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Supplement: Differentiable Likelihoods for Fast Inversion
of ‘Likelihood-Free’ Dynamical Systems

A. Short Introduction to Gaussian ODE
Filtering

A.1. Gaussian Filtering for Generic Time Series

In signal processing, a Bayesian Filter (Särkkä, 2013,
Chapter 4) does Bayesian inference of the discrete state
{xi; i = 1, . . . , N} ⊂ Rn from measurements {yi; i =
1, . . . , N} ⊂ Rn in a probabilistic state space model con-
sisting of

a dynamic model xi ∼ p(xi | xi−1), and (A.1)
a measurement model yi ∼ p(yi | xi). (A.2)

Usually, the state xi is assumed to be the discretization
of a continuous signal x : [0, T ] → Rn which is a priori
modeled by a stochastic process. Absent very specific expert
knowledge, this prior is usually chosen to be a linear time-
invariant (LTI) stochastic differential equation (SDE):

p(x) ∼ X(t) = FX(t) dt+ L dB(t), (A.3)

where F and L are the drift and diffusion matrix, respec-
tively. The corresponding dynamic model (eq. (A.1)) can
be easily constructed by discretization of the LTI SDE
(eq. (A.3)), as described in Särkkä & Solin (2019, Chapter
6.2). If an LTI SDE prior with Gaussian initial condition
is used, p(x) is a GP which implies a Gaussian dynamic
model

p(xi | xi−1) = N (Axi−1, Q) (A.4)

for matricesA,Q that are implied by F,L from eq. (A.3). If
additionally the measurement model (eq. (A.2)) is Gaussian,
i.e.

p(yi | xi) = N (Hxi, R) (A.5)

for matrices H,R, the filtering distributions p(xi | y1:i),
i = 1, . . . , N , can be computed by Gaussian filtering in
linear time. Note that the filtering distribution p(xi | y1:i)
is not the full posterior distribution p(xi | y1:N ) which can,
however, also be computed in linear time by running a
smoother after the filter. See e.g. Särkkä (2013) for more
information.

A.2. Gaussian ODE Filtering

A Gaussian ODE filter is simply a Gaussian filter, as defined
in Section A.1, with a specific kind of probabilistic state
space model eqs. (A.1) and (A.2), to infer the solution x :
[0, T ] → Rd of the ODE eq. (1), at the discrete time grid
{0 ·h, . . . , N ·h} with step size h > 0. The dynamic model
is—as usual, recall eqs. (A.3) and (A.4)—constructed from
a GP defined by a LTI SDE that incorporates the available
prior information on x. The measurement model, however,
is specific to ODEs as we will see next: Recall that, after
i− 1 steps, the Gaussian filter has computed the (i− 1)-th
filtering distribution

p(xi−1 | y1:i−1) = N (mi−1, Pi−1), (A.6)

which is Gaussian with mean mi−1 and covariance matrix
Pi−1, and computes the predictive distribution

p(xi | y1:i−1) = N (m−i , P
−
i ) (A.7)

by inserting eq. (A.4) into eq. (A.6). Analogous to the logic

f(x̂(t)) ≈ f(x(t)) = ẋ(t) (A.8)

of classical solvers, the Gaussian ODE Filter treats evalu-
ations at the predictive mean m−i —which is a numerical
approximation like x̂—as data on ẋ(ih). This yields the
measurement model

p(yi | xi) = N (Hxi, R), (A.9)

with data

yi := f(m−i ) ≈ ẋ(ih). (A.10)

The probabilistic state space model is thereby completely
defined. Gaussian ODE filtering is equivalent to running a
Gaussian filter on this probabilistic state space model.
For more details on Gaussian ODE filters, see Kersting et al.
(2019) or ?. An extension to more Bayesian filters—such
as particle filters—is provided by Tronarp et al. (2019).

