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Abstract

To analyze high-dimensional and complex data
in the real world, deep generative models, such
as variational autoencoder (VAE) embed data in a
low-dimensional space (latent space) and learn a
probabilistic model in the latent space. However,
they struggle to accurately reproduce the prob-
ability distribution function (PDF) in the input
space from that in the latent space. If the em-
bedding were isometric, this issue can be solved,
because the relation of PDFs can become tractable.
To achieve isometric property, we propose Rate-
Distortion Optimization guided autoencoder in-
spired by orthonormal transform coding. We show
our method has the following properties: (i) the
Jacobian matrix between the input space and a Eu-
clidean latent space forms a constantly-scaled or-
thonormal system and enables isometric data em-
bedding; (ii) the relation of PDFs in both spaces
can become tractable one such as proportional
relation. Furthermore, our method outperforms
state-of-the-art methods in unsupervised anomaly
detection with four public datasets.

1. Introduction

Capturing the inherent features of a dataset from high-
dimensional and complex data is an essential issue in ma-
chine learning. Generative model approach learns the prob-
ability distribution of data, aiming at data generation, unsu-
pervised learning, disentanglement, etc. (Tschannen et al.,
2018). It is generally difficult to directly estimate a prob-
ability density function (PDF) P () of high-dimensional
data € RM. Instead, one promising approach is to map
x to a low-dimensional latent variable z € RN (N < M),
and capture PDF P, (z). Variational autoencoder (VAE) is a
widely used generative model to capture z as a probabilistic
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model with univariate Gaussian priors (Kingma & Welling,
2014). For a more flexible estimation of P,(z), successor
models have been proposed, such as using Gaussian mixture
model (GMM) (Zong et al., 2018), combining univariate
Gaussian model and GMM (Liao et al., 2018), etc.

In tasks where the quantitative analysis is vital, Py (x)
should be reproduced from P, (z). For instance, in anomaly
detection, the anomaly likelihood is calculated based on
PDF value of data sample (Chalapathy & Chawla, 2019).
However, the embedding of VAEs is not isometric; that is,
the distance between data points (1) and (2 is inconsis-
tent to the distance of corresponding latent variables z(!)
and z2(® (Chen et al., 2018; Shao et al., 2018; Geng et al.,
2020). Obviously mere estimation of P, (z) cannot be the
substitution of the estimation for P, (x) under such situa-
tion. As McQueen et al. (2016) mentioned, for a reliable
data analysis, the isometric embedding in low-dimensional
space is necessary. In addition, to utilize the standard PDF
estimation techniques, the latent space is preferred to be a
Euclidean space. Despite of its importance, this point is not
considered even in methods developed for the quantitative
analysis of PDF (Johnson et al., 2016; Zong et al., 2018;
Liao et al., 2018; Zenati et al., 2018; Song & Ou, 2018).

According to the Nash embedding theorem, an arbitrary
smooth and compact Riemannian manifold M can be em-
bedded in a Euclidean space RN (N > dim M + 1, suf-
ficiently large) isometrically (Han & Hong, 2006). On
the other hand, the manifold hypothesis argues that real-
world data presented in a high-dimensional space concen-
trate in the vicinity of a much lower dimensional manifold
M, C RM (Bengio et al., 2013). Based on these theories,
it is expected that the input data « can be embedded iso-
metrically in a low-dimensional Euclidean space RY when
dim M, < N < M. Although the existence of the iso-
metric embedding was proven, the method to achieve it has
been challenging. Some previous works have proposed al-
gorithms to do that (McQueen et al., 2016; Bernstein et al.,
2000). Yet, they do not deal with high-dimensional input
data, such as images. Another thing to consider is the dis-
tance on M, may be defined by the data tendency with an
appropriate metric function. For instance, we can choose the
binary cross entropy (BCE) for binary data and structured
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similarity (SSIM) for image. As a whole, our challenge is to
develop a deep generative model that guarantees the isomet-
ric embedding even for the high-dimensional data observed
around M, endowed with a variety of metric function.

Mathematically, the condition of isometric embedding to
Euclidean space is equivalent to that the columns of the
Jacobian matrix between two spaces form an orthonormal
system. When we turn our sight to conventional image
compression area, orthonormal transform is necessary for
an efficient compression. This is proven by rate-distortion
(RD) theory (Berger, 1971) . Furthermore, the empirical
method for optimal compression with orthonormal trans-
form coding is established as rate-distortion optimization
(RDO) (Sullivan & Wiegand, 1998). It is intuitive to regard
data embedding to a low-dimensional latent space as an anal-
ogy of efficient data compression. Actually, deep learning
based image compression (DIC) methods with RDO (Ballé
et al., 2018; Zhou et al., 2019) have been proposed and they
have achieved good compression performance. Although
it is not discussed in Ballé et al. (2018); Zhou et al. (2019),
we guess that behind the success of DIC, there should be
theoretical relation to RDO of convetional transform coding.

