in
the second line of (9), while the original proof of Blocki et al. (2012) multiplies (X̃>X̃ )−1 by X̃ ′>X̃ ′(X̃ ′>X̃ ′)−1 (in our
notations), see second equation array from the top, p. 17 of Blocki et al. (2012). The remainder of the proof now follows the
proof of Theorem 4.1 of Blocki et al. (2012) (p. 17).
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B.3. Proof of Theorem 2

Proof. Fix x, x′ ∈ X and their images z, z′ ∈ Z . If σmin(X ) ≥ ω, according to Algorithm 1, Z = r−1/2XM (line 7) and

‖z − z′‖2

= ‖r−1/2xM − r−1/2x′M‖2
= r−1‖xM − x′M‖2

and Lemma 1 can be immediately applied.

If σmin(X ) < ω, according to Algorithm 1, Z = r−1/2X̃M (line 10) and

‖z − z′‖2

= ‖r−1/2x̃M − r−1/2x̃′M‖2
= r−1‖x̃M − x̃′M‖2
≤ (1 + ν)‖x̃− x̃′‖2
≤ (1 + ν)(1 + ω2/σ2

min(X ))‖x− x′‖2

where the first inequality follows from Lemma 1 and the second inequality follows from Lemma 7. Similarly,

‖z − z′‖2

= ‖r−1/2x̃M − r−1/2x̃′M‖2
= r−1‖x̃M − x̃′M‖2
≥ (1− ν)‖x̃− x̃′‖2
≥ (1− ν)‖x− x′‖2

where the first inequality follows from Lemma 1 and the second inequality follows from Lemma 7.

B.4. Bounding the covariance change

Theorem 5. Let a dataset X ⊂ Rd be given and σmin(X ) > 0 be the smallest singular value of X . Let r ∈ N be the input
parameter of Algorithm 1, a dataset Z ⊂ Rr be the output of Algorithm 1 and ω be defined in line 5 of Algorithm 1. Let
d = diam(X )/l where diam(X ) is the diameter of the dataset X . Let ν ∈ (0, 1/2), µ ∈ (0, 1) be given. If ν ≤ 2/d2 and
r ≥ 8 log(n2/µ)/ν2, then the probability of

|kzz′ − kxx′ | ≤ C · kxx′

for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z is at least 1− µ where

C ,

{
νd2 if σmin(X ) ≥ ω,
max

(
νd2, 1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

) )
otherwise.

(10)

Remark 5. It immediately follows from Theorem 5 that the probability of kzz′ ≤ (1 + C) · kxx′ for all x, x′ ∈ X and their
images z, z′ ∈ Z is at least 1− µ.

Proof.
kzz′ − kxx′
= σ2

y exp
(
−0.5‖z − z′‖2/l2

)
− σ2

y exp
(
−0.5‖x− x′‖2/l2

)
≤ σ2

y exp
(
−0.5(1− ν)‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖x− x′‖2/l2

)
= kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

≤ kxx′
(
2 ·
(
0.5ν‖x− x′‖2/l2

))
≤ kxx′ · νd2

where the first inequality follows from Theorem 2 (since the condition (1− ν)‖x− x′‖2 ≤ ‖z − z′‖2 holds in both cases
σmin(X ) ≥ ω and otherwise), and the second inequality follows from the identity exp c ≤ 1 + 2c for c ∈ (0, 1) by setting
c = 0.5ν‖x− x′‖2/l2 since ν ≤ 2/d2 and

0.5ν‖x− x′‖2/l2
≤ 0.5ν (diam(X ))2/l2

≤ 0.5 · 2/d2 · (diam(X ))2/l2

= 1.

(11)
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If σmin(X ) ≥ ω,
kxx′ − kzz′
= σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖z − z′‖2/l2

)
≤ σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5(1 + ν)‖x− x′‖2/l2

)
= kxx′

(
1− exp

(
−0.5ν‖x− x′‖2/l2

))
= kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

exp
(
−0.5ν‖x− x′‖2/l2

)
≤ kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

≤ kxx′
(
2 ·
(
0.5ν‖x− x′‖2/l2

))
≤ kxx′ · νd2

where the first inequality follows from Theorem 2, since if σmin(X ) ≥ ω, C ′ = 1 in the statement of Theorem 2, the
second inequality follows from 0.5ν‖x− x′‖2/l2 ≥ 0 and the third inequality follows from the identity exp c ≤ 1 + 2c for
c ∈ (0, 1) by setting c = 0.5ν‖x− x′‖2/l2 and (11).

Similarly, if σmin(X ) < ω,

kxx′ − kzz′
= σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖z − z′‖2/l2

)
≤ σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5(1 + ν)(1 + ω2/σ2

min(X ))‖x− x′‖2/l2
)

= kxx′
(
1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))‖x− x′‖2/l2

))
≤ kxx′

(
1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

))
where the first inequality follows from Theorem 2, since if σmin(X ) < ω, C ′ = 1 + ω2/σ2

min(X ) in the statement of
Theorem 2.

