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Abstract
There is growing interest in studying the lan-
guages that emerge when neural agents are jointly
trained to solve tasks requiring communication
through a discrete channel. We investigate here
the information-theoretic complexity of such lan-
guages, focusing on the basic two-agent, one-
exchange setup. We find that, under common
training procedures, the emergent languages are
subject to an entropy minimization pressure
that has also been detected in human language,
whereby the mutual information between the com-
municating agent’s inputs and the messages is
minimized, within the range afforded by the need
for successful communication. That is, emer-
gent languages are (nearly) as simple as the task
they are developed for allow them to be. This
pressure is amplified as we increase communica-
tion channel discreteness. Further, we observe
that stronger discrete-channel-driven entropy min-
imization leads to representations with increased
robustness to overfitting and adversarial attacks.
We conclude by discussing the implications of
our findings for the study of natural and artificial
communication systems.

1. Introduction
There has recently been much interest in the analysis of the
communication systems arising when deep network agents
that interact to accomplish a goal are allowed to exchange
language-like discrete messages (Lazaridou et al., 2016;
Havrylov & Titov, 2017; Choi et al., 2018; Lazaridou et al.,
2018; Li & Bowling, 2019; Chaabouni et al., 2020). Under-
standing the emergent protocol is important if we want to
eventually develop agents capable of interacting with each
other and with us through language (Mikolov et al., 2016;
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Chevalier-Boisvert et al., 2019). The pursuit might also
provide comparative evidence about how core properties
of human language have evolved (Kirby, 2002; Hurford,
2014; Harding Graesser et al., 2019). While earlier stud-
ies reported ways in which deep agent protocols radically
depart from human language (Kottur et al., 2017; Boucha-
court & Baroni, 2018; Chaabouni et al., 2019; Lowe et al.,
2019), we show here that emergent communication shares
an important property of the latter, namely a tendency to-
wards entropy minimization.

Converging evidence shows that efficiency pressures are
at work in language and other biological communication
systems (Ferrer i Cancho et al., 2013; Gibson et al., 2019).
One particular aspect of communicative efficiency, robustly
observed across many semantic domains, is the tendency to
minimize lexicon entropy, to the extent allowed by the coun-
teracting need for accuracy (Zaslavsky et al., 2018; 2019).
For example, while most languages distinguish grandmoth-
ers from grandfathers, few have separate words for mother-
and father-side grandmothers, as the latter distinction makes
communication only slightly more accurate at the cost of an
increase in lexicon complexity (Kemp & Regier, 2012). We
show here, in two separate games designed to precisely mea-
sure such property, that the protocol evolved by interacting
deep agents is subject to the same complexity minimiza-
tion pressure.

Entropy minimization in natural language has been con-
nected to the Information Bottleneck principle (Tishby et al.,
1999). In turn, complexity reduction due to the Information
Bottleneck provides a beneficial regularization effect on
learned representations (Fischer, 2019; Alemi et al., 2016;
Achille & Soatto, 2018a;b). It is difficult to experimentally
verify the presence of such effect in human language, but
we can look for it in our computational simulations. We
confirm that, when relaxing channel discreteness, the en-
tropy minimization property no longer holds, and the system
becomes less robust against overfitting and adversarial noise.
This in turn raises intriguing questions about the origin of
discreteness in human language, that we return to in the
conclusion.
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2. General framework
We establish our results in the context of signaling
games (Lewis, 1969), as introduced to the current language
emergence literature by Lazaridou et al. (2016) and adopted
in several later studies (Havrylov & Titov, 2017; Boucha-
court & Baroni, 2018; Lazaridou et al., 2018). There are two
agents, Sender and Receiver, provided with individual in-
puts at the beginning of each episode. Sender sends a single
message to Receiver, and Receiver has to perform an action
based on its own input and the received message. Impor-
tantly, there is no direct supervision on the message protocol.
We consider agents that are deterministic functions of their
inputs (after training).