Hence, in this study, we investigate the theoretical property
and dig out the proof that RDO guides deep-autoencoders
to have the orthonormal property. Based on this finding,
we propose a method that enables isometric data embed-
ding and allows a comprehensive data analysis, named Rate-
Distortion Optimization Guided Autoencoder for Generative
Analysis (RaDOGAGA). We show the validity of RaDO-
GAGA in the following steps.

(1) We show that RaDOGAGA has the following properties
both theoretically and experimentally.

e The Jacobian matrix between the data observation space
(inner product space endowed with a metric tensor) and
latent space forms a constantly-scaled orthonormal sys-
tem. Thus, data can be embedded in a Euclidean latent
space isometrically.

e Thanks to the property above, the relation of P,(z) and
P (x) can become tractable one (e.g., proportional rela-
tion). Thus, PDF of x in the data observation space can
be estimated by maximizing log-likelihood of parametric
PDF P, (%) in the low-dimensional Euclidean space.

(2) Thanks to (1), RaDOGAGA outperforms the current
state-of-the-art method in unsupervised anomaly detection
task with four public datasets.

Isometric Map and Notions of Differential Geometry

Here, we explain notions of differential geometry adopted
to our context. Given two Riemannian manifolds M C RM
and N C R, amap g : M — N is called isometric if

(v, w)p = (dg(v), dg(w)) 4(p) ey

holds. Here, v and w are tangent vectors in Tp M (tan-
gent space of M at p € M) represented as elements of
RM and dg is the differential of ¢ (this can be written
as a Jacobian matrix). (v,w), = v' A (p)w, where
Apn(p) € RMXM j5 a metric tensor represented as a posi-
tive define matrix. The inner product in the right side is also
defined by another metric tensor Axr(q) € RV*N. A\ (p)
or Ay (q) is an identity matrix for a Euclidean case and the
inner product becomes the standard one (the dot product).

We slightly abuse the terminology and call a map g isometric
if the following relation holds for some constant C' > 0:

<v7w>17 = C<dg(v)7dg(w)>g(p)7 2

since Eq. (1) is achieved by replacing g with § = (1/v/C)g.

2. Related Work

Flow-based model: Flow-based generative models gener-
ate images with astonishing quality (Kingma & Dhariwal,
2018; Dinh et al., 2015). Flow mechanism explicitly takes
the Jacobian of  and z into account. The transformation
function z = f(x) is learned, calculating and storing the
Jacobian of x and z. Unlike ordinary autoencoders, which
reverse z to x with function ¢(-) different from f(-), in-
verse function transforms z to z as = f~1(z). Since the
model stores Jacobian, P, (x) can be estimated from P, (z).
However, in these approaches, the form of f(-) is limited so
that the explicit calculation of Jacobian is manageable, such
as f(-) cannot reduce the dimension of x.

Data interpolation with autoencoders: For a smooth
data interpolation, in Chen et al. (2018); Shao et al. (2018),
a function learns to map latent variables to a geodesic (short-
est path in a manifold) space, in which the distance corre-
sponds to the metric of the data space. In Geng et al. (2020);
Pai et al. (2019), a penalty for the anisometricity of a map
is added to training loss. Although these approaches may
remedy scale inconsistency, they do not deal with PDF es-
timation. Furthermore, the distance for the input data is
assumed to be a Euclidean distance and the cases for other
distances are not considered.

Deep image compression (DIC) with RDO: RD theory
is a part of Shannon’s information theory for lossy com-
pression which formulates the optimal condition between
information rate and distortion. The signal is decorrelated by
orthonormal transformation such as Karhunen-Logve trans-
form (KLT) (Rao & Yip, 2000) and discrete cosine transform
(DCT). In RDO, a cost L = R+ AD is minimized at given
Lagrange parameter \. Recently, DIC methods with RDO
(Ballé et al., 2018; Zhou et al., 2019) have been proposed.
In these works, instead of orthonormal transform in the con-
ventional lossy compression method, a deep autoencoder is
trained for RDO. In the next section, we explain the idea of
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RDO guided autoencoder and its relationship with VAE.