B.5. Proof of Theorem 3

First we recall and introduce a few notations which we will use throughout this section. Let X ⊂ Rd be a dataset and
its image under Algorithm 1 be a dataset Z ⊂ Rr, Zt−1 , {z1, . . . , zt−1} be a set of transformed inputs selected by
Algorithm 2 run on transformed dataset Z after t − 1 iterations and the preimage of Zt−1 under Algorithm 1 be a set
Xt−1 , {x1, . . . , xt−1}. Let z ∈ Z be an (unobserved) transformed input and x ∈ X be its preimage under Algorithm 1.
Let f be a latent function sampled from a GP. Define

f̃(z) , f(x)

αt(x,Xt−1) , µt(x) + β
1/2
t σt(x)

αt(z,Zt−1) , µ̃t(z) + β
1/2
t σ̃t(z)

zt , argmax
z∈Z

αt(z,Zt−1).

(12)

That is, f̃ is the latent function f defined over the transformed dataset Z , αt(z,Zt−1) is the function maximized by
Algorithm 2 at iteration t, αt(x,Xt−1) is the function maximized by GP-UCB algorithm run on the original dataset, zt is
the transformed input selected by Algorithm 2 at iteration t and xt is the preimage of zt under Algorithm 1.

Lemma 3. Let δ′ ∈ (0, 1) be given and βt , 2 log(nt2π2/6δ′). Then

|f(x)− µt(x)| ≤ β1/2
t σt(x) ∀x ∈ X ∀t ∈ N

holds with probability at least 1− δ′.

Proof. Lemma 3 above corresponds to Lemma 5.1 in Srinivas et al. (2010); see its proof therein.

Lemma 4. Let δ′ ∈ (0, 1) be given and βt , 2 log(nt2π2/6δ′). Then the probability of

f̃(z∗)− f̃(zt) ≤ 2 max
x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ 2β

1/2
t σt(xt)

for all t ∈ N is at least 1− δ′ where z∗ is the maximizer of f̃ and x ∈ X is the preimage of z ∈ Z under Algorithm 1.



Private Outsourced Bayesian Optimization

Proof.
f̃(z∗)− f̃(zt)
= f(x∗)− f(xt)
≤ αt(x∗,Xt−1)− f(xt)
= αt(x

∗,Xt−1)− αt(z∗,Zt−1) + αt(z
∗,Zt−1)− f(xt)

≤ αt(x∗,Xt−1)− αt(z∗,Zt−1) + αt(zt,Zt−1)− f(xt)
= αt(x

∗,Xt−1)− αt(z∗,Zt−1) + αt(zt,Zt−1)− αt(xt,Xt−1) + αt(xt,Xt−1)− f(xt)
≤ 2 max

x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ αt(xt,Xt−1)− f(xt)

≤ 2 max
x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ 2β

1/2
t σt(xt)

where the first equality is due to (12) and x∗ is the maximizer of f , the first and the last inequalities are due to Lemma 3 and
the second inequality is due to the choice of zt in (12).

Lemma 4 resembles Lemma 5.2 of Srinivas et al. (2010) with an added term 2 maxx,z |αt(z,Zt−1) − αt(x,Xt−1)|. It
suggests that in order to bound regret f̃(z∗)− f̃(zt) incurred by Algorithm 2 at iteration t, we need to bound |αt(z,Zt−1)−
αt(x,Xt−1)|. Using the diagonal dominance assumption (Definition 3), we do it in the following two lemmas:

Lemma 5. Let C > 0 be given. If for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds |kzz′ − kxx′ | ≤
C · kxx′ , for all t = 1, . . . , T matrix KXt−1Xt−1 is diagonally dominant, then for every unobserved transformed input z ∈ Z
and its preimage under Algorithm 1 x ∈ X

|σ̃2
t (z)− σ2

t (x)| ≤ C1/
√
|Xt−1|

where
C1 , Cσy

√
2σ2

y + σ2
n

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
.

Proof.

|σ̃2
t (z)− σ2

t (x)|
= |
(
kzz −KzZt−1(KZt−1Zt−1 + σ2

nI)−1KZt−1z

)
−
(
kxx −KxXt−1(KXt−1Xt−1 + σ2

nI)−1KXt−1x

)
|

= |KzZt−1
(KZt−1Zt−1

+ σ2
nI)−1KZt−1z −KxXt−1

(KXt−1Xt−1
+ σ2

nI)−1KXt−1x|
≤ |KzZt−1

(KZt−1Zt−1
+ σ2

nI)−1KZt−1z −KzZt−1
(KXt−1Xt−1

+ σ2
nI)−1KZt−1z|

+ |KzZt−1(KXt−1Xt−1 + σ2
nI)−1KZt−1z −KxXt−1(KXt−1Xt−1 + σ2

nI)−1KZt−1z|
+ |KxXt−1

(KXt−1Xt−1
+ σ2

nI)−1KZt−1z −KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x|

≤ (1 + C)2‖KxXt−1
‖ · σ2

y/σ
2
n ·
√

2C/
√
|Xt−1|+ (2 + C)C · ‖KxXt−1

‖/
√
|Xt−1|

= C‖KxXt−1
‖/
√
|Xt−1|

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
≤ Cσy

√
2σ2

y + σ2
n/
√
|Xt−1|

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
(13)

