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Abstract

Gaussian Process Factor Analysis (GPFA) has
been broadly applied to the problem of identify-
ing smooth, low-dimensional temporal structure
underlying large-scale neural recordings. How-
ever, spike trains are non-Gaussian, which moti-
vates combining GPFA with discrete observation
models for binned spike count data. The draw-
back to this approach is that GPFA priors are
not conjugate to count model likelihoods, which
makes inference challenging. Here we address
this obstacle by introducing a fast, approximate
inference method for non-conjugate GPFA mod-
els. Our approach uses orthogonal second-order
polynomials to approximate the nonlinear terms
in the non-conjugate log-likelihood, resulting in
a method we refer to as polynomial approximate
log-likelihood (PAL) estimators. This approxima-
tion allows for accurate closed-form evaluation of
marginal likelihoods and fast numerical optimiza-
tion for parameters and hyperparameters. We de-
rive PAL estimators for GPFA models with bino-
mial, Poisson, and negative binomial observations
and find the PAL estimation is highly accurate,
and achieves faster convergence times compared
to existing state-of-the-art inference methods. We
also find that PAL hyperparameters can provide
sensible initialization for black box variational in-
ference (BBVI), which improves BBVI accuracy.
We demonstrate that PAL estimators achieve fast
and accurate extraction of latent structure from
multi-neuron spike train data.1
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1. Introduction
Recent advances in neural recording technologies have en-
abled the collection of increasingly high-dimensional neural
data-sets. Making sense of such data requires new statistical
methods for extracting shared latent structure underlying
multi-neuron responses. Factor models provide one popular
approach to this problem (Archer et al., 2015; Cunningham
& Yu, 2014; Lakshmanan et al., 2015; Wu et al., 2017; Yu
et al., 2009). These models seek to characterize the structure
underlying neural data in terms of a small number of latent
variables. These models have been widely successful in both
uncovering interpretable structure from neural population
data and providing insight into representations of stimulus
input and behavior in population activity (Wu et al., 2017;
Zhao & Park, 2017; Zhao et al., 2019). However, factor
models can be cumbersome to learn when the prior distribu-
tion over the latent variables and the likelihood governing
the observations are non-conjugate. This arises commonly
for neural data, where binned spiking observations are best
characterized by count models (e.g., binomial, Poisson, and
negative-binomial).

Formally, latent factor models seek to explain shared
structure underlying high-dimensional observations
(y1,y2, . . . ,yT) ∈ RN×T in terms of low-dimensional
latent variables (x1,x2, . . . ,xT) ∈ RP×T , where N > P
and the observations are ordered sequentially in time from
t = 1 to t = T . A popular approach is to model the time
series of latent variables with a Gaussian process (GP),
which makes few assumptions about latent trajectories
beyond the fact that they evolve smoothly in time. When
combined with a Gaussian observations model, the resulting
approach is known as Gaussian Process Factor Analysis
(GPFA) (Yu et al., 2009). Recent work has extended GPFA
to incorporate Poisson observations, which provides a
more appropriate model for spike train data (Buesing et al.,
2012; Macke et al., 2011; Wu et al., 2017; Zhao & Park,
2017; Zhao et al., 2019). However, closed-form inference
under GPFA models is only possible when the model
likelihood and prior are conjugate. Consequently, Poisson
and other non-conjugate models require approximations to
fit hyperparameters or obtain parametric expressions for the
posterior distribution over latents.