3. Overview of RDO Guided Approach

3.1. Derivation from RDO in Transform Coding

Figure 1 shows the overview of our idea based on the RDO
inspired by transform coding. In the transform coding, the
optimal method to encode data with Gaussian distribution
is as follows (Goyal, 2001). First, the data are transformed
deterministically to decorrelated data using orthonormal
transforms such as Karhunen-Loeve transform (KLT) and
discrete cosine transform (DCT). Then these decorrelated
data are quantized stochastically with uniform quantizer
for all channels such that the quantization noise for each
channel is equal. Lastly optimal entropy encoding is applied
to quantized data where the rate can be calculated by the
logarithm of symbol’s estimated probability. From this fact,
we have an intuition that the columns of the Jacobian matrix
of the autoencoder forms an orthonormal system if the data
were compressed based on RDO with a uniform quantized
noise and parametric distribution of latent variables. In-
spired by this, we propose autoencoder which scales latent
variables according to the definition of metrics of data.

Model of Transform coding based on Rate-Distortion Theory

Image Orthonormal Umform . Compressed
—> ~m————————>| Quantization / >
Data Transform Decorrelated . Data
ta Entropy coding

Source Coding Channel Coding

Analogy between transform coding and RDO guided autoencoder

Note that the beta-VAE and the RDO in image compression
are analogous to each other. That is, B, =Ly, and Ly,
correspond to )\, a rate R, and a distortion D respectively.
However, the probability models of latent variables are quite
different. VAE uses a fixed prior distribution. This causes a
nonlinear scaling relationship between real data and latent
variables. Figure 2 shows the conditions to achieve RDO in
both VAE and RaDOGAGA. In VAE, for RDO condition,
a nonlinear scaling of the data distribution is necessary to
fit prior. To achieve it, Brekelmans et al. (2019) suggested
to precisely control noise as a posterior variance for each
channel.

As proven in Rolinek et al. (2019), in the optimal condition,
the Jacobian matrix of VAE forms an orthogonal system, but
the norm is not constant. In RaDOGAGA, uniform quantiza-
tion noises are added to all channels. Instead, a parametric
probability distribution should be estimated as a prior. As
a result, the Jacobian matrix forms an orthonormal system
because both orthogonality and scaling normalization are
simultaneously achieved. As discussed above, the precise
noise control in VAE and parametric prior optimization in
RaDOGAGA are essentially the same. Accordingly, com-
plexities in methods are estimated to be at the same degree.

Conditions to achieve Rate-Distortion Optimization

Method PDF model Noise Jacobi Matrix

VAE with fixed | Fixed as prior Variable for Orthogonal

prior each data and (Variable
channels scaling)

RDO guided Variable Uniform for all Orthonormal

Autoencoder parametric PDF | data and (Constant
channels scaling)

Relationship between PDF, Noise, and Jacobian Matrix

RDO guided autoencoder

Method Source Coding Channel Coding [Rate-Distortion
(Deterministic) (Stochastic) Relation

Transform Condition: Condition: Result:

coding Orthonormal Uniform Rate-Distortion
KLT /PCA/DCT quantization / Optimization is
transform Entropy coding || achieved

RDO guided | Expected Result: }f Condition: Condition:

Autoencoder| Autoencoder with /A5 Uniform noise Rate-Distortion
orthonormal for all channel / | based Loss
Jacobi matrix || Rate estimation | function

Figure 1. Overview of our idea. Orthonormal transformation and
uniform quantization noise result in an RDO. Our idea is that
uniform quantization noise and RDO make an antoencoder to be
orthonormal.

3.2. Relationship with VAE

There is a number of VAE studies taking RD trade-off into
account. In VAEs, it is common to maximize ELBO instead
of maximizing log-likelihood of P, (x) directly. In beta-
VAE (Higgins et al., 2017), the objective function Ly s is
described as Ly ag = Lye. — BLy;. Here, Ly is the KL
divergence between the encoder output and prior distribu-
tion, usually a Gaussian distribution. By changing 3, the
rate-distortion trade-off at desirable rate can be realized as
discussed in Alemi et al. (2018).

X 1 1
Orthogonal
(Variable}
scaling) |

VAE

Orthonormal /‘\ i
(Gonstant Paramétric PDF
scaling)~”} \ |

. Fixed'PDF as prior

z
Posterior with varying variance
(variable quantization noise)

Posterior with constant variance
(uniform quantization noise)

Figure 2. The condition of RDO in VAE and our method. In VAE,
to fit the fixed prior (blue line), data are transformed anisometri-
cally with precisely controlled noise as a posterior variance (gray
area). A wider distribution of noise makes the PDF of transformed
data smaller. In our method, a parametric prior distribution is esti-
mated, and data is transformed isometrically with uniform noise.