where the first equality is due to (1), the second equality is due to kxx = kzz = σ2
y for every x and z, the first inequality is

due to triangle inequality, the second inequality is due to

|KzZt−1(KZt−1Zt−1 + σ2
nI)−1KZt−1z −KzZt−1(KXt−1Xt−1 + σ2

nI)−1KZt−1z|
= |KzZt−1

(
(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1

)
KZt−1z|

≤ ‖KzZt−1
‖2 · ‖(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1‖2

≤ (1 + C)2‖KxXt−1‖2 · ‖(KXt−1Xt−1 + σ2
nI)−1 − (KXt−1Xt−1 + σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1

‖2 · ‖(KZt−1Zt−1
+ σ2

nI)−1(KZt−1Zt−1
−KXt−1Xt−1

)‖2 · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1

‖2 · ‖(KZt−1Zt−1
+ σ2

nI)−1‖2 · ‖KZt−1Zt−1
−KXt−1Xt−1

‖2 · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1‖2 · 1/σ2

n · ‖KZt−1Zt−1 −KXt−1Xt−1‖2 · ‖(KXt−1Xt−1 + σ2
nI)−1‖2

≤ (1 + C)2‖KxXt−1‖2 · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · ‖(KXt−1Xt−1 + σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1

‖2 · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · 1/(

√
|Xt−1|‖KxXt−1

‖)
= (1 + C)2‖KxXt−1‖ · σ2

y/σ
2
n ·
√

2C/|Xt−1|
≤ (1 + C)2‖KxXt−1

‖ · σ2
y/σ

2
n ·
√

2C/
√
|Xt−1|
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where the first inequality is due to property of quadratic forms |v>Av| ≤ ‖v‖2 · ‖A‖2 for any vector v (see Theorem 2.11,
Section II.2.2 in Stewart & Sun (1990)), the second inequality follows from the statement of the lemma and Remark 5
to Theorem 5, the third inequality follows from Theorem 2.5 (see Section III.2.2 in Stewart & Sun (1990)), the fourth
inequality is due to the submultiplicativity of the spectral norm (see Section II.2.2, p. 69 in Stewart & Sun (1990)), the
fifth inequality follows from Lemma 8, the sixth inequality follows from Lemma 9, the second last inequality follows from
Lemma 10 and the last inequality follows from |Xt−1| ≥ 1;

and
|KzZt−1

(KXt−1Xt−1
+ σ2

nI)−1KZt−1z −KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KZt−1z|

+ |KxXt−1(KXt−1Xt−1 + σ2
nI)−1KZt−1z −KxXt−1(KXt−1Xt−1 + σ2

nI)−1KXt−1x|
= |(KzZt−1

−KxXt−1
)(KXt−1Xt−1

+ σ2
nI)−1KZt−1z|

+ |KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1(KZt−1z −KXt−1x)|

≤ ‖KzZt−1 −KxXt−1‖ · ‖(KXt−1Xt−1 + σ2
nI)−1‖2 · ‖KZt−1z‖

+ ‖KxXt−1
‖ · ‖(KXt−1Xt−1

+ σ2
nI)−1‖2 · ‖KZt−1z −KXt−1x‖

≤ (1 + 1 + C) · ‖KzZt−1
−KxXt−1

‖ · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖KXt−1x‖
≤ (2 + C) · C‖KxXt−1‖ · ‖(KXt−1Xt−1 + σ2

nI)−1‖2 · ‖KxXt−1‖
≤ (2 + C) · C‖KxXt−1‖ · 1/(

√
|Xt−1|‖KxXt−1‖) · ‖KxXt−1‖

= (2 + C)C · ‖KxXt−1
‖/
√
|Xt−1|

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖ · ‖A‖2 · ‖v‖ for any vectors u, v (see Theorem
2.11, Section II.2.2 in Stewart & Sun (1990)), the second and the third inequalities follow from the statement of the lemma
and Remark 5 to Theorem 5 and the last inequality follows from Lemma 10.

