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Abstract

We define a quantum version of Expectation-
Maximization (QEM), a fundamental tool in un-
supervised machine learning, often used to solve
maximum likelihood (ML) and Maximum a pos-
teriori (MAP) estimation problems. We use QEM
to fit a Gaussian mixture model, and show how to
generalize it to fit mixture models with base distri-
butions in the exponential family. Given quantum
access to a dataset, our algorithm has convergence
and precision guarantees similar to the classical
algorithm, while the runtime is polylogarithmic
in the number of elements in the training set and
polynomial in other parameters, such as the di-
mension of the feature space and the number of
components in the mixture. We discuss the per-
formance of the algorithm on a dataset that is
expected to be classified successfully by classical
EM and provide guarantees for its runtime.

1. Introduction

Over the last few years, the effort to find real-world applica-
tions of quantum computers has greatly intensified. Along
with chemistry, material sciences, finance, one of the fields
where quantum computers are expected to be most ben-
eficial is machine learning. Several different algorithms
have been proposed for quantum machine learning (Wiebe
et al., 2017; Harrow et al., 2009; Subas et al., 2019; Farhi
& Neven, 2018; Montanaro, 2016; Biamonte et al., 2017;
Chakrabarti et al., 2019), both for the supervised and unsu-
pervised setting, and despite the lack of large-scale quantum
computers and quantum memory devices, some quantum
algorithms have been demonstrated in proof-of-principle
experiments (Li et al., 2015; Otterbach et al., 2017; Jiang
etal., 2019).
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Here, we look at Expectation-Maximization (EM), a fun-
damental algorithm in unsupervised learning, that can be
used to fit different mixture models and give maximum like-
lihood estimates for latent variable models. Such generative
models are one of the most promising approaches to unsuper-
vised problems. The goal of a generative model is to learn a
probability distribution that is most likely to have generated
the data collected in a dataset set V' € R"*< of n vectors of
d features. Fitting a model consists in learning the parame-
ters of a probability distribution p in a certain parameterized
family that best describes our vectors v;. This formulation
allows one to reduce a statistical problem into an optimiza-
tion problem. For a given machine learning model -, under
the assumption that each point is independent and identi-
cally distributed the log-likelihood of a dataset V' is defined
as{(v; V) == > 1 log p(v;|y), where p(v;|7) is the proba-
bility that a point v; comes from model . For ML estimates
we want to find the model 7}, := argmax, £(v; V). Due
to the non-convex landscape of the function, optimizing ¢
using gradient based techniques often do not perform well.
MAP estimates can be seen as the Bayesian version of max-
imum likelihood estimation problems, and are defined as
Yirap = argmax, y 1 logp(vi|y) + logp(y). MAP
estimates are often preferred over ML estimates, due to a
reduced propensity to overfit.

The EM algorithm has been proposed in different works
by different authors but has been formalized as we know
it in 1977 (Dempster et al., 1977). For more details, we
refer to (Lindsay, 1995; Bilmes et al., 1998). EM is an
iterative algorithm which is guaranteed to converge to a
(local) optimum of the likelihood, and it is widely used
to solve the ML or the MAP estimation problems. This
algorithm has a striking number of applications and has
been successfully used for medical imaging (Balafar et al.,
2010), image restoration (Lagendijk et al., 1990), problems
in computational biology (Fan et al., 2010), and so on.

One of the most important applications of the EM algorithm
is for fitting mixture models in machine learning (Murphy,
2012). Most of the mixture models use a base distribution
that belongs to the exponential family: Poisson (Church &
Gale, 1995), Binomial, Multinomial, log-normal (Dexter &
Tanner, 1972), exponential (Ghitany et al., 1994), Dirichlet
multinomial (Yin & Wang, 2014), and others. EM is also
used to fit mixtures of experts, mixtures of the student T dis-
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tribution (which does not belong to the exponential family,
and can be fitted with EM using (Liu & Rubin, 1995)), fac-
tor analysis, probit regression, and learning Hidden Markov
Models (Murphy, 2012). The estimator of the parameter
computed by EM has many relevant properties. For instance,
it is asymptotically efficient: no other estimator can achieve
asymptotically smaller variance in function of the number
of points (Moitra, 2018).

In this work, we introduce Quantum Expectation-
Maximization (QEM), a quantum algorithm for fitting mix-
ture models. We detail its usage in the context of Gaussian
mixture models, and we extend the result to other distribu-
tions in the exponential family. It is straightforward to use
the ML estimates to compute the MAP estimate of a mixture
model. Our main result can be stated as:

Result (Quantum Expectation-Maximization). (see Theo-
rem 4.9) Given quantum access to a GMM and a dataset
V € R™*4 like in Definition 2, for parameters 5y, 0, >0,
Quantum Expectation-Maximization (QEM) fits a maximum
likelihood (or a Maximum A Posteriori) estimate of a Gaus-
sian mixture model with k components, in running time per
iteration which is dominated by:

5 (d2k4~5n%2<5v2>n2<2>u<2>) |

)

where 3. is a covariance matrix of a Gaussian distribution
of one of the mixture components, 1 is a parameter of the
dataset related to the maximum norm of the vectors, dg, 0,
are error parameters in the QEM algorithm, u(X) ( which
is always < V/d) is a factor appearing in quantum linear
algebra and k is the condition number of a matrix.