4. METHOD AND THEORETICAL
PROPERTIES

4.1. Method

Our method is based on the RDO of the autoencoder for
the image compression proposed in Ballé et al. (2018) with
some modifications. In Ballé et al. (2018), the cost function

L=R+AD 3)



Rate-Distortion Optimization Guided Autoencoder for Isometric Embedding in Euclidean Latent Space

consists of (i) reconstruction error D between input data
and decoder output with noise to latent variable and (ii) rate
R of latent variable. This is analogous to beta-VAE where
A=p"hL

Figure 3 depicts the architecture of our method. The details
are given in the following. Let & be an M -dimensional
input data, R™ be a data observation space endowed with
a metric function D(- , -), and P.(x) be the PDF of x.
Let fg(x), g4(z), and P, 4 (z) be the parametric encoder,
decoder, and PDF of the latent variable with parameters 6,
¢, and 1. Note that both of the encoder and decoder are
deterministic, while the encoder of VAE is stochastic.

First, the encoder converts the input data « to an N-
dimensional latent variable z in a Euclidean latent space
R, and then the decoder converts z to the decoded data
& € RM:

z=fo(x), &=gs(2) @)

Let € € RY be a noise vector to emulate uniform quantiza-

tion, where each component is independent from others and
has an equal mean 0 and an equal variance o'2:

2

€ — (61, €2, ..€N), E [62] = 0, E [6i€j] = (SijO' . (5)

Here, 0;; denotes the Kronecker’s delta. Given the sum

of latent variable z and noise €, another decoder output
& € RM is obtained as

&= golz+e) ©6)

with the same parameter ¢ used to obtain &. This is analo-
gous to the stochastic sampling and decoding procedure in
VAE.

The cost function is defined based on Eq. (3) with some
modifications as follows:

L= —log(P, 4(2)) + Mk (D (2,)) + Ao D (&,%) . (7)

The first term corresponds to the estimated rate of the la-
tent variable. We can use arbitrary probabilistic model as
P, 4(z). For example, Ballé et al. (2018) uses univariate
independent (factorized) model P, (2) = Hfil P.. v(zi).
In this work, a parametric function ¢, (z;) outputs cumula-
tive distribution function of z;. A rate for quantized symbol
is calculated by ¢y (z+ 1) —cy(2— 1), assuming the symbol
is quantized with the side length of 1. A model based on
GMM like Zong et al. (2018) is another instance.

The second and the third term in Eq. (7) is based on the
decomposition D (x, &) ~ D (x,&) + D (&, &) shown in
Rolinek et al. (2019). The second term in Eq. (7) purely
calculate reconstruction loss as an autoencoder. In the RDO,
the consideration is trade-off between rate (the first term)

and the distortion by the quantization noise (the third term).
By this decomposition, we can avoid the interference be-
tween better reconstruction and RDO trade-off durning the
training. The weight A; controls the degree of reconstruc-
tion, and A2 (=~ S~! of beta-VAE) controls a scaling be-
tween data and latent spaces respectively.

The function h(+) in the second term of Eq. (7) is a mono-
tonically increasing function. In experiments in this paper,
we use h(d) = log(d). In the theory shown in Appendix
A, better reconstruction provide much rigid orthogonality.
We find h(d) = log(d) is much more appropriate for this
purpose than h(d) = d as detailed in Appendix C.

The properties of our method shown in the rest of this paper
hold for a variety of metric function D(- , -), as long as it
can be approximated by the following quadratic form in the
neighborhood of x:

D(z,x + Ax) ~ Az A(x) Azx. (8)

Here, Ax is an arbitrary infinitesimal variation of a, and
A(zx) isan M x M positive definite matrix depending on
@ that corresponds to a metric tensor. When D(- , -) is
the square of the Euclidean distance, A(x) is the identity
matrix. For another instance, a cost with structure similarity
(SSIM (Wang et al., 2004)) and binary cross entropy (BCE)
can also be approximated by a quadratic form as explained
in Appendix D. By deriving parameters that minimize the
average of Eq. (7) according to @ ~ Py (x) and € ~ P(€),
the encoder, decoder, and probability distribution of the
latent space are trained as

0,0,% = arag;iin(Eme(w), e~Peo)lL]). 9

Parametric PDF of z
Pz,w, (Z)
R = —log(Pyy,(2))

Decoder
o(z+€)

Figure 3. Architecture of RaRDOGAGA

4.2. Theoretical Properties

In this section, we explain the theoretical properties of the
method. To show the essence in a simple form, we first
(formally) consider the case M = N. The theory for M >
N is then outlined. All details are given in Appendices.