As an example, consider the task of communicating a n-bit
number, sampled uniformly at random from 0...2n − 1. The
full number is shown to Sender, and its k (0 ≤ k ≤ n)
least-significant bits are also revealed to Receiver. Receiver
has to output the full number, based on the message from
Sender and its own input. Would Sender transmit the en-
tire number through its message? In this case, the protocol
would be “complex,” encoding n bits. Alternatively, Sender
could only encode the bits that Receiver does not know, and
let Receiver fill in the rest by itself. This emergent protocol
would be “simple,” encoding only strictly necessary infor-
mation. We find experimentally that, once the agents are
successfully trained to jointly solve the task, the emergent
protocol minimizes the entropy of the messages or, equiva-
lently in our setup, the mutual information between Sender’s
input and messages. In other words, the agents consistently
approximate the simplest successful protocol (in the current
example, the one transmitting ≈ n− k bits).

We can connect the entropies of Sender and Receiver in-
puts is and ir, messagesm, Receiver’s output (the chosen
action) o, and ground-truth outputs l by standard inequali-
ties (Cover & Thomas, 2012).1 Denoting Sender’s computa-
tion as a function S : S(is) =m, and Receiver as function
R : R(m, ir) = o, we obtain:

H(is) ≥ H(S(is)) = H(m) ≥ H(m|ir) ≥
≥ H(R(m, ir)|ir) = H(o|ir) ≈ H(l|ir), (1)

where the last relation stems from the fact that after success-
ful training o ≈ l. Note that, since agents are deterministic
after training, H(m) = I(is;m). We can then use these
quantities interchangeably.

Our empirical measurements indicate that the entropy of the
messagesm in the emergent protocol tends to approach the
lower bound: H(m) → H(l|ir), even if the upper bound
H(is) is far. that Receiver needs is reduced without chang-
ing other parameters, the emergent protocol becomes sim-

1We also use the fact that that H(x) ≥ H(g(x)) for any dis-
crete r.v. x and function g.

pler (lower entropy). In other words, the emergent protocol
adapts to minimize the information that passes through it.

Code for our experiments is publicly available at
github.com/facebookresearch/EGG/ as a part of the EGG
framework (Kharitonov et al., 2019).

3. Methodology
3.1. Games

We study two signaling games. In Guess Number, the agents
are trained to recover an integer-representing vector with
uniform Bernoulli-distributed components. This simple
setup gives us full control over the amount of information
needed to solve the task. The second game, Image Classi-
fication, employs more naturalistic data, as the agents are
jointly trained to classify pairs of MNIST digits (LeCun
et al., 1998).

Guess Number We draw an 8-bit integer 0 ≤ z ≤ 255
uniformly at random, by sampling its 8 bits independently
from the uniform Bernoulli distribution. All bits are revealed
to Sender as an 8-dimensional binary vector is. The last k
bits are revealed to Receiver (0 ≤ k ≤ 8) as its input ir.
Sender outputs a single-symbol messagem to Receiver. In
turn, Receiver outputs a vector o that recovers all the bits of
z and should be equal to is.

In this game, Sender has a linear layer that maps the input
vector is to a hidden representation of size 10, followed by
a leaky ReLU activation. Next is a linear layer followed
by a softmax over the vocabulary. Receiver linearly maps
both its input ir and the message to 10-dimensional vectors,
concatenates them, applies a fully connected layer with
output size 20, followed by a leaky ReLU. Finally, another
linear layer and a sigmoid nonlinearity are applied. When
training with REINFORCE and the Stochastic Computation
graph approach (see Sec. 3.2), we increase the hidden layer
sizes threefold, as this leads to a more robust convergence.