B. Equivalent Form of Filtering Distribution
by GP Regression

Recall from Section A that any Gaussian filter computes a
sequence of filtering distributions

p(xi | y1:i) = N (mi, Pi) (B.1)



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
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from a GP prior on x eq. (A.3) and a linear Gaussian mea-
surement model (eq. (A.5)) with derivative data (eq. (A.10)).
Hence, the classical framework for GP regression with
derivative observations, as introduced in Solak et al. (2003),
is applicable. It a priori models the state x and its derivative
ẋ as a multi-task GP:

p

([
x
ẋ

])
= GP

([
x
ẋ

]
;

[
µ
µ̇

]
,

[
k k∂

k∂ k∂ ∂

])
, (B.2)

with

k∂ =
∂k(t, t′)

∂t
, k∂ =

∂k(t, t′)

∂t′
, k∂ ∂ =

∂2k(t, t′)

∂t∂t′
.

(B.3)

B.1. Kernels for Derivative Observations

In this paper, we model the solution x with a integrated
Brownian motion kernel k or, in other words, we model ẋ
by the Brownian Motion (a.k.a. Wiener process) kernel, i.e.

k∂ ∂(t, t′) = σ2
dif min(t, t′), ∀t, t′ ∈ [0, T ]. (B.4)

Here, σdif > 0 denotes the output variance which scales the
diffusion matrix L in the equivalent SDE (eq. (A.3)). Inte-
gration with respect to both arguments yields the integrated
Brownian motion (IBM) kernel

k(t, t′) = σ2
dif

(
min3(t, t′)

3
+ |t− t′|min2(t, t′)

2

)
(B.5)

to model x. The once-differentiated kernels in eq. (B.2) are
given by

k∂(t, t′) = k∂ (t′, t) = σ2
dif

{
t ≤ t′ : t

2

2 ,

t > t′ : tt′ − t′2

2

. (B.6)

A detailed derivation of eqs. (B.4) to (B.6) can be found in
Schober et al. (2014, Supplement B).

B.2. GP Form of Filtering Distribution

Now, GP regression with prior (eq. (B.2)), likelihood
(eq. (B.1)) and data y1:i yields an equivalent form of the
filtering distribution eq. (B.1):

mi =µ+ k∂(h : ih, ih)ᵀ
[
K∂ ∂(h : ih) +R · Ii

]−1

× [y1 − µ̇(h), . . . , yi − µ̇(ih)]
ᵀ
, (B.7)

Pi =

[
k(h, h) . . . k(ih, ih)

.

.

.
. . .

.

.

.
k(ih, h) . . . k(ih, ih)

]
− k∂(h : ih, ih)ᵀ

×
[
K∂ ∂(h : ih) +R · Il

]−1
k∂(h : ih, ih), (B.8)

with y1:i = [y1, . . . , yi]
ᵀ, where we used the notations from

eqs. (15) and (16). The derivation of eq. (18) is hence
concluded by eq. (B.8).

B.3. Derivation of Equation (10)

In this subsection, we will use the ODE-specific nota-
tion from above instead of the generic filtering notation—
e.g. mθ(ih) instead of mi, f(m−(ih)) instead of yi etc.
To derive the missing eq. (10), we first observe that, by
eq. (B.7), m(ih) is linear in the data residuals:

mθ(ih) = µ+ βih × (B.9)[
f(m−(h))− µ̇(h), . . . , f(m−(ih))− µ̇(ih)

]ᵀ
βih := k∂(h : ih, ih)ᵀ

[
K∂ ∂(h : ih) +R · Ii

]−1
.

Now recall that, in ODE filtering, the prior mean in eq. (B.2)
is set to be [µ, µ̇] ≡ [x0; f(x0)] (or [µ, µ̇] ≡ [m0; f(m0)]
for some estimate m0 of x0, in the case of unknown x0).
Consequently, application of Assumption 1 to eq. (B.9)
yields

mθ(ih) = x0 + Jihθ, with (B.10)

Jih := βih

 f1(m
−
θ
(h)) − f1(x0) . . . fn(m

−
θ
(h)) − fn(x0)

.

.

.
. . .

.

.