To run the quantum algorithm we assume to have access to
data structures that allow quantum access to the data and the
GMM, as in Definition 2. The preprocessing time needed to
create these data structures in linear in the size of the data.
It is typical for quantum algorithms to depend on a set of
parameters, and they can achieve speedups with respect to
classical algorithms when these parameters are within a cer-
tain range. Importantly, the value of these parameters can be
estimated (as we do in this work for the VoxForge dataset )
and we expect it not to be too high on real datasets. Most of
these parameters can be upper bounded, as described in the
Experiment section. Remark that we have formal bounds for
the condition number as (V) ~ 1/ min({6,---,0,} U
(AN (i, 20), N (1, )i # G € [K]}). where dy is
the statistical distance between two Gaussian distributions.
(Kalai et al., 2012). Here we only kept the term in the
running time that dominates for the range of parameters of
interest, while in Theorem 4.9 we state explicitly the running
times of each step of the algorithm. As in the classical case,
QEM algorithm runs for a certain number of iterations until
a stopping condition is met (defined by a parameter €, > 0)

which implies convergence to a (local) optimum. We re-
mark that in the above result we performed tomography
enough times to get an /5 guarantee in the approximation,
nevertheless, a lesser guarantee may be enough, for example
using £, tomography (see Supplementary Material, Theo-
rem 1.11), which can potentially remove the term d? from
the running time.

We discuss a first high-level comparison of the quantum
algorithm with the standard classical algorithms. The run-
time of a single iteration in the standard implementation
of the EM algorithm is O(knd?) (Pedregosa et al., 2011;
Murphy, 2012). The advantage of the quantum algorithm is
an exponential improvement with respect to the number of
elements in the training set, albeit with a worsening on other
parameters. Note that we expect the number of iterations
of the quantum algorithm to be similar to the number of
iteration of the classical case, as the convergence rate is not
expected to change, and this belief is corroborated by experi-
mental evidence for the simpler case of univariate Gaussians
of k-means (Kerenidis et al., 2019). In this work, we tested
our algorithm on a non-trivial dataset for the problem of
speaker recognition on the VoxForge dataset (Voxforge.org).
The experiment aimed to gauge the range of the parameters
that affects the runtime, and test if the error introduced in
the quantum procedures still allow the models to be useful.
From the experiments reported in Section 5, we believe that
datasets where the number of samples is very large might be
processed faster on a quantum computer. One should expect
that some of the parameters of the quantum algorithm can
be improved, especially the dependence on the condition
numbers and the errors, which can extend the number of
datasets where QEM can offer a computational advantage.
We also haven’t optimized the parameters that govern the
runtime in order to have bigger speedups, but we believe that
hyperparameter tuning techniques, or a simple grid search,
can improve the quantum algorithm even further. ML may
not always be the best way to estimate the parameters of a
model. For instance, in high-dimensional spaces, ML es-
timates often tend to overfit. MAP estimates inject into a
ML model some external information, perhaps from domain
experts. This usually avoids overfitting by having a kind of
regularization effect on the model. For more information on
how to use QEM for a MAP estimate we refer to (Murphy,
2012) and to the Supplementary Material.

This work is organized as such. First, we review previous
efforts in quantum algorithms for unsupervised classifica-
tion and classical algorithms for GMM. Then we present
the classical EM algorithm for GMM. Then, in Section 4
we describe QEM and its theoretical analysis, and we show
how to use it to fit a GMM and other mixture models. We
conclude by giving some experimental evidence on the ex-
pected runtime on real data. In the Supplementary Material
the interested reader can find all the proofs of the Lemmas



Quantum Expectation-Maximization for Gaussian mixture models

that we used to state our main result, details on the exper-
iments, initialization strategies of QEM, the rules for the
MAP update of a GMM, and the description of the possible
covariance matrices for GMM models.

1.1. Related work

Many classical algorithms for GMM exist. Already in 1895,
Karl Pearson fitted manually a GMM of 2 features using the
methods of moments (Pearson, 1895). Without resorting to
heuristics - like the EM algorithm - other procedures with
provable guarantees exist. For example, in (Dasgupta, 1999)
they assume only one shared covariance matrix among mix-
tures, but they have a polynomial dependence on the number
of elements in the training set, and in (Kannan et al., 2005)
they developed the spectral projection technique. Formal
learnability of Gaussian Mixtures has been studied (Kalai
et al., 2012; Moitra & Valiant, 2010). While these important
results provide provable algorithms for the case when the
Gaussians are well-separated, we think that the heuristic-
based approaches, like the classical and the quantum EM,
should not be directly compared to this class of algorithms.