The last inequality in (13) follows from

‖KxXt−1
‖2

= ‖KxXt−1‖2 · ψ−1max(KXt−1Xt−1
+ σ2

nI) · ψmax(KXt−1Xt−1
+ σ2

nI)
= ‖KxXt−1

‖2 · ψmin((KXt−1Xt−1
+ σ2

nI)−1) · ψmax(KXt−1Xt−1
+ σ2

nI)
= ‖KxXt−1‖2 · ψmin((KXt−1Xt−1 + σ2

nI)−1) · ‖KXt−1Xt−1 + σ2
nI‖2

= ‖KxXt−1
‖2 · ψmin((KXt−1Xt−1

+ σ2
nI)−1) · (‖KXt−1Xt−1

‖2+σ2
n)

≤ ‖KxXt−1
‖2 · ψmin((KXt−1Xt−1

+ σ2
nI)−1) · (2σ2

y + σ2
n)

≤ KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x · (2σ2

y + σ2
n)

≤ kxx · (2σ2
y + σ2

n)
= σ2

y(2σ2
y + σ2

n)

where ψmax(·) and ψmin(·) denote the largest and the smallest eigenvalues of a matrix, respectively, the first fourth equalities
are properties of eigenvalues, the first inequality is due to Lemma 11, the second inequality follows from Lemma 12, the third
inequality follows from the fact that conditioning does not increase variance and the last equality is due to kxx = σ2

y .

Lemma 6. Let C > 0 be given. If for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds |kzz′ − kxx′ | ≤
C ·kxx′ , for all t = 1, . . . , T matrixKXt−1Xt−1 is diagonally dominant and |yt| ≤ L, then for every unobserved transformed
input z ∈ Z and its preimage under Algorithm 1 x ∈ X

|µ̃t(z)− µt(x)| ≤ CL+ C2/
√
|Xt−1|

where
C2 =

√
2(1 + C) · Cσ2

y/σ
2
n · L.

Proof.
|µ̃t(z)− µt(x)|
= |KzZt−1

(KZt−1Zt−1
+ σ2

nI)−1yt−1 −KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1yt−1|

≤ |KzZt−1
(KXt−1Xt−1

+ σ2
nI)−1yt−1 −KxXt−1

(KXt−1Xt−1
+ σ2

nI)−1yt−1|
+ |KzZt−1(KZt−1Zt−1 + σ2

nI)−1yt−1 −KzZt−1(KXt−1Xt−1 + σ2
nI)−1yt−1|

= |(KzZt−1
−KxXt−1

)(KXt−1Xt−1
+ σ2

nI)−1yt−1|
+ |KzZt−1

(
(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1

)
yt−1|

≤ C · L+ C2/
√
|Xt−1|
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where the first equality is due to (1), the first inequality is due to triangle inequality and the second inequality follows from

|(KzZt−1
−KxXt−1

)(KXt−1Xt−1
+ σ2

nI)−1yt−1|
≤ ‖KzZt−1 −KxXt−1‖ · ‖(KXt−1Xt−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ C‖KxXt−1

‖ · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖yt−1‖
≤ C‖KxXt−1

‖ · 1/(
√
|Xt−1|‖KxXt−1

‖) · ‖yt−1‖
≤ C · L

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖ · ‖A‖2 · ‖v‖ for any vectors u, v (see Theorem
2.11, Section II.2.2 in Stewart & Sun (1990)), the second inequality follows from the statement of the lemma, the third
inequality follows from Lemma 10 and the last inequality follows from the condition |yt| ≤ L for all t = 1, . . . , T ;

and

|KzZt−1

(
(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1

)
yt−1|

≤ ‖KzZt−1‖ · ‖(KZt−1Zt−1 + σ2
nI)−1 − (KXt−1Xt−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1

‖ · ‖(KZt−1Zt−1
+ σ2

nI)−1‖2 · ‖(KZt−1Zt−1
−KXt−1Xt−1

)(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1‖ · ‖(KZt−1Zt−1 + σ2

nI)−1‖2 · ‖KZt−1Zt−1 −KXt−1Xt−1‖2 · ‖(KXt−1Xt−1 + σ2
nI)−1‖2 · ‖yt−1‖

≤ ‖KzZt−1
‖ · 1/σ2

n · ‖KZt−1Zt−1
−KXt−1Xt−1

‖2 · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1

‖ · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · ‖(KXt−1Xt−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1

‖ · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · 1/(

√
|Xt−1|‖KxXt−1

‖) · ‖yt−1‖
≤ (1 + C)‖KxXt−1‖ · 1/σ2

n ·
√

2Cσ2
y/
√
|Xt−1| · 1/(

√
|Xt−1|‖KxXt−1‖) · ‖yt−1‖

≤
√

2(1 + C) · Cσ2
y/σ

2
n · L/

√
|Xt−1|

= C2/
√
|Xt−1|

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖ · ‖A‖2 · ‖v‖ for any vectors u, v (see Theorem
2.11, Section II.2.2 in Stewart & Sun (1990)), the second inequality follows from Theorem 2.5 (see Section III.2.2 in Stewart
& Sun (1990)), the third inequality is due to the submultiplicativity of the spectral norm (see Section II.2.2, p. 69 in Stewart
& Sun (1990)) the fourth inequality follows from Lemma 8, the fifth inequality follows from Lemma 9, the third last
inequality follows from Lemma 10, the second last inequality follows from the statement of the lemma and Remark 5 to
Theorem 5 and the last inequality follows from the condition |yt| ≤ L for all t = 1, . . . , T .