.
f1(m

−
θ
(ih)) − f1(x0) . . . fn(m

−
θ
(ih)) − fn(x0)


= βihY1:i , (B.11)

where Y1:i denotes the first i rows of Y ; see eq. (17). We
omit the dependence of Jih on θ to obtain a linear form.
Recall from Section 3 that we may w.l.o.g. assume that the
time points {t1, . . . , tM} lie on the filter time grid, i.e. ti =
lih from some li ∈ N. Therefore, eq. (B.10) implies

mθ(ti)
eq. (14)

= x0 + κ̃iY1:i
eq. (13)

= x0 + κiY (B.12)

for all data time points ti, i = 1, . . . ,M . Here, we used that
κ̃i is equal to βlih by eq. (14). We conclude the derivation
of eq. (10) by observing that the i-th entry of eq. (10) reads
eq. (B.12) for all i = 1, . . . ,M .

C. Proof of Theorem 1
Proof. We start by computing the rows of

Dmθ = [∇θm(t1), . . . ,∇θm(tM )]ᵀ. (C.1)

By eqs. (10) and (11) and the fact that the kernel prefactor
K does not depend on θ, we obtain, for all i = 1, . . . ,M ,
that

∇θm(ti) = ∇(κ̃(i)ᵀv(θ))

= [Dv(θ)]
ᵀ
κ̃(i) + [Dκ̃(i)]

ᵀ︸ ︷︷ ︸
=0

v(θ) (C.2)

= [Dv(θ)]
ᵀ
κ̃(i), (C.3)

with v(θ) = Ỹ θ. Here,

Ỹ = Y [1 : li, :] = [Y1(θ), . . . , Yli(θ)]
ᵀ (C.4)
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is defined by

Yj(θ) = [yj1, . . . , yjn]ᵀ ∈ Rn, (C.5)

the j-th row of Y = Y (θ) (recall eq. (17)), for j = 1, . . . , li.
Next, we again compute the rows of the missing Jacobian
of eq. (C.3)

Dv(θ) = [∇θ[v(θ)]1, . . . ,∇θ[v(θ)]li ]
ᵀ (C.6)

by the chain rule, for all j ∈ {1, . . . , li}:

∇θ[v(θ)]j = ∇θ[Yj(θ)ᵀθ] = [DYj(θ)]
ᵀ
θ + Yj(θ).

(C.7)

Again, we compute the rows of the final missing Jacobian

DYj(θ) = [∇θyj1(θ), . . . ,∇yjn(θ)]ᵀ. (C.8)

The definition of yij from eq. (17) implies, in the notation
of eq. (21), that

[∇θyjk(θ)]l = λlk(jh), (C.9)

for all l = 1, . . . , n. Now, we can insert backwards. First,
we insert eq. (C.9) into eq. (C.8) which yields

DYj(θ) = Λj , (C.10)

where Λj =
[
λkl(jh)

]
k,l=1,...,n

. Second, insertion of
eq. (C.10) into eq. (C.7) provides that

∇θ[v(θ)]j = Λᵀ
j θ + Yj(θ). (C.11)

Third, insertion of eq. (C.11) into eq. (C.6) implies that

Dv(θ) =
[
Λᵀ

1θ, . . . ,Λ
ᵀ
li
θ
]ᵀ

+ Y [: li, :], (C.12)

where

Y [: li, :]
eq. (C.11)

= [Y1(θ), . . . , Yli(θ)]
ᵀ eq. (C.5)

=

[
y11 . . . y1n

.

.

.
. . .

.

.

.
yli1

. . . ylin

]
.

Fourth, we insert eq. (C.12) into eq. (C.3) and obtain

∇θm(ti) =
(
[Y [: li, :]]

ᵀ
+
[
Λᵀ

1θ, . . . ,Λ
ᵀ
li
θ
])
κ̃i

= [Y [: li, :]]
ᵀ
κ̃i +

[
Λᵀ

1θ, . . . ,Λ
ᵀ
li
θ
]
κ̃i. (C.13)

By eq. (13), it follows that

[Y [: li, :]]
ᵀ
κ̃i

eq. (17)
= Y ᵀκi, and (C.14)[

Λᵀ
1θ, . . . ,Λ

ᵀ
li
θ
]
κ̃i

eq. (20)
= Sᵀκi. (C.15)

This implies via eq. (C.13) that

∇θm(ti) = (Y ᵀ + Sᵀ)κi, (C.16)

Fifth and finally, we, by insertion of eq. (C.16) into eq. (C.1)
and application of eq. (12), obtain

Dmθ = K(Y + S)
eq. (11)

= J +KS. (C.17)

D. Proof of Theorem 2
We first show some preliminary technical lemmas in Sec-
tion D.1 which are needed to prove bounds on ‖K‖ and
‖S‖ in Section D.2 and Section D.3, respectively. Having
proved these bounds, the core proof of Theorem 2 simply
consists of combining them by Theorem 1, as executed in
Section D.4.