In the quantum setting, a number of algorithms have been
proposed in the context of unsupervised learning (Aimeur
et al., 2013; Lloyd et al., 2013; Otterbach et al., 2017;
Kerenidis et al., 2019). Recently, classical machine learn-
ing algorithms were obtained by “dequantizing” quantum
machine learning algorithms (Tang, 2018a; Gilyén et al.,
2018a; Tang, 2018b; Gilyén et al., 2018b; Chia et al., 2018).
This class of algorithms is of high theoretical interest, as
runtime is poly-logarithmic in the dimensions of the dataset.
However, the high polynomial dependence on the Frobenius
norm, the error, and the condition number, makes this class
of algorithms still impractical for interesting datasets, as
shown experimentally (Arrazola et al., 2019). We believe
there can be a “dequantized” version of QEM, but it seems
rather unlikely that this algorithm will be more efficient than
QEM or the classical EM algorithm.

As the classical EM for GMM can be seen as a generaliza-
tion of k-means, our work is a generalization of the g-means
algorithm in (Kerenidis et al., 2019). Independently and si-
multaneously, Miyahara, Aihara, and Lechner also extended
the g-means algorithm and applied it to fit a Gaussian mix-
ture models (Miyahara et al., 2019). The main difference
with this work is that the update step in (Miyahara et al.,
2019) is performed using a hard-clustering approach (as in
the k-means algorithm): for updating the centroids and the
covariance matrices of a cluster j, only the data points for
which cluster j is nearest are taken into account. In our
work, as in the classical EM algorithm, we use the soft clus-
tering approach: that is, for updating the centroid and the
covariance matrices of cluster 7, all the data points weighted
by their responsibility (Defined in Eq. 2) for cluster j are

taken into account. Both approaches have merits and can of-
fer advantages (Kearns et al., 1998), albeit is more adherent
to the original EM algorithm.

2. EM and Gaussian mixture models

GMM are probably the most used mixture model used to
solve unsupervised classification problems. In unsupervised
settings, we are given a training set of unlabeled vectors
v1...v, € R% which we represent as rows of a matrix
V € R™¥4, Lety; € [k] one of the k possible labels for
a point v;. We posit that the joint probability distribution
of the data p(v;, y;) = p(vi|y:)p(y:), is defined as follow:
y; ~ Multinomial(¢) for § € R*, and p(vi|ly; = j) ~
N(uj,%;). The 0; such that 3 0; = 1 are called mixing
weights, i.e. the probabilities that y; = j, and N (115, ;) is
the Gaussian distribution centered in p; € R? with covari-
ance matrix 3; € R4 (Ng, 2012). We use the letter ¢ to
represent our base distribution, which in this case is the prob-
ability density function of a multivariate Gaussian distribu-
tion A(u, 32). Using this formulation, a GMM is expressed
as: p(v) = Zle 0;6(v; pj, X;). Fitting a GMM to a
dataset reduces to finding an assignment for the parameters
of the model v = (0, o, ) = (0, 1, -+ 5 i, 21, + 5 2k)
that best maximize the log-likelihood for a given dataset.
Note that the algorithm used to fit GMM can return a local
minimum which might be different than v*: the model that
represents the global optimum of the likelihood function.
For a given v, the probability for an observation v; to be
assigned to the component j is given by:

__ 050(vis g, %)
Sy i (i, ).

This value is called responsibility, and corresponds to the
posterior probability of the sample ¢ being assigned label
7 by the current model. As anticipated, to find the best
parameters of our generative model, we maximize the log-
likelihood of the data. Alas, it is seldom possible to solve
maximum likelihood estimation analytically (i.e. by finding
the zeroes of the derivatives of the log-like function) for
mixture models like the GMM. To complicate things, the
likelihood function for GMM is not convex, and thus we
might find some local minima (Hastie et al., 2009).

2)

Tij

EM is an iterative algorithm that solves numerically the opti-
mization problems linked to ML and MAP estimations. The
classical EM algorithm works as follows: in the expectation
step all the responsibilities are calculated, and we estimate
the missing variables y; given the current guess of the pa-
rameters (0, pt, 33) of the model. Then, in the maximization
step, we use the estimate of the latent variables obtained in
the expectation step to update the estimate of the parame-
ters: it = (911, pt+l XP+L). While in the expectation
step we calculate a lower bound on the likelihood, in the
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maximization step we maximize it. Since at each iteration
the likelihood can only increase, the algorithm is guaran-
teed to converge, albeit possibly to a local optimum (see
(Hastie et al., 2009) for the proof). The stopping criterion is
usually a threshold on the increment of the log-likelihood:
if it changes less than a €, between two iterations, then the
algorithm stops. As the value of the log-likelihood depends
on the amount of data points in the training sets, it is often
preferable to adopt a scale-free stopping criterion, which
does not depend on the number of samples. For instance,
in scikit-learn (Pedregosa et al., 2011) the stopping crite-
rion is given by a tolerance on the average increment of
the log-probability, chosen to be 10~3. More precisely, the
stopping criterion in the quantum and classical algorithm is

[E[log p(vi;v")] — Efllog p(vi; v~ 1)]| < €.