Proof of the theorem. By Lemma 4 for δ′ = δucb/2 and βt = 2 log(nt2π2/3δucb) for all t ∈ N:

rt
= f(x∗)− f(xt)

= f̃(z∗)− f̃(zt)

≤ 2 max
x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ 2β

1/2
t σt(xt)

≤ 2 max
x,z
|µ̃t(z)− µt(x)|+ 2β

1/2
t max

x,z
|σ̃2
t (z)− σ2

t (x)|+ 2β
1/2
t σt(xt)

(14)

with probability at least 1− δucb/2 where the second equality follows from (12), the first inequality follows from Lemma 4
and the second inequality follows from triangle inequality. Suppose ν ∈ (0,min(1/2, 2/d2)), µ ∈ (0, 1) are given (we
will set the exact values of µ, ν later) and the input parameter of Algorithm 1 r ≥ 8 log(n2/µ)/ν2. By Theorem 5 for all
x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds |kzz′ − kxx′ | ≤ C · kxx′ with probability at least 1− µ. Let
µ = δucb/2. Then we can apply Lemma 5 and Lemma 6 to (14). Using the union bound we obtain that for all t = 1, . . . , T

rt

≤ 2 max
x,z
|µ̃t(z)− µt(x)|+ 2β

1/2
t max

x,z
|σ̃2
t (z)− σ2

t (x)|+ 2β
1/2
t σt(xt)

≤ 2(CL+ C2/
√
|Xt−1|) + 2C1β

1/2
t /

√
|Xt−1|+ 2β

1/2
t σt(xt)

(15)

with probability at least 1 − δucb where C1 and C2 are defined in Lemma 5 and Lemma 6, respectively. Summing over
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t = 1, . . . , T :

T∑
t=1

r2t

≤ 4

T∑
t=1

(
CL+ C2/

√
|Xt−1|+ C1β

1/2
t /

√
|Xt−1|+ β

1/2
t σt(xt)

)2
≤ 12

T∑
t=1

(
C2L2 + (C2 + C1β

1/2
t )2/|Xt−1|+ βtσ

2
t (xt)

)
= 12C2L2T + 12

T∑
t=1

(C2 + C1β
1/2
t )2|Xt−1|+ 12

T∑
t=1

βtσ
2
t (xt)

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 12βT

T∑
t=1

σ2
t (xt)

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 12βT / log(1 + σ−2n )

T∑
t=1

log(1 + σ−2n σ2
t (xt))

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 24βT / log(1 + σ−2n ) · γT

(16)

where the first inequality follows from (15), the second inequality follows from identity (a+ b+ c)2 ≤ 3(a2 + b2 + c2),
the third inequality follows from

∑T
t=1 1/|Xt−1| ≤

∑T
t=1 1/t ≤ 2 log T and the fact that βt is nondecreasing, the fourth

inequality corresponds to an intermediate step of Lemma 5.4 in Srinivas et al. (2010) and the last step follows from Lemma
5.3 and Lemma 5.4 in Srinivas et al. (2010) where γT , maxXT⊂X I[fX ;yt−1] = O

(
(log T )d+1

)
and fX , (f(x))>x∈X

(see Theorem 5 in Srinivas et al. (2010)). Therefore,

S2
T

≤ R2
T /T

2

≤
T∑
t=1

r2t /T

≤ 12C2L2 + 24(C2 + C1β
1/2
T )2 log T/T + 24βT / log(1 + σ−2n )γT /T

(17)

where the second inequality follows from Cauchy-Schwarz inequality and the last inequality follows from (16). If
σmin(X ) ≥ ω then, according to Theorem 5, C = νd2. To guarantee that 12C2L2 ≤ ε2ucb and to satisfy the premise of
Lemma 1 (i.e. ν ≤ 1/2) and Theorem 5 (i.e. ν ≤ 2/d2), we need to set the value of ν = min(εucb/(2

√
3d2L), 2/d2, 1/2).