We begin with examining the condition to minimize the loss
function analytically, assuming that the reconstruction part
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is trained enough so that * ~ . In this case, the second
term in Eq. (7) can be ignored. Let J(z) = 0z/0z =
994(z)/0z € RN*N be the Jacobian matrix between the
data space and latent space, which is assumed to be full-
rank at every point. Then, £ — & can be approximated as
é = Zf\;l €;(0x/0z;) through the Taylor expansion. By
applying E[e;e;] = 028;; and Eq. (8), the expectation of
the third term in Eq. (7) is rewritten as

LB [T A(@)¢] fJQZN: <§:>TA(w) (g:) (10)

As is well known, the relation between P, (z) and Py () in
such case is described as P, (z) = | det(J(z))|Px(x). The
expectation of L in Eq. (7) is thus approximated as

B L] = —log(|det(J (2))]) — log(Px())
N T
+ Apo? Z (gz) A(x) <g:> .an

By differentiating Eq. (11) by 0z /Jz;, the following equa-
tion is derived as a condition to minimize the expected loss:

2X20° A(x) (S:) - mi

where J(z).; € RY is the j-th column vector of the co-
factor matrix of J(z). Due to the trait of cofactor matrix,
(0x/02) T J(2).; = i det(J(z)) holds. Thus, the fol-
lowing relationship is obtained by multiplying Eq. (12) by
(0x/02;) T from the left and rearranging the results:

ox T ox 1
(a) Alz) (%)‘zw%'

This means that the columns of the Jacobian matrix of two
spaces form a constantly-scaled orthonormal system with
respect to the inner product defined by A(x) for all z.

(%), (12)

(13)

Given tangent vectors v, and w, in the tangent space of
RV at z represented as elements of RY, let v, and w,, be
the corresponding tangent vectors represented as elements
of RM = R¥ . The following relation holds due to Eq. (13),
which means that the map is isometric in the sense of Eq. (2):

wmzz(“ »)T A(w) (jmw)

=0 j=0

2)\20’2 Z Uzt

Since fp(-) and g4 (-) acts like the inverse functions of each
other when restricted on the input data, isometric property
holds for both.

.. 14
2)\202 v ( )

Even for the case M > N, equations in the same form as
Egs. (13) and (14) can be derived essentially in the same
manner (Appendix A); that is, RaDOGAGA achieves iso-
metric data embedding for the case M > N as well.

Now let us proceed to PDF estimation. First, we (for-
mally) consider the case M = N as before. Note that
Eq. (13) can be expressed as follows: J(z) " A(x)J(z) =
(1/2X20%)Ix (I is the N x N identity matrix). We have
the following equation by taking the determinants of both
sides of this and using the properties of the determinant:
|det(J(2))| = (1/2)\202)N/2 det(A(x))~'/2. Note that
det( (x)) = HJ 10 (A(x)), where 0 < ay(A(x)) <
- < apn(A(x)) are the eigenvalues of A(x). Thus, P,(z)
and P, (x) are related in the following form:

Pale) = (s ) (H aj(A

To consider the relationship of P,(z) and P, (x) for M >
N, we follow the manifold hypothesis and assume the sit-
uation where the data @ substantially exist in the vicin-
ity of a low-dimensional manifold M, and z € RY
can sufficiently capture its feature. In such case, we can
regard that the distribution of « away from M, is neg-
ligible and the ratio of P,(z) and Py(x) is equivalent
to that of the volumes of corresponding regions in R
and RM . This ratio is shown to be J,,(2), the product
of the singular values of J(z), and we get the relation
P.(2z) = Js(2) Py(x). We can further show that J, (2) is
also (1/2\902 )N/Q(Hj L ;(A(x))) /2 under a certain
condition that includes the case A(x) = I, (see Appendix
B). Consequently, Eq. (15) holds even for the case M > N.
In such case, P, (z) and (H _, a;(A(z))) "2 Py(x), the
probability distribution functlon of  modified by a metric
depending scaling, becomes proportional. As a result, when
we obtain a parameter ¢ attaining P, ,(z) ~ P,(z) by
training, Py (x) is proportional to P, ,(z) with a metric
depending scaling (HJ L (A(x)))Y/? as
1

(H% ) Pry(2).