Dataset assumptions in GMM In the remainig of the
paper we make an assumption on the dataset, namely that
all elements of the mixture contribute proportionally to the
total responsibility:

D i Tij
=1’ _ g
> ic1 Til o

This is equivalent to assuming that 6; /6, = ©(1) Vj,l €
[k]. The algortihm we propose can of course be used even
in cases where this assumption does not hold. In this case,
the running time will include a factor as in Eq. 3 which for
simplicity we have taken as constant in what follows. Note
that classical algorithms would also find it difficult to fit the
data in certain cases, for example when some of the clusters
are very small. In fact, it is known (and not surprising) that
if the statistical distance between the probability density
function of two different Gaussian distributions is smaller
than 1/2, then we can not tell for a point v from which
Gaussian distribution it belongs to, even if we knew the
parameters (Moitra, 2018). Only for convenience in the
analysis, we also assume the dataset as being normalized
such that the shortest vector has norm 1 and define n :=
maz; ||vs]|* to be the maximum norm squared of a vector
in the dataset.

Vil € [K] 3)

3. Preliminaries

Quantum computing provides a new way to encode infor-
mation and perform algorithms. The basic carrier of quan-
tum information is the gubit, which can be in a superposi-
tion of two states |0) and |1) at the same time. More for-
mally, a quantum bit can be written as: |z) = «[0) + 3|1)
and it corresponds to a unit vector in the Hilbert space
Ho = span{|0),|1)} with a, 3 € C and |a|? + |B]? = 1.
An n-qubit state corresponds to a unit vector in ‘H,, =
RiemHa ~ C?", there ® is the tensor product. Denot-
ing by {|i)} the standard basis of H,, an n-qubit state

can be written as: |z) = 23:(;1 a; |t) with a; € C and

> la;|* = 1. Quantum states evolve through unitary matri-
ces, which are norm-preserving, and thus can be used as suit-
able mathematical description of pure quantum evolutions
U |¢) — |¢¥'). A quantum state |z) can be measured, and
the probability that a measurement on |x) gives outcome i is
|c;|2. The quantum state corresponding to a vector v € R™
is defined as |v) = ﬁ >_jefm) Vi 17)- Note that to build
|v) we need [logm] qubits. In the following, when we
say with high probability we mean a value which is inverse
polynomially close to 1. The value of p(V') which often
compares in the runtimes comes from the procedure we use
in the proof. While its value for real dataset is discussed
in the manuscript, for a theoretical analysis we refer to the
Supplementary Material and (Kerenidis & Prakash, 2020).

The cluster centers, called centroids, at time ¢ are stored in
the matrix C* € R**“, such that the j*" row ¢/, for j € [k]
represents the centroid of the cluster Ct. The number of
non-zero elements of the rows of V' is nnz(V'). Let x(V)
be the condition number of V': the ratio between the biggest
and the smallest (non-zero) singular value. All the tools
used in this work, like quantum algorithms for computing
distances, linear algebraic operations, and further introduc-
tion to quantum notation is reported in the Supplementary
Material. We recommend Nielsen and Chuang (Nielsen &
Chuang, 2002) for an introduction to the subject.

4. Quantum EM for GMM

In this section, we present a quantum EM algorithm to fit a
GMM. The algorithm can also be adapted fit other mixtures
models where the probability distributions belong to the
exponential family. As the GMM is both intuitive and one
of the most widely used mixture models, our results are
presented for the GMM case. As in the classical algorithm,
we use some subroutines to compute the responsibilities and
update our current guess of the parameters which resemble
the E and the M step of the classical algorithm. While the
classical algorithm has clearly two separate steps for Ex-
pectation and Maximization, the quantum algorithm uses
a subroutine to compute the responsibilities inside the step
that performs the maximization. During the quantum M
step, the algorithm updates the model by creating quantum
states corresponding to parameters v/ *1 and then recover-
ing classical estimates for these parameters using quantum
tomography or amplitude amplification. In order for the
subroutines to be efficient, we build quantum access (as in
Definition 2) to the current estimate of the model, and we
update it at each maximization step.

An approximate version of GMM Here we define an ap-
proximate version of GMM, that we fit with QEM algorithm.
The difference between this formalization and the original
GMM is simple. Here we make explicit in the model the ap-
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proximation error introduced during the training algorithm.