Since ν ≤ 2/d2 and hence C = νd2 ≤ 2

C1

= Cσy

√
2σ2

y + σ2
n

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
≤ 2σy

√
2σ2

y + σ2
n

(√
2(1 + 2)2σ2

y/σ
2
n + (2 + 2) · 2

)
= O

(
σy

√
σ2
y + σ2

n(σ2
y/σ

2
n + 1)

)
and

C2

=
√

2(1 + C) · Cσ2
y/σ

2
n · L

≤
√

2(1 + 2) · 2σ2
y/σ

2
n · L

= O(σ2
y/σ

2
n · L)

where C1 and C2 are defined in Lemma 5 and Lemma 6, respectively.
Remark 6. If σmin(X ) < ω, a similar form of regret bound to that of (17) can be proven: According to Theorem 5,
C = max(νd2, 1 − exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

)
) instead of C = νd2 and the entire proof of

Theorem 3 can be directly copied to reach (17). In this case, however, the term 12C2L2 in (17) cannot be set arbitrarily
small. That is explained by the fact that when σmin(X ) < ω, Algorithm 1 increases the singular values of dataset X (see
line 9) and the pairwise distances between the original inputs from X are no longer approximately the same as the distances
between their respective transformed images (see Theorem 2) resulting in a looser regret bound.
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B.6. Auxiliary results

Lemma 7. Let a dataset X ⊂ Rd be given. Let a dataset X̃ ⊂ Rd be defined in line 9 of Algorithm 1 (i.e., X̃ =
U
√

Σ2 + ω2In×dV
> where X = UΣV > is the singular value decomposition of X ). Let σmin(X ) > 0 be the smallest

singular value of X . Then for all x, x′ ∈ X and their corresponding x̃, x̃′ ∈ X̃ (when viewing datasets X and X̃ as
matrices)

‖x− x′‖ ≤ ‖x̃− x̃′‖ ≤
√

1 + ω2/σ2
min(X )‖x− x′‖.

Proof. Denote the rows of U as u(i) so that

U =

u(1)...
u(n)

 .
For i = 1, . . . , n denote the input in the i-th row of the datset X (X̃ ) viewed as matrix as x(i) (x̃(i)). From the singular value
decomposition, x(i) = u(i)ΣV

> and x̃(i) = u(i)
√

Σ2 + In×dω2V > Then for i, j = 1, . . . , n

‖x̃(i) − x̃(j)‖2

= ‖(u(i) − u(j))
√

Σ2 + ω2In×dV
>‖2

= (u(i) − u(j))
√

Σ2 + ω2In×dV
>V
√

Σ2 + ω2In×d
>

(u(i) − u(j))>

= (u(i) − u(j))
√

Σ2 + ω2In×d
√

Σ2 + ω2In×d
>

(u(i) − u(j))>

=

min(n,d)∑
k=1

(u(i)k − u(j)k)2(σ2
k + ω2)

≤
min(n,d)∑
k=1

(u(i)k − u(j)k)2σ2
k(1 + ω2/σ2

min(X ))

= (1 + ω2/σ2
min(X ))(u(i) − u(j))ΣΣ>(u(i) − u(j))>

= (1 + ω2/σ2
min(X ))(u(i) − u(j))ΣV >V Σ>(u(i) − u(j))>

= (1 + ω2/σ2
min(X ))‖(u(i) − u(j))ΣV >‖2

= (1 + ω2/σ2
min(X ))‖x(i) − x(j)‖2

(18)

where the second and the second last equalities follow from ‖v‖2 = vv> for any row vector v, the third and the third last
equalities follow from orthonormality of matrix V , and the inequality follows from

σ2
k + ω2

= σ2
k(1 + ω2/σ2

k)
≤ σ2

k(1 + ω2/σ2
min(X ))

where the inequality follows from σk ≥ σmin(X ) for every k = 1, . . . ,min(n, d).

Similarly,
‖x̃(i) − x̃(j)‖2

=

min(n,d)∑
k=1

(u(i)k − u(j)k)2(σ2
k + ω2)

=

min(n,d)∑
k=1

(u(i)k − u(j)k)2σ2
k + ω2

min(n,d)∑
k=1

(u(i)k − u(j)k)2

≥
min(n,d)∑
k=1

(u(i)k − u(j)k)2σ2
k

= ‖x(i) − x(j)‖2

(19)

where the first and the last equalities follow from the fourth and the fifth equalities of (18), respectively. Since (18) and (19)
both hold for all i, j = 1, . . . , n, the lemma follows.
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Lemma 8. In the notations of Section B.5, for all t = 1, . . . , T holds ‖(KZt−1Zt−1
+ σ2

nI)−1‖2 ≤ 1/σ2
n.

Proof. Since (KZt−1Zt−1
+ σ2

nI)−1 is positive definite, by definition of spectral norm for all t = 1, . . . , T and Zt−1

‖(KZt−1Zt−1
+ σ2

nI)−1‖2
= ψmax((KZt−1Zt−1

+ σ2
nI)−1)

=
1

ψmin(KZt−1Zt−1
+ σ2

nI)

=
1

ψmin(KZt−1Zt−1
) + σ2

n

≤ 1/σ2
n

where ψmax(·) and ψmin(·) denote the largest and the smallest eigenvalues of a matrix, respectively, the second and
the third equalities are properties of eigenvalues and the inequality is due to the fact that matrix KZt−1Zt−1

is positive
semidefinite.