Image Classification In this game, the agents are jointly
trained to classify 28x56 images of two MNIST digits,
stacked side-by-side (more details in Supplementary). Un-
like Guess Number, Receiver has no side input. Instead, we
control the informational complexity of Receiver’s task by
controlling the size of its output space, i.e., the number of
labels we assign to the images. To do so, we group all two-
digit sequences 00..99 into Nl ∈ {2, 4, 10, 20, 25, 50, 100}
equally-sized classes.

In Sender, input images are embedded by a LeNet-1 in-
stance (LeCun et al., 1990) into 400-dimensional vectors.
These embedded vectors are passed to a fully connected
layer, followed by a softmax selecting a vocabulary sym-
bol. Receiver embeds the received messages into 400-
dimensional vectors, passed to a fully connected layer with

https://github.com/facebookresearch/EGG/
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a softmax activation returning the class probabilities.

We report hyperparameter grids in Supplementary. In the
following experiments, we fix vocabulary to 1024 symbols
(experiments with other vocabulary sizes, multi-symbol mes-
sages, and larger architectures are reported in Supplemen-
tary). No parts of the agents are pre-trained or shared. The
loss being optimized depends on the chosen gradient estima-
tion method (see Sec. 3.2). We denote it L(o, l), and it is a
function of Receiver’s output o and the ground-truth output
l. When training in Guess Number with REINFORCE, we
use a 0/1 loss: the agents get zero loss only when all bits
of z are correctly recovered. When training with Gumbel-
Softmax relaxation or the Stochastic Computation Graph
approach, we use binary cross-entropy (Guess Number) and
negative log-likelihood (Image Classification).

3.2. Training with discrete channel

Training to communicate with discrete messages is non-
trivial, as we cannot back-propagate through the messages.
Current language emergence work mostly uses Gumbel-
Softmax relaxation (e.g., Havrylov & Titov, 2017) or RE-
INFORCE (e.g., Lazaridou et al., 2016) to get gradient esti-
mates. We also explore the Stochastic Computation Graph
optimization approach. We plug the obtained gradient esti-
mates into Adam (Kingma & Ba, 2014).

Gumbel-Softmax relaxation Samples from the Gumbel-
Softmax distribution (a) are reperameterizable, hence allow
gradient-based training, and (b) approximate samples from
the corresponding Categorical distribution (Maddison et al.,
2016; Jang et al., 2016). To get a sample that approximates
an n-dimensional Categorical distribution with probabilities
pi, we draw n i.i.d. samples gi from Gumbel(0,1) and use
them to calculate a vector y with components:

yi =
exp [(gi + log pi)/τ ]∑
j exp [(gj + log pj)/τ ]

, (2)

where τ is the temperature hyperparameter. As τ tends to 0,
the samples y get closer to one-hot samples; as τ → +∞,
the components yi become uniform. During training, we
use these relaxed samples as messages from Sender, making
the entire Sender/Receiver setup differentiable.

REINFORCE by Williams (1992) is a standard reinforce-
ment learning algorithm. In our setup, it estimates the gradi-
ent of the expectation of the loss L(o, l) w.r.t. the parameter
vector θ as follows:

Eis,irEm∼S(is),o∼R(m,ir) [(L(o; l)− b)∇θ logPθ(m,o)]
(3)

The expectations are estimated by samplingm from Sender
and, after that, sampling o from Receiver. We use the run-
ning mean baseline b (Greensmith et al., 2004; Williams,
1992) as a control variate. We adopt the common trick to

add an entropy regularization term (Williams & Peng, 1991;
Mnih et al., 2016) that favors higher entropy. We impose
entropy regularization on the outputs of the agents with
coefficients λs (Sender) and λr (Receiver).

Stochastic Computation Graph (SCG) In our setup, the
gradient estimate approach of Schulman et al. (2015) re-
duces to computing the gradient of the surrogate function:

Eis,irEm∼S(is) [L(o; l) + sg (L(o; l)− b) logPθ(m)] ,
(4)

where sg denotes stop-gradient operation. We do not sample
Receiver actions: Its parameter gradients are obtained with
standard backpropagation (first term in Eq. 4). Sender’s
messages are sampled, and its gradient is calculated akin
to REINFORCE (second term in Eq. 4). Again, we apply
entropy-favoring regularization on Sender’s output (with
coefficient λs) and use the mean baseline.