Definition 1 (Approximate GMM). Let ! =
(01,1, 5) = (0ol S 2L) @ model fir
ted by the standard EM algorithm from ~° an initial
guess of the parameters, i.e. ' is the error-free model
that standard EM would have returned after t iterations.
Starting from the same choice of initial parameters ~°,
fitting a GMM with the QEM algorithm with A = (89,0,,)

means returning a model ¥ = (?t,ﬁt, ft) such that:

7"~ 0| < o,
|5t = ut]] < 6, forall j € [K],

< 0u/m forall j € [E].

=

Quantum access to the mixture model Here we explain
how to load into a quantum computer a GMM and a dataset
represented by a matrix V. This is needed for a quantum
computer to be able to work with a machine learning model.
The definition of quantum access to other kind of models is
analogous.

Definition 2 (Quantum access to a GMM). We say that we
have quantum access to a GMM of a dataset V. € R"*4
and model parameters 0; € R, p; € R4S, € R for
all j € [k] if we can perform in time O(polylog(d)) the
following mappings:

L]

19210) = 13) [15),

13) 1) 10) = 1) i) |o)) for i € [d] where o is the i-th
rows of ¥ € Rdxd

L]

* |2) [0) — i) |v;) for all i € [n],
* [6)[0) [0) = [3) [vec[vv]) = i) i) [vi) for i € [n],

* 15} 10) = 15) 165)-

For instance, one may use a QRAM data structure as in
(Kerenidis & Prakash, 2017; 2020) so that quantum access
to a matrix A can be reduced to being able to perform the
unitary mapping |i) |j) [0) — [|¢) |j) |ai;), in other words
being able to map the indices (4, j) to the element of the
matrix a;;, which is the usual quantum oracle model.

4.1. QEM algorithm and analysis

We describe the different steps of QEM as Algorithm 1,
and analyze its running time, by showing the runtime and
the error for each of the steps of the algorithm. Quantum
initialization strategies exists, and are described in the Supp.
Material. In the statement of the following Lemmas, ¥ is
defined as one of the covariance matrices of the mixture. It

Algorithm 1 QEM for GMM

Require: Quantum access to a GMM model, precision pa-
rameters dg, 6,,, and threshold €.

Ensure: A GMM 7' that maximizes locally the likelihood
£(~; V), up to tolerance €.

1: Use a heuristic (Supp. Material) to determine the initial
guess 70 = (6%, u°, ), and build quantum access as
in Definition 2 those parameters.

2: Use Lemma 4.1 to estimate the log determinant of the
matrices {39},

3: t=0

4: repeat

5:  Step 1: Get an estimate of 81! using Lemma 4.4

such that H?Hl — 9”1” < dy.

6: Step 2: Get an estimate {jz;'"'}%

j=1 by using

Lemma 4.6 to estimate each || ,ué“ || and | ,ué“) such

that [ — 1| <

7. Step 3: Get an estimate {fjt+1}§:1 by using
Lemma 4.7 to estimate HEEHH  and \E§-+1> such

1 ——t+1
that HZ?* -5 H < 0u/1-

8:  Step 4: Estimate E[p(v;; y¢*+1)] up to error €, /2 us-
ing Theorem 4.8.

9:  Step 5: Build quantum access to '*!, and
use Lemma 4.1 to estimate the determinants
{log det(Z§-+1) ko

10 t=t+1

11: until

[Elp(vi; v)] — E[p(vi; v 71)]] < €7

12: Return 7' = (8", 5t, &)

appears in the runtime of the algorithms because is intro-
duced during the proofs, which can be found in the Supp.
Material.

4.1.1. EXPECTATION

In this step of the algorithm we are just showing how to
compute efficiently the responsibilities as a quantum state.
First, we compute the responsibilities in a quantum regis-
ter, and then we show how to put them as amplitudes of
a quantum state. We start by a classical algorithm used to
efficiently approximate the log-determinant of the covari-
ance matrices of the data. At each iteration of QEM we
need to approximate the log-determinant of the updated co-
variance matrices using Lemma 4.1. We will see from the
error analysis that in order to get an estimate of the GMM,
we need to call Lemma 4.1 with precision for which the
runtime of Lemma 4.1 gets subsumed by the running time
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of finding the updated covariance matrices through Lemma
4.7. Thus, we do not explicitly write the time to compute
the log-determinant from now on in the running time of the
algorithm and when we say that we update > we include an
update on the estimate of log(det(X)) as well. The method
can be extended to fit other kind of mixture models with
base distribution in exponential family (Definition 1 Supple-
mentary Material), by replacing the function to compute the
posterior probabilities p(v;|j) (Lemma 4.3) by a different
procedure for computing the responsibility. The technique
is given in Lemma 1.3 and 1.4 of the Supplementary Ma-
terial, it can be used to bound the error of Lemma 4.3 for
distributions in the exponential family using the smoothness
properties of the softmax function. The log-determinant in
the Gaussian case generalizes to the cumulant generating
function A(v) for the exponential families.