Lemma 9. In the notations of Section B.5, if for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds
|kzz′ − kxx′ | ≤ C · kxx′ , and for all t = 1, . . . , T matrix KXt−1Xt−1

is diagonally dominant (Definition 3), then

‖KZt−1Zt−1 −KXt−1Xt−1‖2 ≤
√

2Cσ2
y/
√
|Xt−1|.

Proof. Fix t = 1, . . . , T . For some i = 1, . . . , t− 1:

‖KZt−1Zt−1 −KXt−1Xt−1‖22
= ψmax

(
(KZt−1Zt−1 −KXt−1Xt−1)>(KZt−1Zt−1 −KXt−1Xt−1)

)
= ψmax

(
(KZt−1Zt−1

−KXt−1Xt−1
)2
)

≤
∑
j,j 6=i

|[(KZt−1Zt−1
−KXt−1Xt−1

)2]ij |+ [(KZt−1Zt−1
−KXt−1Xt−1

)2]ii

≤ 2C2σ4
y/
(√
|Xt−1| − 1 + 1

)2
≤ 2C2σ4

y/|Xt−1|

where ψmax(·) denotes the largest eigenvalue of a matrix, the first equality is the definition of spectral norm, the second
equality follows from the fact that matricesKZt−1Zt−1

andKXt−1Xt−1
are symmetric, the first inequality is due to Gershgorin

circle theorem, the last inequality follows from
√
|Xt−1| − 1 + 1 ≥

√
|Xt−1| and the second last inequality follows from∑

j,j 6=i

|[(KZt−1Zt−1
−KXt−1Xt−1

)2]ij |

=
∑
j,j 6=i

|
∑
p

[KZt−1Zt−1
−KXt−1Xt−1

]ip[KZt−1Zt−1
−KXt−1Xt−1

]pj |

=
∑
j,j 6=i

|
∑
p

(kzizp − kxixp
)(kzpzj − kxpxj

)|

=
∑
j,j 6=i

|
∑

p,p 6=j,i

(kzizp − kxixp
)(kzpzj − kxpxj

)|

≤
∑
j,j 6=i

∑
p,p 6=j,i

|kzizp − kxixp
| · |kzpzj − kxpxj

|

≤ C2
∑
j,j 6=i

∑
p,p 6=j

kxixp
· kxpxj

= C2
∑

p,p 6=j,i

kxixp

∑
j,j 6=i,p

kxpxj

≤ C2
∑

p,p 6=j,i

kxixp
kxpxp

/
(√
|Xt−1| − 1 + 1

)
= C2σ2

y/
(√
|Xt−1| − 1 + 1

) ∑
p,p 6=j,i

kxixp

≤ C2σ2
y/
(√
|Xt−1| − 1 + 1

)
kxixi/

(√
|Xt−1| − 1 + 1

)
= C2σ4

y/
(√
|Xt−1| − 1 + 1

)2
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where the third, the fifth and the last equalities follow from kzpzp = kxpxp
= σ2

y for every p, the first inequality follows
from triangle inequality, the second inequality follows from the statement of the lemma, the third and the last inequalities
follow from the diagonal dominance property of KXt−1Xt−1 (Definition 3); and

[(KZt−1Zt−1 −KXt−1Xt−1)2]ii

=
∑
p

[KZt−1Zt−1
−KXt−1Xt−1

]ip[KZt−1Zt−1
−KXt−1Xt−1

]pi

=
∑
p

[KZt−1Zt−1
−KXt−1Xt−1

]2ip

=
∑
p

(kzizp − kxixp)2

=
∑
p,p 6=i

(kzizp − kxixp
)2

≤ C2
∑
p,p 6=i

k2xixp

≤ C2
( ∑
p,p 6=i

kxixp

)2
≤ C2k2xixi

/
(√
|Xt−1| − 1 + 1

)2
= C2σ4

y/
(√
|Xt−1| − 1 + 1

)2
where the second equality follows from the fact that KZt−1Zt−1 and KXt−1Xt−1 are symmetric, the fourth and the last
equalities follow from kzpzp = kxpxp = σ2

y for every p, the first inequality follows from the statement of the lemma and the
last inequality follows from the diagonal dominance of KXt−1Xt−1

(Definition 3).

Lemma 10. In the notations of Section B.5, if for all t = 1, . . . , T matrix KXt−1Xt−1
is diagonally dominant (Definition 3),

then for any unobserved original input x ∈ X at iteration t

‖(KXt−1Xt−1
+ σ2

nI)−1‖2 ≤ 1/(
√
|Xt−1|‖KxXt−1

‖).

.