https://github.com/skeeley/Count_GPFA
https://github.com/skeeley/Count_GPFA
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Here, we introduce a novel procedure for learning non-
conjugate GPFA models with count observations, which we
refer to as Polynomial Approximate Log-likelihood (PAL).
This method exploits an idea for rapid inference in gen-
eralized linear models using so-called “approximate suffi-
cient statistics” (Huggins et al., 2017; Zoltowski & Pillow,
2018), and extends it to the latent variable model setting.
The basic idea involves approximating the nonlinear terms
in the model log-likelihood using orthogonal polynomials.
When the polynomial approximation is second-order, the
likelihood term can be explicitly marginalized to obtain a
closed-form expression for the marginal likelihood, and an
approximately Gaussian posterior distribution over the la-
tents. We explicitly derive PAL estimators for three GPFA
models with different count statistics. This includes the
previously implemented Poisson count-observation GPFA
model (Zhao & Park, 2017; Zhao et al., 2019), as well as
GPFA with binomial and negative-binomial observations.
These three distributions (binomial, Poisson, and negative-
binomial) have different dispersion characteristics which
reflect various spiking properties in neurons in different
areas of the brain (Charles et al., 2018; Goris et al., 2014;
Linderman et al., 2016).

We compare our PAL approach to Black Box Variational
Inference (BBVI), a state-of-the-art method for approxi-
mate inference in non-conjugate models that is renowned
for its simplicity and adaptability (Archer et al., 2015; Gao
et al., 2015; Ranganath et al., 2014) and the variational
latent Gaussian Process (vLGP) (Zhao & Park, 2017), a
previous algorithm used for Poisson noise GPFA. We find
that PAL estimation exhibits comparable performance to
these methods, but PAL compares favorably to both of them
in that it provides a closed-form expression for marginal
likelihood that can be optimized directly; it therefore re-
quires no careful tuning of learning rates, number of Monte
Carlo samples, or stopping criteria, and does not suffer from
high-variance estimates due to sampling-based evaluation
of marginal likelihood. We also find that PAL is faster than
these existing algorithms and can accurately recover latent
structure in simulated neural data.

We further demonstrate that PAL hyperparameters can be
used to initialize BBVI to stabilize and improve inference.
We use this combined BBVI + PAL on two different multi-
neuron datasets, one from mouse visual cortex and one from
primate parietal cortex, under three different choices of
count model (binomial, Poisson, and negative binomial). We
show that PAL initialized BBVI performs as good or better
than BBVI alone. The PAL approach therefore offers a
promising avenue for future work on non-conjugate models
that arise frequently in the analysis of biological and other
data.

2. Count-GPFA models
Consider a dataset consisting of count observations from N
neurons over T time bins, Y ∈ NN×T . The count-GPFA
model seeks to describe these data in terms of a nonlinearly
transformed linear projection of lower-dimensional latent
variable X ∈ RP×T , P < N , where each latent variable
evolves according to an independent Gaussian process. Thus
the timecourse of the j’th latent variable, which forms the
j’th row of X, has a multivariate normal distribution:

xj ∼ N (0,Kj), (1)

where each K is a T × T covariance matrix whose (t, t′)’th
entry is given by the covariance function k(t, t′). In this
paper, we use the common Gaussian or “squared exponen-
tial” covariance function: k(t, t′) = exp(−(t− t′)2/(2`2)),
which is governed by a single hyperparameter, the “length
scale” `, which controls smoothness of the latent process.

The count-GPFA observation model can then be written:

Y|W,X ∼ P(f(WX)) (2)

where W ∈ RN×P is a loading matrix, f(·) denotes a
nonlinear function that transforms WX to the appropriate
range for a count random variable (e.g., the non-negative
reals), and P denotes a probability distribution for count
data.

Fitting the count-GPFA model to data involves inferring the
loading weights W and hyperparameters θ = {`1, . . . `j}
via numerical optimization of the marginal likelihood:

P (Y|W, θ) =

∫
P (Y|W,X)P (X|θ)dX. (3)

However, non-conjugacy of the count model likelihood
P (Y|W,X) and Gaussian prior over latents P (X|θ)
means that this integral cannot be computed in closed
form. Likewise, the posterior distribution over la-
tents given the data, given by: P (X|Y,W, θ) =
P (Y|X,W)P (X|θ)/P (Y|W, θ), has no closed form ex-
pression, where the desired normalizing constant is the
marginal likelihood. Fitting and inference therefore rely
on approximate inference methods.