Role of entropy regularization As we mentioned above,
when training with REINFORCE and SCG, we include a
(standard) entropy regularization term in the loss which
explicitly maximizes entropy of Sender’s output. Clearly,
this term is at odds with the entropy minimization effect we
observe. In our experiments, we found that high values of λs
(the parameter controlling Sender’s entropy regularization)
prevent communication success; on the other hand, a small
non-zero λs is crucial for successful training. In Sec. 4 we
investigate the effect of λs on entropy minimization.2

3.3. Experimental protocol

In Guess Number, we use all 28 possible inputs for train-
ing, early stopping and analysis. In Image Classification,
we train on random image pairs from the MNIST training
data, and use image pairs from the MNIST held-out set for
validation. We select the runs that achieved a high level
of performance (training accuracy above 0.99 for Guess
Number and validation accuracy above 0.98 for Image Clas-
sification), thus studying typical agent behavior provided
they succeeded at the game.

At test time, we select the Sender’s message symbol greed-
ily, hence the messages are discrete and Sender represents
a (deterministic) function S of its input is, m = S(i).
Calculating the entropy H(m) of the distribution of dis-
crete messages m is straightforward. In Guess Number,
we enumerate all 256 possible values of z as inputs, obtain
messages and calculate entropy H(m). For Image Classifi-
cation, we sample image pairs from the held-out set.

The upper bound on H(m) is as follow: Hmax = 8 bits
(bounded by H(is)) in Guess Number, and Hmax = 10

2The parameter λr , that controls Receiver’s entropy regulariza-
tion, does not influence the observed effect.
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bits (bounded by vocabulary size) in Image Classification.
Its lower bound is equal to Hmin = H(l|ir) = 8− k bits
for Guess number. In Image Classification, communica-
tion can only succeed if H(m) is not less than H(l), i.e.,
Hmin = H(l) = log2Nl, with Nl the number of equally-
sized classes we split the images into.

4. Experiments
4.1. Entropy minimization

Guess Number In Figure 1, the horizontal axes span the
number of bits of z that Receiver lacks, 8 − k. The ver-
tical axis reports the information content of the protocol,
measured by messages entropy H(m). Each integer on
the horizontal axis corresponds to a game configuration,
and for each such configuration we aggregate multiple (suc-
cessful) runs with different hyperparameters and random
seeds. Hmin indicates the minimal amount of bits Sender
has to send in a particular configuration for the task to be
solvable. The upper bound (not shown) is Hmax = 8 bits.
Across hyperparameters and random seeds, trainings with
Gumbel-Softmax and SCG have success rate above 50%.
With REINFORCE success rate is approximately 20%.

Consider first the configurations where Receiver’s input is
insufficient to answer correctly (at least one binary digit
hidden, k ≤ 7). From Figure 1a, we observe that the trans-
mitted information is strictly monotonically increasing with
the number of binary digits hidden from Receiver. Thus,
even if Sender sees the very same input in all configura-
tions, a more nuanced protocol is only developed when it
is necessary. Moreover, the entropy H(m) (equivalently:
the transmitted information) stays close to the lower bound.
This entropy minimization property holds for all the consid-
ered training approaches across all configurations.

Consider next the configuration where Receiver is getting
the whole integer z as its input (k = 8, the leftmost configu-
ration in Figure 1, corresponding to 0 on x axis). Based on
the observations above, one would expect that the protocol
would approach zero entropy in this case (as no informa-
tion needs to be transmitted). However, the measurements
indicate that the protocol is encoding considerably more
information. It turns out that this information is entirely
ignored by Receiver. To demonstrate this, we fed all pos-
sible distinct inputs to Sender, retrieved the corresponding
messages, and shuffled them to destroy any information
about the inputs they might carry. The shuffled messages
were then passed to Receiver alongside its own (un-shuffled)
inputs. The overall performance was not affected by this
manipulation, confirming the hypothesis that Receiver ig-
nores the messages. We conclude that in this case there
is no entropy minimization pressure on Sender simply be-
cause there is no communication. The full experiment is

in Supplementary.