D.1. Preliminary lemmas

The following lemma will be needed in Section D.2 to bound
‖K‖.
Lemma 1. Let Q > 0 be a symmetric positive definite and
Q′ ≥ 0 a symmetric positive semi-definite matrix in Rm×n.
Then, it holds true that∥∥∥[Q+Q′]

−1
∥∥∥
∗
≤
∥∥Q−1

∥∥
∗, (D.1)

for the nuclear norm

‖A‖∗ = trace
√
A∗A =

m∧n∑
i=1

σi(A), (D.2)

where σi(A), i ∈ {1, . . . ,m ∧ n}, are the singular values
of A.

Proof. Recall that, for all symmetric positive semi-definite
matrices, the singular values are the eigenvalues. Therefore∥∥∥[Q+Q′]

−1
∥∥∥
∗

=

m∧n∑
i=1

1

λi(Q+Q′)

≤
m∧n∑
i=1

1

λi(Q)
=
∥∥Q−1

∥∥
∗. (D.3)

In eq. (D.3), we exploited the fact that Q ≤ Q+Q′ (i.e. that
(Q+Q′)−Q = Q′ is positive semi-definite) and therefore
λi(Q) ≤ λi(Q + Q′) for ordered eigenvalues λ1(Q) ≤
· · · ≤ λm∧n(Q) counted by algebraic multiplicity. This fact
is an immediate consequence of Theorem 8.1.5. in Golub &
Van Loan (1996).

The next lemma will be necessary to prove a bound on ‖S‖
in Section D.3.
Lemma 2. Let g(x, λ) ∈ C ([0, T ]× Λ;R) on non-empty
compact Λ ⊂ Rn with continuous first-oder partial deriva-
tives w.r.t. the components of λ. If

sup
λ∈Λ

g(x, λ) ∈ O(h(x)) (D.4)

for some constant C > 0 and some strictly positive h :
[0, T ]→ R, then also

sup
λ∈Λo

∣∣∣∣ ∂∂λk g(x, λ)

∣∣∣∣ ∈ O(h(x)), (D.5)

where Λo denotes the interior of Λ.
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Proof. Assume not. Then, there is a k ∈ {1, . . . , n} and a
λ̃ ∈ Λo such that∣∣∣∣ ∂∂λk g(x, λ̃)

∣∣∣∣ /∈ O(h(x)). (D.6)

Since, for all x ∈ [0, T ], ∂
∂λk

(x, ·) is uniformly continuous
over the bounded domain Λo, there is a δ > 0 such that∣∣∣∣ ∂∂λk g(x, λ̃)

∣∣∣∣ /∈ O(h(x)), for all λ ∈ B2δ(λ̃). (D.7)

Let us w.l.o.g. (otherwise consider −g) assume that

∂

∂λk
g(x, λ̃) ≥ 0, for all λ ∈ B2δ(λ̃). (D.8)

Now, on the one hand, we know by the fundamental theorem
of calculus that∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃

= g(x, λ̃)︸ ︷︷ ︸
∈O(h(x))

− g(x, λ̃− δek)︸ ︷︷ ︸
∈O(h(x))

∈ O(h(x)). (D.9)

However, on the other hand, we know from our assumption
that

0
eq. (D.8)
≤

∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃ (D.10)

≤
∫ 0

−δ

∣∣∣∣ ∂∂λk g(xn, λ̃+ δ̃ek)

∣∣∣∣︸ ︷︷ ︸
/∈O(h(x)), by eq. (D.7)

dδ̃ /∈ O(h(x)), (D.11)

which implies∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃ /∈ O(h(x)). (D.12)

The desired contradiction is now found between eqs. (D.9)
and (D.12).