In the case of A(x) = I (or more generally <1, for a
constant k > 0), P, () is simply proportional to P, ,(z):

Pp(x) o P, (2). (17)

)1 P.(2). (15)

(16)

5. Experimental Validations

Here, we show the properties of our method experimentally.
In Section 5.1, we examine the isometricity of the map
as in Eq. (2) with real data. In Section 5.2, we confirm
the proportionality of PDFs as in Eq. (15) with toy data. In
Section 5.3, the usefulness is validated in anomaly detection.
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5.1. Isometric Embedding

In this section, we confirm that our method can embed data
in the latent space isometrically. First, a randomly picked
data point « is mapped to z(= fy(x)). Then, let v, be a
small tangent vector in the latent space. The corresponding
tangent vector in the data space v,, is approximated by g(z +
v.)—¢g(z). Given randomly generated two different tangent
vectors v, and w,, v, - w, is compared with vaA(a:)wz.
We use the CelebA dataset (Liu et al., 2015)' that consists of
202,599 celebrity images. Images are center-cropped with a
size of 64 x 64.

5.1.1. CONFIGURATION

In this experiment, factorized distributions (Ballé et al.,
2018) are used to estimate P, ,(z) >. The encoder part is
constructed with four convolution (CNN) layers and two
fully connected (FC) layers. For CNN layers, the kernel
size is 9x9 for the first one and 5x5 for the rest. The
dimension is 64, stride size is 2, and activation function is
the generalized divisive normalization (GDN) (Ballé et al.,
2016), which is suitable for image compression, for all
layers. The dimensions of FC layers are 8192 and 256. For
the first one, softplus function is attached. The decoder
part is the inverse form of the encoder. For comparison,
we evaluate beta-VAE with the same form of autoencoder
with 256-dimensional z. In this experiment, we test two
different metrics; M SE, where A(x) = ﬁIM, and 1 —

SSIM, where A(z) = (ﬁ ot #W) W,, €

RM*M s a matrix such that all elements are 51> and W, =

a7Iv — Wi, Note that, in practice, 1 — SSTM for an
image is calculated with a small window. In this experiment
the window size is 11x11, and this local calculation is
performed for the entire image with the stride size of 1. The
cost is the average of local values. For the second term in
Eq. (7), h(d) is log(d) and A(x) = 57 Irs. For beta-VAE,
we set 371 as 1 x 10° and 1 x 10* regarding to the training
with M SE and 1 — SSTM respectively. For RaDOGAGA,
(A1, A2) 18 (0.1, 0.1) and (0.2, 0.1). Optimization is done by
Adam optimizer (Kingma & Ba, 2014) with learning rate 1 x
10~%. All models are trained so that the 1 — S.STM between

the input and reconstructed images is approximately 0.05.

5.1.2. RESULTS

Figure 4 depicts v, - w, (horizontal axis) and v, ' A(x)w,
(vertical axis). The top row is the result of beta-VAE and
the bottom row shows that of our method. In our method,

"http://mmlab.ie.cuhk.edu.hk/projects/
CelebA.html

’Implementation is done with a library for Tensor-
Flow provided at https://github.com/tensorflow/
compression with default parameters.

1x107*

beta-VAE

RaDOGAGA

3 % ab
—0.0001 0 0.0001 —0.0001 0
z' Wz Uy W,

(b)1 - SSIM

0.0001

(a) MSE

Figure 4. Plot of v, - w, (horizontal axis) and vaA(a:)wI (ver-
tical axis). In beta-VAE (top row), the correlation is weak whereas
in our method (bottom row) we can observe proportionality.

1.0
6 6
3 8
c c
2 8
S S
X 0.0
0 127 255 0 127 255
z z
(a) beta-VAE (b) RaDOGAGA

Figure 5. Variance of z. In beta-VAE, variances of all dimensions
are trained to be 1. In RaDOGAGA, the energy is concentrated in
few dimensions.

v, -w, and vxTA(:c)wx are almost proportional regardless
of the metric function. The correlation coefficients r reach
0.97, whereas that of beta-VAE are around 0.7. It can be
seen that our method enables isometric embedding to a
Euclidean space even with this large scale real dataset. For
interested readers, we provide the experimental results with
the MNIST dataset in Appendix F.

