Supplement: Differentiable Likelihoods for Fast Inversion
of ‘Likelihood-Free’ Dynamical Systems

A. Short Introduction to Gaussian ODE
Filtering

A.1. Gaussian Filtering for Generic Time Series

In signal processing, a Bayesian Filter (Séarkkd, 2013,
Chapter 4) does Bayesian inference of the discrete state
{z;; ¢ =1,...,N} C R” from measurements {y;; i =
1,...,N} C R™ in a probabilistic state space model con-
sisting of

a dynamic model and (A.1)

(A2)

w; ~ p | Tio1),
a measurement model y; ~ p(y; | ;).
Usually, the state x; is assumed to be the discretization
of a continuous signal z : [0, 7] — R™ which is a priori
modeled by a stochastic process. Absent very specific expert
knowledge, this prior is usually chosen to be a linear time-
invariant (LTT) stochastic differential equation (SDE):

p(z) ~ X(t)=FX(¢t)dt+ LdB(%), (A.3)
where F' and L are the drift and diffusion matrix, respec-
tively. The corresponding dynamic model (eq. (A.1)) can
be easily constructed by discretization of the LTI SDE
(eq. (A.3)), as described in Séarkkd & Solin (2019, Chapter
6.2). If an LTI SDE prior with Gaussian initial condition
is used, p(z) is a GP which implies a Gaussian dynamic
model

p(xi | zio1) = N(Azi—1,Q) (A4)
for matrices A, () that are implied by F|, L from eq. (A.3). If
additionally the measurement model (eq. (A.2)) is Gaussian,
ie.

p(yi | xi) = N(Hz, R) (A.5)
for matrices H, R, the filtering distributions p(z; | y1.:),
i =1,..., N, can be computed by Gaussian filtering in
linear time. Note that the filtering distribution p(z; | y1.;)
is not the full posterior distribution p(x; | y1.n) which can,
however, also be computed in linear time by running a

smoother after the filter. See e.g. Sdarkka (2013) for more
information.

A.2. Gaussian ODE Filtering

A Gaussian ODE filter is simply a Gaussian filter, as defined
in Section A.1, with a specific kind of probabilistic state
space model eqgs. (A.1) and (A.2), to infer the solution x :
[0, T] — R? of the ODE eq. (1), at the discrete time grid
{0-h,...,N-h} with step size h > 0. The dynamic model
is—as usual, recall egs. (A.3) and (A.4)—constructed from
a GP defined by a LTI SDE that incorporates the available
prior information on x. The measurement model, however,
is specific to ODEs as we will see next: Recall that, after
i — 1 steps, the Gaussian filter has computed the (i — 1)-th
filtering distribution

P(fifl | y1:i71) = N(mifhpifl)v

which is Gaussian with mean m;_; and covariance matrix
P;_1, and computes the predictive distribution

p(xi | y1:i-1) = N(m; , P;)
by inserting eq. (A.4) into eq. (A.6). Analogous to the logic
f(@(@) = f(x(t) = (1) (A.8)

of classical solvers, the Gaussian ODE Filter treats evalu-
ations at the predictive mean m; —which is a numerical
approximation like #—as data on #(ih). This yields the
measurement model

p(yi | wi) = N(Huzi, R),

(A.6)

(A7)

(A.9)

with data
yi = f(m;) ~ &(ih).

The probabilistic state space model is thereby completely
defined. Gaussian ODE filtering is equivalent to running a
Gaussian filter on this probabilistic state space model.

For more details on Gaussian ODE filters, see Kersting et al.
(2019) or ?. An extension to more Bayesian filters—such
as particle filters—is provided by Tronarp et al. (2019).