D.2. Bound on ‖K‖

Lemma 3. Under Assumption 3 and for all R > 0, it holds
true that

‖K‖ ≤ C(T ), (D.13)

where C(T ) > 0 is a constant that depends on T .

Proof. First, recall eqs. (12) to (16) and observe that

∥∥k∂(h : ti, ti)
∥∥ ≤ Cσ2

2

∥∥[h2, . . . , T 2
]∥∥
∞ = C

(
2−

1
2σT

)2

,

for all i = 1, . . . ,M . Second, Lemma 1 implies that∥∥∥[ K∂ ∂(h : ti) +R · Ili
]−1
∥∥∥ eq. (D.1)
≤ C

∥∥R−1 · Ili−1

∥∥
∗

≤ C
∥∥R−1 · IN̄−1

∥∥
∗ ≤ CRN̄.

Now, by eq. (13), we observe

‖κi‖1 = ‖κ̃i‖1
≤
∥∥∥[ K∂ ∂(h : ti) +R · Ili

]−1
∥∥∥ · ∥∥k∂(h : ti, ti)

∥∥
≤ C(T ), (D.14)

where we inserted the above inequalities in the last step.
Finally, we obtain eq. (D.13) by plugging eq. (D.14) into

‖K‖ ≤ C‖K‖∞
eq. (12)

= max
1≤i≤M

‖κi‖1. (D.15)

D.3. Bound on ‖S‖

Before estimating ‖S‖, we need to bound how far the entries
of S (recall eq. (20)) deviate from the true sensitivities
∂
∂θk

xθ(T ).

Lemma 4. If Θ ⊂ Rn is compact, then it holds true, under
Assumptions 1 and 2, that

sup
θ∈Θo

∥∥∥∥ ∂

∂θk
m−θ (T )− ∂

∂θk
xθ(T )

∥∥∥∥ ∈ O(h). (D.16)

Proof. First, recall that the convergence rates of O(h) pro-
vided by Theorem 6.7 in Kersting et al. (2019) only depend
on f through the dependence of the constant K(T ) > 0 on
the Lipschitz constant L of f . But this L is independent of θ
by Assumption 1. Hence, Theorem 6.7 from Kersting et al.
(2019) yields under Assumption 2 that

sup
θ∈Θo

m−θ (T )− xθ(T ) ∈ O(h). (D.17)

Moreover, Theorem 8.49 in Kelley & Peterson (2010) is
applicable under Assumption 1 and implies that xθ(t) is
continuous and has continuous first-order partial derivatives
with respect to of θk. By construction—recall eq. (10)—the
filtering mean mθ(t) has the same regularity too. Hence,
application of Lemma 2 with x = h, Λ = Θ, λ = θ,
g(x, λ) = m−θ (T ) − xθ(T ) is possible, which yields
eq. (D.16) from eq. (D.17).

Lemma 5. If Θ ⊂ Rn is compact, then it holds true, under
Assumptions 1 to 3, that

‖S‖ ≤ C (‖∇θxθ‖+ h) , (D.18)

for sufficiently small h > 0.
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Proof. By Assumption 3 and the equivalence of all matrix
norms, we observe

‖S‖ ≤ C‖S‖2 = C‖Sᵀ‖2 ≤ C‖S
ᵀ‖2,1 (D.19)

eq. (20)
= C

N̄∑
j=1

∥∥Λᵀ
j θ
∥∥

2
(D.20)

≤ C
N̄∑
j=1

∥∥Λᵀ
j

∥∥
2

‖θ‖2︸︷︷︸
≤C, since Θ bounded

, (D.21)

where ‖·‖2,1 denotes the L2,1 norm. We conclude, using
Assumption 2 and Lemma 4, that

∥∥Λᵀ
j

∥∥
2

eq. (21)
≤ Lmax

jk

[
∂

∂θk
m−θ (jh)

]
(D.22)

eq. (D.16)
≤ C (‖∇θxθ‖+ h) . (D.23)

D.4. Proof of Theorem 2

Proof. By Theorem 1 and the sub-multiplicativity of the
induced p-norm ‖·‖p, we observe that

‖J −Dmθ‖ = ‖KS‖ ≤ C‖KS‖p ≤ ‖K‖p‖S‖q
≤ C‖K‖‖S‖, (D.24)

for some p, q ≥ 1. Application of Lemmas 3 and 5 con-
cludes the proof.