Lemma 4.1 (Determinant approximation). There is an al-
gorithm that, given a matrix ¥ and a parameter 0 < 6 < 1,
outputs an estimate log(det(X)) such that |log(det(X)) —
log(det(X))| < e with probability 1 — 0 in time:

Tpere = O (€k(S) log(1/8)mm=(S)] log(det(£)])

This Lemma follows from the previous results of (Boutsidis
et al., 2017). Now we can state the Lemma used to compute
the responsability: a quantum algorithm for evaluating the
exponent of a Gaussian distribution.

Lemma 4.2 (Quantum Gaussian Evaluation). Suppose we
have stored in the QRAM a matrix V &€ R™*4 the centroid
u € R and the covariance matrix ¥ € R4*¢ of a multivari-
ate Gaussian distribution ¢(v|p, X), as well as an estimate
forlog(det(X)). Then for ey > 0, there exists a quantum
algorithm that with probability 1 — ~ performs the mapping,

* Uge, : |9)[0) — i) %) such that |s;, — 5| < e,
where s; = —((v; — p)TE 7 (v; — p) + dlog 27 +
log(det(X))) is the exponent for the Gaussian proba-
bility density function.

€1

The running time is T ¢, = O (M )

Using controlled operations it is simple to extend the previ-
ous Theorem to work with multiple Gaussians distributions
(p4,%;). That is, we can control on a register |j) to do
17)12) 10) — |4) 19) |@(vilpej, £5)). In the next Lemma we
will see how to obtain the resp0n51b111tles 735 using the pre-
vious Theorem and standard quantum circuits for doing
arithmetic, controlled rotations, and amplitude amplifica-
tion.

Lemma 4.3 (Calculating responsibilities). Suppose we
have quantum access to a GMM with parameters ¢ =
(0, ut, ). There are quantum algorithms that can:

1. Perform the mapping |i) |7)10) — i) |j) |T3;) such
that |T;; — ri;| < €1 with high probability in time:

Try e, = O(K'® x Tae,)

2. For a given j € [k, construct state |R;) such that

17 - St

with high probability in time:

n

_ 2

< €, where Z; = Eorij
i=

TR2751 = 6<k2 X TRI:EI)

4.1.2. MAXIMIZATION

Now we need to get an updated estimate for the parame-
ters of our model. At each iteration of QEM we build a
quantum state proportional to the updated parameters of the
model, and then recover them. Once the new model has
been obtained, we update the QRAM such that we get quan-
tum access to the model v**1. The possibility to estimate
f comes from a call to the unitary we built to compute the
responsibilities, and amplitude amplification.

Lemma 4.4 (Computing §'*1). We assume quantum ac-
cess to a GMM with parameters v and let 69 > 0 be a
precision parameter. There exists an algorithm that esti-

€ R* such thar |8 — 9“‘1’

7t+1 . .
mates 0 < bg in time

Ty =0 (k3.5n1.5ﬂ2(§i;)g/t(2))'

We use quantum linear algebra to transform the uniform
superposition of responsibilities of the j-th mixture into the
new centroid of the j-th Gaussian. Let R; € R” be the
vector of responsibilities for a Gaussian j at iteration ¢. The
following claim relates the vectors R75 to the centroids ,uHl
and its proof is straightforward.

Claim 4.5. Let Rt € R™ be the vector of responsibilities
of the points for the Gaussian j at time t, i.e. (Rt)- t
Then utﬂ =1 T”,m = VR

i=1Tij

’I’L9j :

From this Claim, we derive the procedure to estimate the
new centroids 41/ we use Lemma 4.3 along with quantum
access to the matrix V.

Lemma 4.6 (Computing u“‘l) We assume we have

quantum access to a GMM with parameters . For
a precision parameter 0, > 0, there is a quan-
tum algorithm that calculates {fi;"*'}¥_, such that for
all 7 € Hu t+1 _ ;"HH < 5# in time T, =
0O (kdnﬁ(V)( p(V)+k> °7i1'°ﬁ2(2)u(2)))
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From the ability to calculate responsibility and indexing the
centroids, we derive the ability to reconstruct the covariance
matrix of the Gaussians as well. Again, we use quantum
linear algebra subroutines and tomography to recover an
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approximation of each Y3;. Recall that we have defined the
matrix V/ € R"*4" where the i-th row of V" is defined as
vec[v;v]]. Note that the quantum states corresponding to
the rows of V’ can be prepared as |¢) |0) |0) — |2) |v;) |vi),
using twice the procedure for creating the rows of V.