5.1.3. CONSISTENCY TO NASH EMBEDDING THEOREM

As explained in Introduction, the Nash embedding theo-
rem and manifold hypothesis are behind our exploration
of the isometric embedding of input data. Here, the ques-
tion is whether the trained model satisfied the condition
that dim M, < N. With RaDOGAGA, we can confirm it
by observing the variance of each latent variable. Because
the Jacobian matrix forms an orthonormal system, RaDO-
GAGA can work like principal component analysis (PCA)
and evaluates the importance of each latent variable. The
theoretical proof for this property is described in Appendix
E. Figure 5 shows the variance of each dimension of the
model trained with M SE. The variance concentrates on
the few dimensions. This means that R¥ is large enough to
represent the data. Figure 6 shows the decoder outputs when
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Figure 6. Latent space traversal of variables with top-9 variance. In beta-VAE, some latent variables do not influence the visual so much
even though they have almost the same variance. In RaDOGAGA, all latent variables with large variance have important information for

image.

each component z; is traversed from —2¢ to 20, fixing the
rest of z as the mean. Note the index 7 is arranged in a
descending order of o%. Here, o and . for the i-th dimen-
sion of z(= fyg(x)) are Var|z;] and E[z;] respectively with
all data samples. From the top, each row corresponds to
20, #1, %2 ..., and the center column is mean. In Fig. 6b,
the image changes visually in any dimension of z, whereas
in Fig. 6a, depending on the dimension i, there are cases
where no significant changes can be seen (such as 21, 29, 23,
and so on). In summary, we can qualitatively observe that
Var|z;] corresponds to the eigenvalue of PCA; that is, a
latent variable with a larger o have bigger impact on image.

These results suggest that the important information to ex-
press data are concentrated in the lower few dimensions
and the dimension number of 256 is large enough to satisfy
dim M, < N. To confirm the sufficiency of the dimension
is difficult in beta-VAE because o should be 1 for all di-
mensions because it is trained to fit to the prior. However,
some dimensions have a large impact on the image, meaning
that o does not work as the measure of importance.

We believe that this PCA-like trait is very useful for the
interpretation of latent variables. For instance, if the metric
function were designed so as to reflect semantics, important
variables for a semantics are easily found. Furthermore, we
argue that this is a promising way to capture the minimal
feature to express data, which is one of the goals of machine
learning.

5.2. PDF Estimation with Toy Data

In this section, we describe our experiment using toy data
to demonstrate whether the probability density function

of the input data P, (x) and that of the latent variable es-
timated in the latent space P, ,(z) are proportional to
each other as in theory. First, we sample data points
s = (81,82,..,8n, -, 810000) € R3*10:090 from three-
dimensional GMM consists of three mixture-components
with mixture weight # = (1/3,1/3,1/3), mean p; =
(0,0,0), p2 = (15,0,0), pg = (15,15,15), and covari-
ance X, = diag(1,2,3). k is the index for the mixture-
component. Then, we scatter s with uniform random noise
uw € R¥*16 yg,, ~ Uy (—3, 3), where d and m are index
for dimension of sampled data and scattered data. The
ugs are uncorrelated with each other. We produce 16-
dimensional input data as x,, = EZ=1 UgSnq With a sample
number of 10,000 in the end. The appearance probability of
input data P, () is equals to a generation probability of s.

5.2.1. CONFIGURATION

In the experiment, we estimate P, ,(z) using GMM with
parameter v as in DAGMM (Zong et al., 2018). Instead of
the EM algorithm , GMM parameters are learned using Esti-
mation Network (EN), which consists of a multi-layer neural
network. When the GMM consists of N-dimensional Gaus-
sian distribution A% (z; p, 3) with K mixture-components,
and L is the size of batch samples, EN outputs the mixture-
components membership prediction as a K -dimensional
vector 7 as follows:

p = EN(z;¢),5 = softmax(p). (18)

Then, k-th mixture weight T, mean fi, covariance ik,
and entrczpy R of z are further calculated as follows:

Y . I~ L ~
Th = Zlfl Yk/L,  He =1 %kzz/;lzl Yk
X =300 Yz — Be) (20— ) T/ ks



Rate-Distortion Optimization Guided Autoencoder for Isometric Embedding in Euclidean Latent Space

R = —log (Zszl NN (25 B, flk))~

The overall network is trained by Egs. (7) and (9). In this
experiment, we set D(- , -) as the square of the Euclidean
distance because the input data is generated obeying the PDF
in the Euclidean space. We test two types of h(+), h(d) = d
and h(d) = log(d), and denote models trained with these
h(-) as RaDOGAGA(d) and RaDOGAGA (log(d)) respec-
tively. We used DAGMM as a baseline method. DAGMM
also consists of an encoder, decoder, and EN. In DAGMM,
to avoid falling into the trivial solution that the entropy
is minimized when the diagonal component of the covari-
ance matrix is 0, the inverse of the diagonal component
P(E) =7, 2N 551 is added to the cost:

L= |l& —&|5+ M (~log(Ps,(2))) + A2 P(E). (19)