E. Gradient and Hessian Estimators for the
Bayesian Case

In the main paper, we only consider the maximum likelihood
objective; see eq. (23). Nonetheless, the extension to the
Bayesian objective, with a prior π(θ), is straightforward:

− log (p(z | θ)π(θ)) = − log (p(z | θ))− log (π(θ))

Accordingly, the gradients and Hessian of this objective are

∇θ [− log (p(z | θ)π(θ))]
eq. (26)

= ∇̂θE(z)−∇θ log (π(θ)) ,

∇2
θ [− log (p(z | θ)π(θ))]

eq. (27)
= ∇̂2

θE(z)−∇2
θ log (π(θ)) .

Hence, for a Gaussian prior π(θ) = N (θ;µθ, Vθ), the
Bayesian version of the gradients and Hessian estimators in
eqs. (26) and (27) are hence given by

∇̂θE(z)Bayes := −Jᵀ
[
P + σ2IM

]−1
[z −mθ]

− V −1
θ [θ − µθ] , and (E.1)

∇̂2
θE(z)Bayes := Jᵀ

[
P + σ2IM

]−1
J + V −1

θ . (E.2)

F. Glucose Uptake in Yeast
The Glucose uptake in yeast (GUiY) is described by mass-
action kinetics. In the notation of Schillings et al. (2015),
the underlying ODE is given by:

ẋeGlc = −k1x
e
Ex

e
Glc + k−1x

e
E–Glc

ẋiGlc = −k2x
i
Ex

i
Glc + k−2x

i
E–Glc

ẋiE–G6P = k4x
i
Ex

i
G6P + k−4x

i
E–G6P

ẋiE–Glc–G6P = k3x
i
E–Glcx

i
G6P − k−3x

i
E–Glc–G6P

ẋiG6P = −k3x
i
E–Glcx

i
G6P + k−3x

i
E–Glc–G6P

− k4x
i
Ex

i
G6P + k−4x

i
E–Glc

ẋeE–Glc = α
(
xiE–Glc − ẋeE–Glc

)
+ k1x

e
Ex

e
Glc

− k−1x
e
E–Glc

ẋiE–Glc = α
(
xeE–Glc − ẋiE–Glc

)
− k3x

i
E–Glcx

i
G6P

+ k−3x
i
E–Glc–G6P + k2x

i
Ex
i
Glc − k−2x

i
E–Glc

ẋeE = β
(
xiE − xeE

)
− k1x

e
Ex
e
Glc + k−1x

e
E–Glc

ẋiE = β
(
xeE − xiE

)
− k4x

i
Ex
i
G6P + k−4x

i
E–G6P

− k2x
i
Ex
i
Glc + k−2x

i
E–Glc,

where k1, k−1, k2, k−2, k3, k−3, k4, k−4, α, and β
are the 10 parameters. Note that this system satisfies
Assumption 1. Following Schillings et al. (2015) and
Gorbach et al. (2017), we used this ODE with initial
value x0 = 1M , time interval [0., 100.] and true parameter
θ∗ = [0.1, 0.0, 0.4, 0.0, 0.3, 0.0, 0.7, 0.0, 0.1, 0.2]. To gen-
erate data by eq. (3), we added Gaussian noise with variance
σ2 = 10−5 to the corresponding solution at time points
[1., 2., 4., 5., 7., 10., 15., 20., 30., 40., 50., 60., 80., 100.].
The optimizers and samplers were initialized at
θ0 = 1.2·θ∗ = [0.12, 0, 0.48, 0, 0.36, 0, 0.84, 0, 0.12, 0.24],
and the forward solutions for all likelihood evaluations
were computed with step size h = 0.05. To create a good
initialization, we accepted the first 30 proposals for PHMC
and PLMC.
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