(A.10)

B. Equivalent Form of Filtering Distribution
by GP Regression

Recall from Section A that any Gaussian filter computes a
sequence of filtering distributions

p(z; | y1i) = N(my, P) (B.1)
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from a GP prior on z eq. (A.3) and a linear Gaussian mea-
surement model (eq. (A.5)) with derivative data (eq. (A.10)).
Hence, the classical framework for GP regression with
derivative observations, as introduced in Solak et al. (2003),
is applicable. It a priori models the state x and its derivative
1 as a multi-task GP:

o) =or ([ 1[5 &) w2

with

_ Ok(t,t) 10— Ok(t, 1) o0 _ O?k(t,t")

a7 et oot
(B.3)

O

B.1. Kernels for Derivative Observations

In this paper, we model the solution x with a integrated
Brownian motion kernel £ or, in other words, we model &
by the Brownian Motion (a.k.a. Wiener process) kernel, i.e.

I(t,t') = oZemin(t, '),  Vt,t' €[0,T]. (B.4)
Here, og4is > 0 denotes the output variance which scales the
diffusion matrix L in the equivalent SDE (eq. (A.3)). Inte-
gration with respect to both arguments yields the integrated

Brownian motion (IBM) kernel

-3 / 02 !
t,t t,t
k(t,t) = 02 <mm(> - t/mm(»>> (B.5)
3 2
to model x. The once-differentiated kernels in eq. (B.2) are
given by

t<t .t
ka(t,t/)—ak(t’,t)—ggif{ =" (B6)
. t
t> 1t —

A detailed derivation of eqs. (B.4) to (B.6) can be found in
Schober et al. (2014, Supplement B).

B.2. GP Form of Filtering Distribution

Now, GP regression with prior (eq. (B.2)), likelihood
(eq. (B.1)) and data y;.; yields an equivalent form of the
filtering distribution eq. (B.1):

m; =g+ k(b ih,ih)T [PKO(h:ih) + R- T

k(h,h) ... k(ih,ih)
P = _ — k2(h 2 ih,ih)T
k(ih, h) ... k(ih, ih)
dpd(p . ; “Locp Ly s
x [PK°(h:ih)+ R-I,] " k°(h:ih,ih), (B.8)
with y1.; = [y1, ..., yi]T, where we used the notations from

egs. (15) and (16). The derivation of eq. (18) is hence
concluded by eq. (B.8).

B.3. Derivation of Equation (10)

In this subsection, we will use the ODE-specific nota-
tion from above instead of the generic filtering notation—
e.g. my(ih) instead of m;, f(m~(ih)) instead of y; etc.
To derive the missing eq. (10), we first observe that, by
eq. (B.7), m(ih) is linear in the data residuals:

me(ih) = p+ Bin ¥ (B.9)
[£(m™(h)) = fu(h),..., f(m~(ih)) — ja(ih)]"
B = kO (h s ih,ih)T [PKO(h - ih) + R L]

Now recall that, in ODE filtering, the prior mean in eq. (B.2)
is set to be [i, 4] = [2o; f(2o)] (or [p, 1] = [mo; f(mo)]
for some estimate mg of xg, in the case of unknown x).
Consequently, application of Assumption 1 to eq. (B.9)
yields

mg(ih) = xo + Jipb, with (B.10)
fi(myg (h)) = f1(z0) .. fn(my (R)) — fn(zo)
Jin := Bin . {
Fi(my (ih)) = f1(20) -+ fn(my (ih)) — fn(20)
= BinY1:i (B.11)

where Y7.; denotes the first 7 rows of Y'; see eq. (17). We
omit the dependence of J;; on 6 to obtain a linear form.
Recall from Section 3 that we may w.l.o.g. assume that the
time points {t1, ..., ¢as} lie on the filter time grid, i.e. ¢; =
l;h from some [; € N. Therefore, eq. (B.10) implies

.

eq. (14) ~ eq 3)
= w0+ kY1 = w0+ kY

mg(ti) (B.12)

for all data time points ¢;,¢ = 1,..., M. Here, we used that
F; is equal to 3,5, by eq. (14). We conclude the derivation
of eq. (10) by observing that the ¢-th entry of eq. (10) reads
eq. (B.12)foralli =1,..., M.