3. Polynomial Approximate Log-likelihood
(PAL)

Here we propose Polynomial Approximate Log-likelihood
(PAL), an approximation scheme for efficient inference in
non-conjugate Gaussian latent variable models. The core
idea is to approximate terms in the observation model log-
likelihood that are nonlinear in X using orthogonal polyno-
mials. Our approach is inspired by recent work on “polyno-
mial approximate sufficient statistics” for generalized linear
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Figure 1: Comparison of nonlinear term found in the log-likelihood for binomial, Poisson, and negative-Binomial observation
models (solid) with corresponding second-order Chebyshev approximation (dashed).

models (PASS-GLMs) (Huggins et al., 2017; Zoltowski &
Pillow, 2018). In that work, the X were observed regressors,
and the method provided so-called “approximate sufficient
statistics” that could be computed with a single pass over
the data.

Here, the X are (unobserved) latent variables instead of
regressors, and the goal of the approximation is efficient
marginalization rather than a set of sufficient statistics. We
consider second-order polynomial approximations to the
log-likelihood, which allow for analytic marginalization
over latents. PAL therefore enables closed-form evaluation
of the approximate marginal likelihood, allowing efficient
optimization of parameters and hyperparameters.

We derive PAL estimators for GPFA under three different
non-conjugate observation models: binomial, Poisson, and
negative binomial (NB). These models range from under-
dispersed or “sub-Poisson” for binomial to overdispersed or
“supra-Poisson” for NB, thus spanning the range of disper-
sion behaviors found in different brain areas (Charles et al.,
2018; Gao et al., 2015; Goris et al., 2014; Kara et al., 2000;
Maimon & Assad, 2009; Pillow & Scott, 2012).

All PAL count-GPFA models have the same general form
for the approximate log marginal likelihood (log evidence):

E(y|W, θ) ≈ 1

2
log |Σ|+ 1

2
µ>Σ−1µ− 1

2
log |K|, (4)

where Σ denotes an approximate posterior covariance and µ
denotes an approximate posterior mean, and K is the prior
covariance over all latents (a block-diagonal matrix, with
one block for each latent). The form of the first two terms
varies across models, which we derive for three specific
models below. See Table 1 for a summary of the results
for all count-GPFA models. For clarity, we define H =
Σ−1 −K−1 in this table to succinctly present approximate
posterior covariances.

3.1. PAL for Poisson-GPFA

We begin with the Poisson observation model, which is the
most common model for spike counts and a popular choice
for latent variable models of spike train data (Duncker &
Sahani, 2018; Wu et al., 2017; Zhao & Park, 2017). For
this model, spike count y given a spike rate parameter λ is
distributed according to:

P (y|λ) = 1
y! (∆λ)ye−(∆λ), (5)

where ∆ is the time bin size (which we set here to 1, re-
sulting in spike rates in units of spikes/bin). We use an
exponential nonlinearity from latents to spike rates, so the
vector of spike rates at time t is:

λt = exp(Wxt). (6)

This choice of nonlinearity gives rise to a log-likelihood
with a single nonlinear term, although other nonlinearities
can be considered (Zoltowski & Pillow, 2018).

The Poisson log-likelihood for the entire dataset can be
written conveniently in vector form as:

L(y,x|W̃) = y>W̃x− 1> exp(W̃x) + const (7)

where y = vec(Y) is a NT × 1 vector of concatenated
spike count observations from all N neurons and T time
bins, x = vec(X) is a PT × 1 vector of concatenated latent
vectors across P latent time series, W̃ = W ⊗ IT is a
NT × PT Kronecker-structured matrix, and 1 is a length-
NT vector of ones.