We further consider the effect of various hyperparameters.
In Figure 1b, we split the results obtained with Gumbel-
Softmax by relaxation temperature. As discussed in Sec. 3.2,
lower temperatures more closely approximate discrete com-
munication, hence providing a convenient control of the
level of discreteness imposed during training (recall that
at test time we enforce full discreteness by selecting the
symbol greedily). The figure shows that lower tempera-
tures consistently lead to lower H(m). This implies that,
as we increase the “level of discreteness” at training, we get
stronger entropy minimization pressure.

In Figures 1c & 1d, we report H(m) when training with
Stochastic Graph Optimization and REINFORCE across
degrees of entropy regularization. We report curves corre-
sponding to λs values which converged in more than three
configurations. With REINFORCE, we see a weak tendency
for a higher λs to trigger a higher entropy in the protocol.
However, message entropy stays generally close to the lower
bound even in presence of strong exploration, which favors
higher entropy in Sender’s output distribution.

Image Classification As the models are more complex, we
only had consistent success when training with Gumbel-
Softmax (success rate is approximately 80%). In Figure 2a
we aggregate all successful runs. The information encoded
by the protocol grows as Receiver’s output requires more
information. However, in all configurations, the transmit-
ted information stays well below the 10-bit upper bound
and tends to be close to Hmin. A natural interpretation is
that Sender prefers to take charge of image classification
and directly pass information about the output label, rather
than sending along a presumably more information-heavy
description of the input. In Figure 2b, we split the runs by
temperature. Again, we see that lower temperatures consis-
tently lead to stronger entropy minimization pressures.

Summarizing, when communicating through a discrete chan-
nel, there is consistent pressure for the emergent protocol to
encode as little information as necessary. This holds across
games, training methods and hyperparameters. When train-
ing with Gumbel-Softmax, temperature controls the strength
of this pressure, confirming the relation between entropy
minimization and discreteness.

4.2. Evolution of message entropy during training

To gain further insights into the minimization trend, we
studied the evolution of message entropy during training.
We observed that the initial entropy of Sender can be both
higher and lower than the minimum entropy Hmin required
for solving the task. Further, we measured how the en-
tropy of the messages changes after each training epoch
by applying the same procedure as above, i.e., feeding the
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(a) All three training approaches. (b) Training with Gumbel-Softmax relaxation.

(c) Training with Stochastic Computation Graph. (d) Training with REINFORCE.

Figure 1. Guess Number: entropy of the messages m. Shaded regions represent one standard error of the mean (SEM).

entire dataset to Sender and selecting the message symbol
greedily. When message entropy starts higher than Hmin,
it falls close to it during the training. Similarly, when it
starts lower than Hmin, it increases during training. This
experiment is reported in Supplementary. Thus, information
minimization is not simply due to the difficulty of discov-
ering a higher-entropy protocol during learning, but also
due to the complexity of maintaining mutual coordination
between the agents.

4.3. Representation discreteness and robustness

The entropy minimization effect indicates that a discrete rep-
resentation will only store as much information as necessary
to solve the task. This emergent behavior resembles the In-
formation Bottleneck principle (Tishby et al., 1999; Achille
& Soatto, 2018a). The fact that lower training-time temper-
atures in Gumbel-Softmax optimization correlate with both
higher discreteness and a tighter bottleneck (see Sec. 3.3)
makes us further conjecture that discreteness is causally
connected to the emergent bottleneck. The Information
Bottleneck principle has also been claimed to govern en-
tropy minimization in natural language (Zaslavsky et al.,
2018; 2019). Bottleneck effects in neural agents and natural

language might be due to the same cause, namely communi-
cation discreteness.