C. Proof of Theorem 1
Proof. We start by computing the rows of
Dmy = [Vom(t1),...,Vem(ta)]T. (C.1)

By egs. (10) and (11) and the fact that the kernel prefactor
K does not depend on 6, we obtain, foralli =1,..., M,
that

Vom(t;) = V(#(i)T0(6))

= [Dv(0)]" &(5) + w v(0)  (C2)
eI, ©3)

with v(f) = Y. Here,
Y =Y[1:1,:] =[vi(6),...,Y,(0)] (C.4)
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is defined by
Yi(0) = [yj1,-- - YinlT (C.5)

the j-throw of Y = Y (0) (recall eq. (17)), forj = 1,..., ;.
Next, we again compute the rows of the missing Jacobian
of eq. (C.3)

e R",

Dv(0) = [Vg[v(0)]1,- .., Ve[v(0)];,]T (C.6)
by the chain rule, for all j € {1,...,1;}:
Vo[v(B)]; = Ve[Y;(0)70] = [DY;(6)]7 0 + Y;(6).

(C.7)
Again, we compute the rows of the final missing Jacobian
DY;(0) = [Voyjn(0), - Vyn(0)]T.

The definition of y;; from eq. (17) implies, in the notation
of eq. (21), that

(C.8)

[Voyjr(0)], = Ak (jh),

foralll = 1,...,n. Now, we can insert backwards. First,
we insert eq. (C.9) into eq. (C.8) which yields

DY;(0) = A;,

(C.9)

(C.10)

where A; = [Au(jh)] ki1, Second, insertion of
eq. (C.10) into eq. (C.7) provides that
Volv(0)]; = A0+ Y;(0). (C.11)
Third, insertion of eq. (C.11) into eq. (C.6) implies that
Du(0) = [A]6,... AT O]T + Y[ 1;,1], (C.12)

where

Y11 .-+ Yln
Y[ 1, eq- (C11) [Y1(0),...,Y,(0)]7 e (€5 [ ]

Yi,;

i1 Yin

Fourth, we insert eq. (C.12) into eq. (C.3) and obtain

Vom(t;) = ([Y[: i, 1]]" + [A]6, .. .,AlTiG]) I
= [Y[: 4;,:]]T R + [A]O, ... ,AZTIH] Ri. (C.13)
By eq. (13), it follows that
Y[ % Y YTk,  and  (C.14)
[ATO,... AT 0] 5“7 STk, (C.15)
This implies via eq. (C.13) that
Vom(t;) = (YT + ST) ky, (C.16)

Fifth and finally, we, by insertion of eq. (C.16) into eq. (C.1)
and application of eq. (12), obtain

K +8) 2" 54+ Ks. (C.17)

O

l)nm =

D. Proof of Theorem 2

We first show some preliminary technical lemmas in Sec-
tion D.1 which are needed to prove bounds on ||K|| and
IS]| in Section D.2 and Section D.3, respectively. Having
proved these bounds, the core proof of Theorem 2 simply
consists of combining them by Theorem 1, as executed in
Section D.4.

D.1. Preliminary lemmas

The following lemma will be needed in Section D.2 to bound
([ K]

Lemma 1. Let Q > 0 be a symmetric positive definite and
Q' > 0 a symmetric positive semi-definite matrix in R™*™,
Then, it holds true that

le+@17| <

for the nuclear norm

le™Il.. (D.1)

mAn

A, = trace VA*A = Y " 0;(A) (D.2)
i=1

where 0;(A), i € {1,...,
of A.

m A n}, are the singular values

Proof. Recall that, for all symmetric positive semi-definite
matrices, the singular values are the eigenvalues. Therefore

mAn

1
ZA Q+Q)

mAn

_ZA

In eq. (D.3), we exploited the fact that Q < Q + Q' (i.e. that
(Q+ Q') — Q = Q' is positive semi-definite) and therefore
Ai(Q) < M(Q + Q') for ordered eigenvalues A1 (Q) <

- < Aman(Q) counted by algebraic multiplicity. This fact
is an immediate consequence of Theorem 8.1.5. in Golub &
Van Loan (1996). O]

@+

=@~ (D.3)

The next lemma will be necessary to prove a bound on ||.S||
in Section D.3.