The only nonlinear term in the log-likelihood is the ex-
ponential term exp(W̃x). We therefore approximate the
exponential function with a second-order polynomial:

exp(x) ≈ ax2 + bx+ c, (8)

with coefficients a, b, and c given by a Chebyshev polyno-
mial approximation to exp(x) over an interval ψ = [x0, x1],
which we set independently for each neuron (Mason &
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binomial Poisson negative binomial

spike rate λit nσ(wi
>xt) exp(wi

>xt) exp(wi
>xt)

nonlinear term − log(1 + e−x) ex log(1 + αex)

H 2nW̃> diag(a)W̃ 2W̃> diag(a)W̃ 2W̃> diag((α−1 + y) ◦ a)W̃

posterior mean µ ΣW̃>(y − n− nb) ΣW̃>(y − b) ΣW̃>(y − y ◦ b− α−1b)

Table 1: Summary of PAL expressions for count-GPFA models. Top line gives the spike rate of neuron i at time t given
the latent vector xt and loading weights wi for neuron i. Second line gives the nonlinear term of the log-likelihood that
must be approximated under PAL. The third row, H is defined by H = Σ−1 −K−1, which succinctly presents posterior
covariances, and the fourth line µ shows approximate posterior means.

Handscomb, 2002; Zoltowski & Pillow, 2018). We use
Chebyshev polynomials because they provide efficient near-
minimax polynomial approximations (Huggins et al., 2017).
Specifically, we computed the truncated Chebyshev expan-
sion of the exponential exp(x) =

∑2
m=0 = βmTm where

Tm is the degree-m Chebyshev polynomial of the first kind
over [x0, x1] and βm are the expansion coefficients over that
interval. The coefficients a, b, and c are given by collecting
the terms to rewrite the expansion in the monomial basis.

We selected the interval [x0, x1] independently for each neu-
ron by computing the log of the mean firing rate of each
neuron, log λi. Since the nonlinearity is over the input Wx,
and the firing rate is λ = exp(Wx), we take the log of
λi as we wish to center the nonlinear approximation at the
center of the empirical neuronal rate to maximize accuracy.
See Figure 1 as an example of a range centered at 0, corre-
sponding to a simulated GP drawn with mean 0. We then
chose the limits of the range to be [log λi − 2, log λi + 2],
resulting in an approximation range extending from e−2

to e2 times the mean firing rate. We found that this range
balanced coverage in firing rate space with approximation
accuracy. After selecting the range centers for each neuron,
we computed the polynomial coefficients (ai, bi, ci) for neu-
ron i by gridding the interval of interest at a resolution of
dx = 0.01 and solving for the coefficients that minimize the
least squares between the true function and its polynomial
approximation. For more detail, see (Zoltowski & Pillow,
2018).

Given coefficients for each neuron, the exponential term in
the Poisson log-likelihood can be approximated:

1> exp(W̃x)

≈
T∑
t=1

N∑
i=1

(
ai(Wxt)i ◦ (Wxt)i + bi(Wxt)i + ci

)
= x>W̃> diag(a)W̃x + b>W̃ + const, (9)

where ◦ denotes Hadamard (element-wise) multiplication,
and the second line involves the concatentation of the poly-
nomial coefficients for each neuron and time bin: a =

[a11, . . . aN1]>, b = [b11, . . . bN1]>, and we can ignore
the constants ci.

We now substitute the polynomial approximation into the
log-likelihood and add the log prior, giving:

L(y,x|W̃, θ) ≈
y>W̃x− x>W̃> diag(a)W̃x

− b>W̃x− 1

2
x>K−1x− 1

2
log |K|. (10)

Since this approximation is quadratic in x we can expo-
nentiate and then analytically marginalize x to obtain an
approximation to the log-likelihood that follows equation
(4) where:

Σ−1 = 2W̃> diag(a)W̃ + K−1 (11)

µ = ΣW̃>(y − b), (12)

and we have dropped terms that do not depend on W̃ or θ.