Lemma 4.7 (Computing 35*1). Given quantum access to a
GMM with parameters v'. We also have computed estimates
75t of all centroids such that ||;' ™ — uﬁ-“H <4, for
precision parameter 6, > 0. Then, there exists a quantum
algorithm that outputs estimates for the new covariance
matrices {i;“ ?:1 such that HEEH — ij-HHF < Sum

with high probability, in time,

Ty = 5(kd2’7”2(v)(”(vl) ;”2k3‘5ﬂz(2)u(2)))

4.1.3. QUANTUM ESTIMATION OF LOG-LIKELIHOOD

Now we are going to state how to get an estimate of
the log-likelihood using a quantum procedure and access
to a GMM model. Because of the error analysis, in
the quantum algorithm is more conveniente to estimate
E[p(vi;v")] = 2 30", p(vi;7y). From this we can estimate

an upper bound on the log-likelihood as nlog E[p(v;)] =
Y1 logE[p(vi)] = 377 log p(vs) = £(v; V).

Lemma 4.8 (Quantum estimation of likelihood). We as-
sume we have quantum access to a GMM with parameters
. For e, > 0, there exists a quantum algorithm that
estimates E[p(v;; )] with absolute error ¢, in time

T, =0 <k1'5n1~5’€2(2)m>

2
€

4.1.4. QEM FOR GMM

Putting together all the previous Lemmas, we write the main
result of the work.

Theorem 4.9 (QEM for GMM). We assume we have quan-
tum access to a GMM with parameters v'. For parameters
06,0,,€; > 0, the running time of one iteration of the
Quantum Expectation-Maximization (QEM) algorithm is

OTy+T,+Ts +1Ty),

forTy =0 (k3‘57)1'5 n2(2(5)2u(2)>’

]
= kdns(V)(p(V)+E35nt 5 k2(D)u(s
Tu=O< ne(V) (V) - n )n( ))),

Ty = 6(kdzwz(V)(/L(V/)+n2k‘°"5HZ(E)/L(Z))) and
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T, =0 (k1'5771-5 HQ(E?ZAL(E)) .

T

For parameter that are expected to be predominant in the
runtime, d and k(V'), the dominant term is T..

The proof follows directly from the previous lemmas. Note
that the cost of the whole algorithm is given by repeating
the expectation and the maximization steps several times,
until the threshold on the log-likelihood is reached. The
expression of the runtime can be simplified by observing
that the cost of performing tomography on the covariance
matrices 3; dominates the runtime.

5. Experimental Results

In this section, we present the results of some experiments
on a real dataset, on which we estimated the runtime of the
quantum algorithm. We also bound the value of the parame-
ters that governs the runtime, like x(X), &(V), u(2), u(V),
dp, and 6,,, and we give heuristic for dealing with the condi-
tion number. We can put a threshold on the condition num-
ber of the matrices 3J;, by discarding singular values which
are smaller than a certain threshold. This might decrease
the runtime of the algorithm without impacting its perfor-
mances. This is indeed done often in classical machine
learning models, since discarding the eigenvalues smaller
than a certain threshold might even improve upon the metric
under consideration (i.e. often the accuracy), by acting as a
form of regularization (Murphy, 2012, Section 6.5). This is
equivalent to limiting the eccentricity of the Gaussians. We
can do similar considerations for putting a threshold on the
condition number of the dataset (V). Recall that the value
of the condition number of the matrix V' is approximately
1/ min({01, -, 0} U {dut (N (10, 20), N, 5))li- #
j € [k]}), where dg; is the statistical distance between
two Gaussian distributions (Kalai et al., 2012) and 6, are
the mixing weights. We have some choice in picking the
definition for y: in previous experiments it has been found
that choosing the maximum ¢; norm of the rows of V' lead
to values of (V') around 10 for the MNIST dataset (Kereni-
dis & Luongo, 2020; Kerenidis et al., 2019). Because of
the way w is defined, its value will not increase significantly
as we add vectors to the training set. In case the matrix V'
can be clustered with high-enough accuracy by distance-
based algorithms like k-means, it has been showed that the
Frobenius norm of the matrix is proportional to v/k, that is,
the rank of the matrix depends on the number of different
classes contained in the data. Given that EM is just a more
powerful extension of k-means, we can rely on similar ob-
servations too. Usually, the number of features d is much
more than the number of components in the mixture, i.e.
d > k, so we expect d? to dominate the other parameters,
thus making 7% the leading term in the runtime. We expect
this cost to be be mitigated by using ¢, form of tomogra-
phy (Theorem 1.11 in Supplementary Material) but we defer
further experiment for future research.

As we said, the quantum running time saves the factor that
depends on the number of samples and introduces a number
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of other parameters. Using our experimental results we can
see that when the number of samples is large enough one
can expect the quantum running time to be faster than the
classical one. One may also save some more factors from
the quantum running time with a more careful analysis.