Lemma 2. Let g(z,A) € C ([0,T] x A;R) on non-empty
compact A C R™ with continuous first-oder partial deriva-
tives w.r.t. the components of \. If

sup g(z, A) € O(h(z))
AEA

D.4)

for some constant C > 0 and some strictly positive h :
[0,T] — R, then also

sup D.5)

A€EA°

ool )| € Oi(a)

where A° denotes the interior of A.
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Proof. Assume not. Then, there is a k € {1,...,
A € A° such that

n} and a

0

I (D.6)

g(x,h\ ¢ O(h(x).

Since, for all = € [0, T, 52~ (, -) is uniformly continuous
over the bounded domain A°, there is a > 0 such that

‘8)\ g(z ’ ¢ O(h(z)), forall A € Bys(A). (D.7)

Let us w.l.o.g. (otherwise consider —g) assume that

8

for all A € Bas(\). (D.8)

Now, on the one hand, we know by the fundamental theorem
of calculus that

0 ) N N B
/5 a—)\kg(xn, A+ der) dd
= g(,)) —g(z, A —dey) € O(h(x)).
—_—

——
€0(h(z))

(D.9)

€O(h(x))

However, on the other hand, we know from our assumption
that

eq. 08 [0 9 - .
0 < / —g(xp, A+ deg) dd (D.10)
_s Ok
0
</ (@ms A+ der)| 5 ¢ O(h(z)), (D)
oY
ZO(h(=), by e D7)
which implies
0o 9
/ (@, A+ 3ex) A5 ¢ O(h(z)).  (D.12)
Y

The desired contradiction is now found between eqs. (D.9)
and (D.12). O]

D.2. Bound on || K ||

Lemma 3. Under Assumption 3 and for all R > 0, it holds
true that
1Kl < C(T), (D.13)

where C(T') > 0 is a constant that depends on T.
Proof. First, recall eqs. (12) to (16) and observe that
TR =

2 L 2
K20 s tis )] < || 2 c(2or)

forall? =1,..., M. Second, Lemma 1 implies that

[RSICREO R 387 il e T A
<C|R™ Iy, < CRN.

Now, by eq. (13), we observe

lsally = 1
< |[PKO sty + R0 R0 )
< C(T), (D.14)

where we inserted the above inequalities in the last step.
Finally, we obtain eq. (D.13) by plugging eq. (D.14) into

eq. (12)

1K < ClIK| "= (D.15)

[l
O

D.3. Bound on ||.5]|

Before estimating ||.S||, we need to bound how far the entries
of S (recall eq. (20)) deviate from the true sensitivities
0 4 (T)

a0, Lo\L )

Lemma 4. [f© C R"™ is compact, then it holds true, under
Assumptions 1 and 2, that

sup (D.16)

0cO°

e O(h).

0 _
g0 (1) = ggean(T)

Proof. First, recall that the convergence rates of O(h) pro-
vided by Theorem 6.7 in Kersting et al. (2019) only depend
on f through the dependence of the constant K (7") > 0 on
the Lipschitz constant L of f. But this L is independent of §
by Assumption 1. Hence, Theorem 6.7 from Kersting et al.
(2019) yields under Assumption 2 that

sup my (T) — zo(T) € O(h).
0co°

(D.17)

Moreover, Theorem 8.49 in Kelley & Peterson (2010) is
applicable under Assumption 1 and implies that xy(¢) is
continuous and has continuous first-order partial derivatives
with respect to of 0. By construction—recall eq. (10)—the
filtering mean mg(t) has the same regularity too. Hence,
application of Lemma 2 with z = h, A = O, A\ =

g(z,N) = my (T) — x¢(T) is possible, which yields
eq. (D.16) from eq. (D.17). O]