3.2. PAL for Binomial-GPFA

Deriving the PAL estimator for a binomial observation
model follows a similar logic to the Poisson case. Recall that
for binomial model, spike count y is distributed according
to :

P (y|p, n) =

(
n

y

)
py(1− p)(n−y). (13)

For this model, we map latents through a sigmoidal non-
linearity, σ(x) = 1/(1 + exp(−x)), to obtain the binomial
parameter p, and we set the number-of-trials parameter, n,
to be the maximum number of observed spikes in a single
time bin. The vector of spike rates at time t for this model
is thus given by:

λt = nσ(Wxt). (14)

We can write the log-likelihood in vectorized form as:

L(y|x,W̃) = (−n+ y)W̃x−
n log(1 + exp(−W̃x)) + const

(15)
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Figure 2: PAL inference for population data from binomial, Poisson, and negative binomial GPFA models. A. One example
simulated neuron (out of 20) are shown for each model. Inferred rate for neurons for PAL inference compared to GPFA (Top).
Latent trajectories recovered for each model (bottom). B. Error of recovered latent structure falls to zero with increasing
numbers of observed neurons, as expected. C. Example PAL fits for all count-GPFA models compared to standard GPFA
for spiking data from an example neuron. Light grey histogram denotes spike-count observations.

where we have ignored terms that do not depend on W̃x.

The problematic term here is the nonlinear second term,
log(1 + exp(−x)), which we approximate, as before, using
a second-order Chebyshev polynomial approximation. In
this case, we choose the center of the non-linearity to be the
inverse sigmoid function of the empirical mean rate for each
neuron σ−1(λi). We use a range of [σ−1(λi)−4, σ−1(λi)+
4] for the Chebyshev approximation. As in the Poisson case,
we do this so the range for each neuron is centered at the
mean empirical value of the input to the non-linearity, W̃x.
The resulting approximation to the log-likelihood is:

L(y|x,W̃) ≈ −nx>W̃> diag(a)W̃x

+ (y − n− nb)>W̃x + const
(16)

As in the Poisson case, we can add the log-prior to the above
expression, exponentiate and marginalize over x to obtain
an approximation to the log marginal likelihood in the same
form as equation (4). In this case, we obtain matrix and
vector terms:

Σ−1 = 2nW̃> diag(a)W̃ + K−1

µ = ΣW̃>(y − n− nb).
(17)

3.3. PAL for negative-binomial GPFA

Lastly, we consider a negative binomial observation model,
which covers the over-dispersed spike responses (Goris et al.,
2014; Linderman et al., 2016; Pillow & Scott, 2012). For
negative-binomial GPFA, we parametrize the negative bino-
mial distribution in terms of mean parameter m, and scale

parameter r = 1/α:

P (y|m,α) =
Γ(y + α−1)

Γ(α−1)Γ(y + 1)

( 1

1 + αm

)α−1( αm

1 + αm

)y
(18)

This form of the distribution maps to the standard negative-
binomial distribution, p(y|p, r) =

(
y+r−1
y

)
(1− p)rpy, via

p = r
m+r . Parameterizing the negative binomial model this

way makes for a simple expression of the expected spike
count, which is equal to the model parameter m. Let us
define this mean rate in the factor analytic framework as
m = exp(W̃x). This allows us to write the log-likelihood
in vector form as:

L(y|W̃,x, α) = y>W̃x−
(α−1 + y>) log(1 + α exp(W̃x)) + const.

(19)
To derive a PAL estimator, we use a quadratic approximation
to the nonlinear term log(1 + α exp(x)) on a per-neuron
basis. We set α = 1 for simulations, but this quantity
may be learned in an outer loop. We choose the center of
the nonlinear range to be the same as in the Poisson case,
with the center value being the log of the mean firing rate
of the neuron (see right panel of Figure 1 for example of
centering with an average log-rate of 0). The range limits
are [log λi − 4, log λi + 4], where λi is the average value
of m across time, per neuron. As in the previous cases, we
obtain a quadratic approximate log-likelihood which has the
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following form:

L(y|x,W̃, α) ≈− xW̃> diag((α−1 + y) ◦ a)W̃x

+ (y − y ◦ b− α−1b)>W̃x + const
(20)