Further, we hypothesize that the emergent discrete bottle-
neck might have useful properties, since existing (continu-
ous) architectures that explicitly impose a bottleneck pres-
sure are more robust to overfitting (Fischer, 2019) and ad-
versarial attacks (Alemi et al., 2016; Fischer, 2019). We test
whether similar regularization properties also emerge in our
computational simulations (without any explicit pressure
imposed through the cost function), and whether they are
correlated with communication channel discreteness. If this
connection exists, it also suggests that discreteness might
be “beneficial” to human languages for the same reasons.

4.3.1. ROBUSTNESS TO OVER-FITTING

To assess our hypotheses, we consider the Image Classifi-
cation game (Nl = 10) in presence of randomly-shuffled
training labels (the test set is untouched) (Zhang et al., 2016).
This task allows us to explore whether the discrete commu-
nication bottleneck is associated to robustness to overfitting,
and whether the latter depends on discreteness level (con-
trolled by the temperature τ of Gumbel-Softmax). We use
the same architecture as above. The agents are trained with
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(a) Successful runs pooled together. (b) Successful runs grouped by temperature.

Figure 2. Image Classification: entropy of the messages m in function of log number of target classes, Nl. Shaded regions mark SEM.

Gumbel-Softmax relaxation; at test-time the communication
is fully discrete.

We also consider two baseline architectures without the
discrete channel. In Linear, the fully connected output layer
of Sender is directly connected to the linear embedding
input of Receiver. Softmax (SM) places a softmax activation
(with temperature) after Sender’s output layer and passes
the result to Receiver.

We vary temperature and proportion of training examples
with shuffled labels. We use temperatures τ = 1.0 and
τ = 10.0 (the agents reach a test accuracy of 0.98 when
trained with these temperatures on the original training set).
SM with τ = 1.0 and τ = 10.0 behave similarly, hence we
only report SM with τ = 1.0.

Figure 3a shows training accuracy when all labels are shuf-
fled. Linear and SM fit the random labels almost perfectly
within the first 150 epochs. With τ = 10.0, GS achieves
0.8 accuracy within 200 epochs. When GS with τ = 1.0 is
considered, the agents only start to improve over random
guessing after 150 epochs, and accuracy is well below 0.2
after 200 epochs. As expected, test set performance is at
chance level (Figure 3b). In the next experiment, we shuffle
labels for a randomly selected half of the training instances.
Train and test accuracies are shown in Figures 3c and 3d,
respectively. All models initially fit the true-label exam-
ples (train accuracy ≈ 0.5, test accuracy ≈ 0.97). With
more training, the baselines and GS with τ = 10.0 start
(over)fitting the random labels, too: train accuracy grows,
while test accuracy falls. In contrast, GS with τ = 1.0
does not fit random labels, and its test accuracy stays high.
Note that SM patterns with Linear and high-temperature GS,
showing that the training-time discretization noise in GS is
instrumental for robustness to over-fitting.

We interpret the results as follows. To fully exploit their
joint capacity for “successful” over-fitting, the agents need

to coordinate label memorization. This requires passing
large amounts of information through the channel. With
a low temperature (more closely approximating a discrete
channel), this is hard, due to a stronger entropy minimiza-
tion pressure. To test the hypothesis, we run an experiment
where all labels are shuffled and a layer of size 400x400 is
either added to Sender (just before the channel) or to Re-
ceiver (just after the channel). We predict that, with higher τ
(less discrete, less entropy minimization pressure), the train-
ing curves will be close, as the extra capacity can be used
for memorization equally easy in both cases. With lower τ
(more discrete, more pressure), the accuracy curves will be
more distant, as the extra capacity can only be successfully
exploited for memorization when placed before the channel.
Figures 3e & 3f bear out the prediction.