Lemma 5. If © C R"™ is compact, then it holds true, under
Assumptions 1 to 3, that
S| < C([[Vozoll + h), (D.18)

for sufficiently small h > 0.
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Proof. By Assumption 3 and the equivalence of all matrix
norms, we observe

IS < ClISlly = ClISTl, < CISTly,,  (D-19)
N
LV N |ATg, (D.20)
j=1
N
<oy |aT 0 : D.21
<oyl e, 21

<, since © bounded

where ||-||, ; denotes the Lo ; norm. We conclude, using
Assumption 2 and Lemma 4, that

Jaz), < ) (D.22)
illa = BHEX 5y eV '
eq. (D.16)
C (||Vozg|| + h) . (D.23)
O
D.4. Proof of Theorem 2

Proof. By Theorem 1 and the sub-multiplicativity of the
induced p-norm ||-||,,, we observe that

I = Dmyl| = |[KS| < CIKS], < [IK],II51,
< CIIKIISI; (D.24)

for some p,q > 1. Application of Lemmas 3 and 5 con-
cludes the proof. O

E. Gradient and Hessian Estimators for the
Bayesian Case

In the main paper, we only consider the maximum likelihood
objective; see eq. (23). Nonetheless, the extension to the
Bayesian objective, with a prior 7(6), is straightforward:

—log (p(z | 0)7(0)) = —log (p(z | 0)) — log (7(0))

Accordingly, the gradients and Hessian of this objective are

Vo [~ log (p(z | )m(9))] “'= VoE(2) — Vg log (n(6)),
V3 [~ log (p(z | 0)n(9))] “=" VZE(2) — V3log ((6)) .

Hence, for a Gaussian prior () = N (6; ug, Vy), the
Bayesian version of the gradients and Hessian estimators in
egs. (26) and (27) are hence given by
- -1
VoE(z)ayes = —JT [P + O'2IM] [z — my]
— VN0 — we], and
V2E(2)Bayes = JT [P+ 02In] T+ VL.

(E.1)
(E.2)

F. Glucose Uptake in Yeast

The Glucose uptake in yeast (GU1Y) is described by mass-
action kinetics. In the notation of Schillings et al. (2015),
the underlying ODE is given by:

PG = —k1252G, + k17E Gie
e = —kaTpaGe + k_2%h gie
it gop = ka¥lsTéep + k—aTh_gep
Th_Gle-aep = k3Th_GieTGep — K—3TE_Gle_gep
-i‘é;ép = —kB«TE_Glcxéﬁp + k73${~:—Glc—G6P
— kaTlpxGep + k- ath o
-/t]Pé—Glc =« (x%i—Glc - jj]%—Glc) + klerxélC
— k-1ZE Gie
& gie = @ (TGl — Thcie) — K3Th_c1eT6ep
+ k_3Tk Giegep + k2TETG — k2T Gic
if, = B (zg — af) — k1zgaie + k-175_gic
i = B (2§ — k) — kazpaGep + k—a2h_gep

— kowpxge + k2T gies

where kl, ]{771, kg, k,Q, kg, kfg, k4, k74, o, and 5
are the 10 parameters. Note that this system satisfies
Assumption 1. Following Schillings et al. (2015) and
Gorbach et al. (2017), we used this ODE with initial
value xg = 1)y, time interval [0., 100.] and true parameter
6* =0.1,0.0,0.4,0.0,0.3,0.0,0.7,0.0,0.1,0.2]. To gen-
erate data by eq. (3), we added Gaussian noise with variance
0?2 = 107° to the corresponding solution at time points
1.,2,4.,5.,7.,10.,15.,20.,30.,40.,50.,60., 80.,100.].
The optimizers and samplers were initialized at
60 =1.2-6* = [0.12,0,0.48,0,0.36, 0, 0.84,0,0.12,0.24],
and the forward solutions for all likelihood evaluations
were computed with step size h = 0.05. To create a good
initialization, we accepted the first 30 proposals for PHMC
and PLMC.
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