Proof. By applying Gershgorin circle theorem for KXt−1Xt−1
:

ψmin(KXt−1Xt−1
)

≥ min
xi∈Xt−1

(
kxixi

−RXt−1
(xi)

)
= kxx − max

xi∈Xt−1

RXt−1
(xi)

≥ (
√
|Xt−1|+ 1) max

xi∈Xt−1∪{x}
RXt−1∪{x}(xi)− max

xi∈Xt−1

RXt−1
(xi)

where ψmin(·) denotes the smallest eigenvalue of a matrix, RXt−1(xi) ,
∑
xj∈Xt−1\{xi} kxixj

, the first equality follows
from the fact that kxx = σ2

y = kxixi
for all xi and x, and the second inequality holds because K(Xt−1∪{x})(Xt−1∪{x}) is as-

sumed to be diagonally dominant. On the other hand, since x /∈ Xt−1,RXt−1∪{x}(xi) = RXt−1(xi)+kxix for all xi ∈ Xt−1,
which immediately implies maxxi∈Xt−1∪{x}RXt−1∪{x}(xi) ≥ maxxi∈Xt−1 RXt−1∪{x}(xi) ≥ maxxi∈Xt−1 RXt−1(xi).
Plugging this into above inequality,

ψmin(KXt−1Xt−1)

≥ (
√
|Xt−1|+ 1) max

xi∈Xt−1∪{x}
RXt−1∪{x}(xi)− max

xi∈Xt−1

RXt−1
(xi)

≥
√
|Xt−1| max

xi∈Xt−1∪{x}
RXt−1∪{x}(xi)

≥
√
|Xt−1|RXt−1∪{x}(x).

Since ‖KxXt−1
‖ =

√∑
xi∈Xt−1

k2xix ≤
∑
xi∈Xt−1

kxix = RXt−1∪{x}(x), it follows that ψmin(KXt−1Xt−1
) ≥
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|Xt−1|‖KxXt−1

‖. Finally,
‖(KXt−1Xt−1

+ σ2
nI)−1‖2

= 1/(ψmin(KXt−1Xt−1) + σ2
nI)

≤ 1/(ψmin(KXt−1Xt−1))

≤ 1/
(√
|Xt−1|‖KxXt−1‖

)
.

Lemma 11. In the notations of Section B.5, if for all t = 1, . . . , T matrix KXt−1Xt−1
is diagonally dominant (Definition 3),

then ‖KXt−1Xt−1‖2 ≤ 2σ2
y .

Proof. Fix all t = 1, . . . , T . By applying Gershgorin circle theorem to matrix KXt−1Xt−1 , for some point xi ∈ Xt−1:

|ψmax(KXt−1Xt−1
)− kxixi

|
≤

∑
xj∈Xt−1\xi

kxixj

≤ kxixi/
(√
|Xt−1| − 1 + 1

)
= σ2

y/
(√
|Xt−1| − 1 + 1

)
where ψmax(·) denotes the largest eigenvalue of a matrix, the second inequality is due to diagonal dominance property of
matrix KXt−1Xt−1

and the equality is due to kxixi
= σ2

y for every xi. Since KXt−1Xt−1
is a symmetric, positive-semidefinite

matrix, it follows that
‖KXt−1Xt−1‖2
= ψmax(KXt−1Xt−1

)

≤ σ2
y/
(√
|Xt−1| − 1 + 1

)
+ kxixi

≤ σ2
y

(
1 + 1/(

√
|Xt−1| − 1 + 1)

)
≤ 2σ2

y.

.

Lemma 12. In the notations of Section B.5, for all t = 1, . . . , T and any unobserved input x ∈ X at iteration t
‖KxXt−1

‖2 · ψmin((KXt−1Xt−1
+ σ2

nI)−1) ≤ KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x where ψmin(·) denotes the smallest

eigenvalue of a matrix.

Proof. Since (KXt−1Xt−1 + σ2
nI)−1 is a symmetric, positive-definite matrix, there exists an orthonormal basis comprising

the eigenvectors E , [e1 . . . e|Xt−1|] (e>i ei = 1 and e>i ej = 0 for i 6= j) and their associated positive eigenvalues

Ψ−1 , Diag[ψ−11 , . . . , ψ−1|Xt−1|] such that (KXt−1Xt−1
+ σ2

nI)−1 = EΨ−1E> (i.e., spectral theorem). Denote {pi}|Xt−1|
i=1

as the set of coefficients when KXt−1x is projected on E. Then

KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x

=

( |Xt−1|∑
i=1

pie
>
i

)
(KXt−1Xt−1

+ σ2
nI)−1

( |Xt−1|∑
i=1

piei

)

=

( |Xt−1|∑
i=1

pie
>
i

)( |Xt−1|∑
i=1

pi(KXt−1Xt−1
+ σ2

nI)−1ei

)

=

( |Xt−1|∑
i=1

pie
>
i

)( |Xt−1|∑
i=1

piψ
−1
i ei

)

=

|Xt−1|∑
i=1

p2iψ
−1
i

≥ ψmin((KXt−1Xt−1
+ σ2

nI)−1)

|Xt−1|∑
i=1

p2i

= ψmin((KXt−1Xt−1 + σ2
nI)−1) ‖KxXt−1‖2.