4.3.2. ROBUSTNESS TO ADVERSARIAL EXAMPLES

We study next robustness of agents equipped with a relaxed
discrete channel against adversarial attacks. We use the
same architectures as in the preceding experiment.

We train agents with different random seeds and imple-
ment white-box attacks on the trained models, varying tem-
perature τ and the allowed perturbation norm, ε. We use
the standard Fast Gradient Sign Method of (Goodfellow
et al., 2014). The original image is is perturbed to i∗s along
the direction that maximizes the loss of Receiver’s output
o = R(S(is)) w.r.t. the ground-truth class l:

i∗s = clip [is + ε · sign [∇isL(o, l)] , 0, 1] , (5)

where ε controls the L∞ norm of the perturbation. Under
an attack with a fixed ε, a more robust method will have a
higher accuracy. To avoid numerical stability issues akin to
those reported by (Carlini & Wagner, 2016), all computa-
tions are done in 64-bit floats.

We experiment with two approaches of getting gradients for
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(a) All train labels are shuffled. (b) All train labels are shuffled.

(c) Half of train labels are shuffled. (d) Half of train labels are shuffled.

(e) All labels shuffled; Additional layer before channel vs.
after channel

(f) All labels shuffled; Additional layer before channel vs. after chan-
nel

Figure 3. Learning in presence of random labels. GS (SM) denotes models trained with Gumbel-Softmax (Softmax) channel. Linear are
models with the channel removed.
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(a) Robustness vs. temp. τ . (b) Comparison to the baselines.

Figure 4. Robustness to adversarial examples: higher accuracy given fixed ε implies more robustness.

the attack. Under the first approach, the gradient∇isL(o, l)
is estimated using the standard Gumbel-Softmax relaxation.
It is possible, however, that the randomization that Gumbel-
Softmax uses internally reduces the usefulness of gradients
used for the attack. Hence we also experiment with a setup
that is easier for an adversary: after training (and during
the attack), we replace the Gumbel-Softmax by a softmax
non-linearity with the same temperature. We found that
performance in these two setups is virtually the same, indi-
cating that the obtained robustness results are independent
from the randomization in the channel. Rather, they are due
to emergence of well-separated “categories” during training.

As in the preceding experiment, SM behaves similarly
with different temperatures (we experimented with τ ∈
{0.1, 1.0, 10.0}): we only report results with τ = 1.0. Fig-
ure 4a shows that, as temperature decreases, the accuracy
drop also decreases. The highest robustness is achieved
with τ = 0.1. Comparison with the baselines (Figure 4b)
confirms that relaxed discrete training with τ = 0.1 im-
proves robustness.

In sum, increased channel discreteness makes it harder
to transmit large amounts of information, and leads to in-
creased robustness against over-fitting and adversarial ex-
amples. Discreteness brings about a bottleneck that has
beneficial properties, which might ultimately provide a mo-
tivation for why an emergent communication system should
evolve towards discreteness.

5. Related Work
We briefly reviewed studies of emergent deep agent commu-
nication and entropy minimization in human language in the
introduction. We are not aware of earlier work that looks
for this property in emergent communication, although Evti-
mova et al. (2018) used information theory to study protocol
development during learning, and, closer to us, Kågebäck
et al. (2018) studied the effect of explicitly adding a com-

plexity minimization term to the cost function of an emer-
gent color-naming system.

Discrete representations are explored in many places (e.g.,
van den Oord et al., 2017; Jang et al., 2016; Rolfe, 2016).
However, these works focus on ways to learn good discrete
representations, rather than analyzing the properties of rep-
resentations that are independently emerging on the side.
Furthermore, our study extends to agents communicating
with variable-length messages, produced and consumed by
GRU (Cho et al., 2014) and Transformer (Vaswani et al.,
2017) cells (see Supplementary). The sequential setup is
specific to language, clearly distinguished from the settings
studied in generic sparse-representation work.