We then add the log prior and marginalize x to obtain an
approximation to the log marginal likelihood for negative-
binomial GPFA that follows the same form as equation (4)
with

Σ−1 = 2W̃> diag((α−1 + y) ◦ a)W̃ + K−1 (21)

µ = ΣW̃>(y − y ◦ b− α−1b) (22)

A summary of the features of all count GPFA models is
given in Table 1. This table lists the nonlinear term for each
model, the expected number of spikes for the ith neuron as a
function of the latents, X, loadings matrix W, and the mean
and covariance of the polynomial-approximated marginal
distribution. We use n to refer to the maximal spike count
observed in the data, and wi to denote the ith column of
W.

3.4. Evaluating PAL performance

To assess the accuracy of the PAL estimator, we first ana-
lyzed its performance on simulated data. For 20 trials with
200 time points, we simulated count observations from 20
neurons with 2 latent processes with length scales `1 = 15
and `2 = 60 and each entry of W drawn uniformly in
[0, 2]. We then fit each model by directly optimizing equa-
tion 4 to obtain parameter estimates Ŵ and hyperparameter
estimates ˆ̀. Conditioned on these estimates, we then maxi-
mized the conditional posterior to obtain X̂MAP , the MAP
estimate of the latent process. As a control, we compared
PAL performance to standard Gaussian-noise GPFA.

We found that the rates estimated using this procedure were
similar to the true model rates and showed substantial im-
provement above Gaussian GPFA (Figure 2A, top). Addi-
tionally, PAL inference accurately captures latent structure
(Figure 2A, bottom), whereas GPFA cannot. To identify
latent structure in these simulated data, we regress learned
latents onto the true latents as latent factors models are
identifiable only up to a rotation matrix. Accurate identifica-
tion of latent structure is a primary feature of this inference
procedure, as latents have functional importance in neuro-
science settings (Duncker & Sahani, 2018; Yu et al., 2009;
Zhao & Park, 2017).

We additionally demonstrate PAL’s accuracy by showing
error of recovered latent structure as a function of the num-
ber of observed neurons. For each count-GPFA model, as
we consider more and more data (from 2 to 20 neurons),
PAL more and more accurately recovers latent structure, as
expected (Figure 2B). Fits for real neural data are shown
for an example neuron in Figure 2C. This is the first half of
a trial for an example neuron from the mouse dataset (for
more information, see section 5). PAL fits to count-GPFA
better describe the neural spike-count data than standard
GPFA. The background histogram in light grey in Figure
2C shows the true spike counts, and each of the dotted lines
show the estimated neural firing rates under each GPFA
model. Standard GPFA inference problematically yields
negative rates and fails to capture quick changes in firing
rate.

4. Comparison to other approaches
Variational inference (Blei et al., 2003) represents a com-
mon alternate approach to performing inference in non-
conjugate factor models. This approach has been previously
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Figure 4: Optimization time for full BBVI from either a random initialization or PAL initialization for all count-GPFA
models. Data is shown as mean and standard error for 10 trajectories.

used in the setting of Poisson-GPFA (Duncker & Sahani,
2018; Zhao & Park, 2017), and could in principal be used
for the two other count-GPFA models we have introduced
here. We therefore show comparisons of PAL to a variant of
variational inference called black-box variational inference
(BBVI), which uses Monte-Carlo samples to approximate
the expectation term in the ELBO (Kingma et al., 2015).
We additionally compare to an existing inference method
available for Poisson GPFA called the variational Latent
Gaussian Process (vLGP) (Zhao & Park, 2017).