To estimate the runtime of the algorithm, we need to gauge
the value of the parameters ¢, and g, such that they are
small enough so that the likelihood is perturbed less than
€-, but large enough to have a fast algorithm. We have rea-
sons to believe that on well-clusterable data, the value of
these parameters will be large enough, such as not to impact
dramatically the runtime. For instance, a quantum version
of k-means algorithm has already been simulated on the
MNIST dataset under similar assumptions (Kerenidis et al.,
2019). The experiment concluded that, for datasets that are
expected to be clustered nicely by this kind of clustering
algorithms, the value of the parameters J,, did not decrease
by increasing the number of samples nor the number of fea-
tures. There, the value of J,, (which in their case was called
just &) has been kept between 0.2 and 0.5, while retaining a
classification accuracy comparable to the classical k-means
algorithm. We expect similar behavior in the GMM case,
namely that for large datasets the impact on the runtime
of the errors (d,, d9) does not cancel out the exponential
gain in the dependence on the number of samples, and we
discuss more about this in the next paragraph. The value of
the threshold of the likelihood e is usually (for instance in
scikit-learn (Pedregosa et al., 2011) ) chosen to be 1073, We
will see that the value of 1 has always been 10 on average,
with a maximum of 105 (as an outlier) in the experiments.

MAP ML

avg max avg max

=, 022 | 245 | 131 | 3.44
[Tog det(X)[ | 58.56 | 70.08 | 1456 | 923
K (3) 421 | 50 | 1557 | 50

o) 382 | 435 | 254 | 3.67

(V) 214 | 279 | 2.14 | 2.79

w(V) 23.82 | 40.38 | 23.82 | 40.38

Table 1. We estimate some of the parameters of the VoxForge
(Voxforge.org) dataset. Each model is the result of the best of
3 different initializations of the EM algorithm. The first and the
second rows are the maximum singular values of all the covariance
matrices, and the absolute value of the log-determinant. The row
k*(X) shows the condition number after the smallest singular
values have been discarded. We report the value of 1(X) and p(V)
where the choice of y is the maximum ¢; norms of the rows of the
matrices.

Experiments We analyzed a dataset which can be fitted
well with the EM algorithm (Reynolds et al., 2000; Kumar;
Voxforge.org). Specifically, we used QEM to do speaker
recognition: the task of recognizing a speaker from a voice

sample, having access to a training set of recorded voices
of all the possible speakers. The training set consist in 5
speech utterances for 38 speakers (i.e. clips of a few sec-
onds of voice speech). For each speaker, we extract the
mel-frequency cepstral coefficients (MFCC) of the utter-
ances (Reynolds et al., 2000), resulting in circa 5000 vectors
of 40 dimensions. This represent the training set for each
speaker. A speaker is then modeled with a mixture of 16
different diagonal Gaussians. The test set consists of other
5 or more unseen utterances for each of the same speak-
ers. To label an utterance with a speaker, we compute the
log-likelihood of the utterance for each trained model. The
label consist in the speaker with highest log-likelihood. The
experiment has been carried in form of classical simulation
on a laptop computer. We repeated the experiment using a
perturbed model, where we added some noise to the GMM
at each iteration of the training, as in Definition 1. Then
we measured the accuracy of the speaker recognition task.
At last, we measured condition number, the absolute value
of the log-determinant, and the value of (V) and pu(X).
In this way we can test the stability and accuracy of the
approximate GMM model introduced in Section 4, under
the effect of noise. For values of 9 = 0.038, 6,, = 0.5,
we correctly classified 98.7% utterances. The baseline for
ML estimate of the GMM is of 97.1%. We attribute the
improved accuracy to the regularizing effect of the thresh-
old and the noise, as the standard ML estimate is likely to
overfit the data. Details of the experiment are reported in
the Supplementary Material. We report the results of the
measurement in Table 1.

6. Conclusions

Given the tremendous relevance of classical Expectation-
Maximization algorithm, it is important to consider quantum
versions of EM. Here we proposed a quantum Expectation-
Maximization algorithm, and showed how to use it to fita
GMM in the ML estimation setting. We analyzed theoret-
ically the runtime of QEM, and estimate it on real-world
datasets, so to better understand cases where quantum com-
puters can offer a computational advantage. While we dis-
cussed how to use QEM to fit other mixture models, its
usage in the MAP settings is detailed in the Supp. Material.

The experiments suggest that the influence of the extra pa-
rameters in the quantum running time is moderate. This
makes us believe that, when quantum computers will be
available, our algorithm could be useful in analyzing large
datasets. We believe further improvements of the algorithm
can reduce even more the complexity with respect to these
extra parameters. For instance, the /., tomography can po-
tentially remove the dependence on d from the runtime. As
we discussed above, we believe dequantization techniques
can successfully be applied to this work as well, but we
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don’t expect the time complexity of the final algorithm to
be competitive with the classical EM algorithm or with this
result. We leave for future work the study of quantum algo-
rithms for fitting GMM robust to adversarial attacks (Xu &
Marecek, 2018; Pensia et al., 2019; Dasgupta, 1999), and
quantum algorithms for computing the log-determinant of
symmetric positive definite matrices, and further experi-
ments.
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