Other studies, inspired by the Information Bottleneck prin-
ciple, control the complexity of neural representations by
regulating their information content (Strouse & Schwab,
2017; Fischer, 2019; Alemi et al., 2016; Achille & Soatto,
2018a;b). While they externally impose the bottleneck, we
observe that the latter is an intrinsic feature of learning to
communicate through a discrete channel.

6. Discussion
Entropy minimization is pervasive in human language,
where it constitutes a specific facet of the more general
pressure towards communication efficiency. We found that
the same property consistently characterizes the protocol
emerging in simulations where two neural networks learn to
solve a task jointly through a discrete communication code.

In a comparative perspective, we hypothesize that entropy
minimization is a general property of discrete communica-
tion, independent of specific biological constraints humans
are subject to. In particular, our analysis tentatively estab-
lishes a link between this property and the inherent difficulty
of encoding information in discrete form (cf. the effect of
adding a layer before or after the communication bottleneck
in the over-fitting experiment).
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Exploring entropy minimization in computational simula-
tions provides a flexibility we lack when studying humans.
For example, we uncovered here initial evidence that the
communication bottleneck is acting as a good regularizer,
making the joint agent system more robust to noise and
adversarial examples. This leads to an intriguing conjec-
ture on the origin of language. Its discrete nature is often
traced back to the fact that it allows us to produce an in-
finite number of expressions by combining a finite set of
primitives (e.g., Berwick & Chomsky, 2016). However, it
is far from clear that the need to communicate an infinite
number of concepts could have provided the initial pressure
to develop a discrete code. More probably, once such code
independently emerged, it laid the conditions to develop
an infinitely expressive language (Bickerton, 2014; Collier
et al., 2014). Our work suggests that, because of its inherent
regularizing effect, discrete coding is advantageous already
when communication is about a limited number of concepts,
providing an alternative explanation for its origin.

In the future, we would like to study more continuous seman-
tic domains, such as color maps, where perfect accuracy
is not easily attainable, nor desirable. Will the networks
find an accuracy/complexity trade-off similar to those at-
tested in human languages? Will other core language prop-
erties claimed to be related to this trade-off, such as Zipfian
frequency distributions (Ferrer i Cancho & Dı́az-Guilera,
2007), concurrently emerge? We would also like to compare
the performance of human subjects equipped with novel con-
tinuous vs. discrete communication protocols, adopting the
methods of experimental semiotics (Galantucci, 2009). We
expect discrete protocols to be more general and robust.

Our results have implications for the efforts to evolve agents
interacting with each other and with humans through a dis-
crete channel. First, because of entropy minimization, we
should not agents to develop a richer protocol than the sim-
plest one ensuring accurate communication. For example,
Bouchacourt & Baroni (2018) found that agents trained to
discriminate pairs of natural images depicting instances of
about 500 high-level categories, such as cats and dogs, de-
veloped a lexicon that does not denote such categories, but
low-level properties of the images themselves. This makes
sense from an entropy-minimization perspective, as talking
about the 500 high-level categories demands log2 500 bits
of information, whereas many low-level strategies (e.g., dis-
criminating average pixel intensity in the images) will only
require transmitting a few bits. To have agents developing
rich linguistic protocols, we must face them with varied
challenges that truly demand them.

Second, the focus on a discrete protocol is typically moti-
vated by the goal to develop machines eventually able to
communicate with humans. Indeed, discrete messages are
not required in multi-agent scenarios where no human in the

loop is foreseen (Sukhbaatar et al., 2016). Our results sug-
gest that, long before agents reach the level of complexity
necessary to converse with humans, there are independent
reasons to encourage discreteness, as it leads to simpler
protocols and it provides a source of robustness in a noisy
world. An exciting direction for future applied work will
be to test the effectiveness of discrete communication as a
general form of representation learning.
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