On simulated data, BBVI, PAL and vLGP inference proce-
dures achieve highly accurate reconstructions of true spike
rates. The rate reconstructions of three example neurons for
each model are shown on the left panel of Figure 3. Here,
each model nearly perfectly predicts the simulated neural
data. Average MSE across all neurons for these count GPFA
models are shown in the middle panel of Figure 3. Though
all inference methods achieve accurate results, times-to-
convergence are faster and much more stable using the PAL
approach (Figure 3, right panel). The time to converge is
determined by the average times-to-convergence of ten runs
of each optimization procedure. In the BBVI case, conver-
gence was determined when the ELBO was within 99.8% of
the maximal ELBO value identified. For occasional BBVI
runs for each count model, this value was not achieved for
the duration of the inference procedure, as the the ELBO
was stuck at a local maxima. These convergence times were
discarded when calculating the mean convergence time, and
demonstrative of the irregularity of the BBVI inference pro-
cedure. For vLGP, we set the number of maximum iterations
to 50, and the minimum to 10. The algorithm typically did
not converge before the maximum number of iterations was
up. We also note a slight accuracy improvement of PAL
compared to vLGP. However, it is important to note that
vLGP assigns a per-trial latent whereas our algorithm as-
sumes the latent is same across all trials. This is possibly a
confounding factor when comparing performance time of
vLGP and PAL, both of which achieve high accuracy.

4.1. PAL initialization for BBVI

The PAL method can additionally be used in conjunction
with BBVI to speed up and improve inference. Because
the PAL method involves approximating a nonlinearity in
a specified range with a quadratic, if the input (Wx) is not
within the range of the Chebyshev approximation the es-
timate will be inaccurate. Moreover, there is a significant
limitation using BBVI. In particular, the use of sampling in
the optimization poses considerable challenges in conver-
gence. In fact, this is a well-known problem, and a variety
of techniques have been introduced to reduce variance in
the gradient estimates (Hoffman et al., 2013; Roeder et al.,
2017; Salimbeni et al., 2018). We offer an alternative so-
lution; we can overcome the limitations of both BBVI and
PAL by combining them.

Initializing the BBVI algorithm with the hyperparameters
provided by PAL optimization of equation 4 allows for a
rapid and stable BBVI. That is, instead of following up
our PAL hyper-parameter identification with a MAP esti-
mation of the latents, we use it to seed an approximate
accurate hyperparameters to BBVI. This procedure is more
stable than full BBVI with random initial hyperparameters.
We demonstrate this for all count-GPFA models. Figure
4 shows the evolution of the ELBO in time during opti-
mization for all models on simulated data (though the same
effect is observed in real data). In each case, BBVI is run
10 times, either initializing randomly or initializing at the
PAL-optimal hyperparameters (` and W). Standard error is
shown in grey for the random initialization, but not shown
for PAL-initialized optimization, as this trajectory follows
nearly identically for each run. An initial sharp increase in
the ELBO is always observed in all models, as here latent
structure is approximately identified, but hyperparameters
are tuned at the end of the BBVI optimization procedure.
Here, we have cut off the initial rise in ELBO for clarity. Fig-
ure 4 demonstrates the end of the optimization procedure,
where randomly initialized BBVI attempts to find hyper-
parameters along varying trajectories, but PAL initialized
BBVI quickly converges to high ELBO values.

Thus, initializing BBVI with PAL hyperparameter estimates
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avoids local optima. This PAL initialization procedure can
therefore be considered alongside other methods for provid-
ing a way to stabilize and improve BBVI.

5. Applications to neural data
To examine the performance of these methods on real data,
we applied the binomial, Poisson, and negative binomial
count-GPFA models to neural data sets from two different
species. We compared the three approaches outlined: PAL
followed by a MAP estimate (section 3), BBVI, and PAL-
initialized BBVI (section 4). We tested these models on one
data set from primate parietal and high-level visual cortices,
and the other from mouse V1. The first dataset consisted
of 14 simultaneously recorded neurons from the middle
temporal visual (MT) and lateral intraparietal (LIP) area.
These data were 50 1.4-second trials of a visual perceptual
decision-making task (Yates et al., 2017). In this task, ran-
dom moving dots provided visual evidence towards left or
right targets (choices). The trial contained a stimulus onset
time, an evidence accumulation (decision making) period,
and a decision. For the mouse data, spike times from 17
V1 neurons were recorded during passive viewing of 20 re-
peated 32-second trials of a gratings stimulus. The stimulus
was a random flashing of gratings, with 8 orientations at
fixed spatial and temporal frequencies. The gratings were
presented for 4 seconds each. The spike times were deter-
mind by de-convolving calcium imaging traces. Additional
details of the data can be found in (Yu et al., 2018).

For both the mouse and the primate data we asserted a latent
dimensionality of three for all count-GPFA models. The
PAL method demonstrated good empirical fits (see exam-
ple mouse neuron in Figure 2C) and in general good cross
validation performance compared to BBVI (Figure 5A, B).
However, for the mouse data, PAL performance was notably
weaker under a Poisson-GPFA model (Figure 5A). This was
likely because these neurons were high-variance, exhibiting
no activity for much of the trial, with some abrupt changes
in firing throughout the trial. In this case, the exponential
non-linearity is not accurately captured by the polynomial
approximation. As seen in Figure 1, the exponential non-
linearity for Poisson-GPFA is approximated least accurately
compared to the approximations for the other two models.
Thus, under a Poisson-GPFA model, using PAL in conjunc-
tion with BBVI performed notably better for the mouse data.
For the other two count models (binomial and negative-
binomial) we found that the PAL estimation procedure was
approximately as accurate as BBVI. Interestingly, for the
mouse data, the count-GPFA model that had highest cross-
validated log-likelihood was Binomial-GPFA, which is a
count-model not often considered in neuroscience settings.

For the primate data, all GPFA models and inference meth-
ods exhibited equal performance (Figure 5B), with a small
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Figure 5: Average cross validated log-likelihood on hold-out
trials for PAL, BBVI and PAL + BBVI inference methods
for count-GPFA models for mouse (A) and primate (B)
data. (C) Latent structure underlying monkey LIP responses
during left- and right-choice trials, showing that one latent
dimension captured meaningful differences between the
encoding of left and right choices.

bias favoring PAL-initialized negative binomial GPFA. The
lack of major differences in performance here is likely be-
cause these data were high-spike rates neurons with many
trials. This resulted in low-variance, stable rates that could
be accurately captured by the PAL non-linearity and quickly
and easily recovered using BBVI.

To give insight into the scientific uses of this model, we
show results of the Binomial-GPFA model fit to monkey
LIP data. We fit a Binomial-GPFA model with 3 latent di-
mensions to two different subsets of the data: one consisting
of the leftward choice trials and another consisting of right-
ward choice trials. We then compared the latents inferred for
each condition in order to examine how the latent variables
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encode the animal’s choice. Figure 5C shows the latent
structure of the neural data for each condition. Two of the
latents are closely overlapping, which suggests the presence
of shared structure across the two conditions. Interestingly,
one latent (red) diverges approximately 400 ms after trial
onset, which falls into the portion of the trial where the ani-
mal is putatively making its choice. This suggests that this
latent may encode the choice variable in these neural data,
and is a promising future direction of further exploration for
count-GPFA models.

6. Conclusion
We have a developed novel technique for learning Gaussian
process factor analytic models with count observations using
polynomial approximate log-likelihood (PAL) which allows
for rapid closed-form evaluation of marginal likelihoods.
We develop our PAL approach for three count-observation
models: binomial, Poisson, and negative-binomial. In each
case, our approximation can accurately estimate model pa-
rameters and achieve good performance on both simulated
and real neural data. PAL can additionally provide initial
values for black box variational inference. Both PAL and
BBVI have their own limitations – PAL provides an ap-
proximation to the model non-linearity that is only accurate
within a particular range, and BBVI inference procedure
is sampling-based and can get stuck in local optima. Com-
bining the procedures by using the PAL method to identify
approximate hyperparameters can thus stabilize BBVI and
make it more reliable, overcoming well-known BBVI opti-
mization limitations. Overall, our PAL inference method is
a novel approach to learning non-conjugate models that is
fast and achieves high accuracy.
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