The only differences between our model and DAGMM is
that the regulation term P(X) is replaced by D(&, &). The
model complexity such as the number of parameters is the
same. For both RaDOGAGA and DAGMM, the autoen-
coder part is constructed with FC layers with sizes of 64, 32,
16, 3, 16, 32, and 64. For all FC layers except for the last of
the encoder and the decoder, we use tanh as the activation
function. The EN part is also constructed with FC layers
with sizes of 10 and 3. For the first layer, we use tanh as the
activation function and dropout (ratio=0.5). For the last one,
softmax is used. (A1, Ag)is setas (1 x 1074, 1 x 1079),
(1 x 105, 1 x 10%) and (1 x 102, 1 x 10%) for DAGMM,
RaDOGAGA(d) and RaDOGAGA (log(d)) respectively. We
optimize all models by Adam optimizer with a learning rate
of 1 x 10~*. We set 02 as 1/12.

5.2.2. RESULTS

Figure 7 displays the distribution of the input data source s
and latent variable z. Although both methods can capture
that s is generated from three mixture-components, there is
a difference in the PDFs. Since the data is generated from
GMM, the value of the PDF gets higher as the sample gets
closer to the centers of clusters. However, in DAGMM, this
tendency looks distorted. This difference is further demon-
strated in Fig. 8, which shows a plot of P, (x) (horizontal
axis) against P, y(z) (vertical axis). In our method, Py ()
and P, ,(z) are almost proportional to each other as in
the theory, but we cannot observe such a proportionality
in DAGMM. This difference is also quantitatively obvious.
That is, correlation coefficients between Py (x) and P, (%)
are 0.882 (DAGMM), 0.997 (RaDOGAGA(d)), and 0.998
(RaDOGAGA(log(d))). We can also observe that, in RaDO-
GAGA(d), there is a slight distortion in its proportionality
in the area of P,(x) < 0.01. When P, ,(z) is sufficiently
fitted, h(d) = log(d) makes P, () and P, ,(z) be propor-
tional more rigidly. More details are given in Appendix C.

PDF
(High) s3

s1 %
*j?//‘
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(a) Input source s

(c) RaDOGAGA(d) (d) RaDOGAGA (log(d))
Figure 7. Plot of the source of input data s and latent variables
z. The color bar located left of (a) corresponds to the normalized
PDF. Both DAGMM and RaDOGAGA capture three mixture-
components, but the PDF in DAGMM looks different from the
input data source. Points with high PDF do not concentrate on the
center of the cluster especially in the upper right one.
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Figure 8. Plot of Py (x) vs P, y(2). In RaDOGAGA, P (x) and
P, (z) are proportional while we cannot see that in DAGMM.

5.3. Anomaly Detection Using Real Data

We here examine whether the clear relationship between
P.(x) and P, ,(z) is useful in anomaly detection in
which PDF estimation is the key issue. We use four
public datasets*: KDDCUP99, Thyroid, Arrhythmia, and
KDDCUP-Rev. The (instance number, dimension, anomaly
ratio(%)) of each dataset is (494021, 121, 20), (3772, 6, 2.5),
(452, 274, 15), and (121597, 121, 20). The details of the
datasets are given in Appendix G.

5.3.1. EXPERIMENTAL SETUP

For a fair comparison with previous works, we follow the
setting in Zong et al. (2018). Randomly extracted 50% of the
data were assigned to the training and the rest to the testing.
During the training, only normal data were used. During
the test, the entropy R for each sample was calculated as
the anomaly score, and if the anomaly score is higher than
a threshold, it is detected as an anomaly. The threshold is
determined by the ratio of the anomaly data in each data set.
For example, in KDDCup99, data with R in the top 20 % is

Datasets can be downloaded at https://kdd.ics.uci.
edu/ and http://odds.cs.stonybrook.edu.
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Table 1. Average and standard deviations (in brackets) of Precision, Recall and F1

Dataset Methods Precision Recall F1

ALAD* 0.9427 (0.0018) 0.9577 (0.0018) 0.9501 (0.0018)
INRF* 0.9452 (0.0105) 0.9600 (0.0113) 0.9525 (0.0108)

GMVAE* 0.952 09141 0.9326
KDDCup DAGMM 0.9427 (0.0052) 0.9575 (0.0053) 0.9500 (0.0052)
RaDOGAGA(d) 0.9550 (0.0037) 0.9700 (0.0038) 0.9624 (0.0038)
RaDOGAGA(log(d)) | 0.9563 (0.0042) 0.9714 (0.0042) 0.9638 (0.0042)

GMVAE* 0.7105 0.5745 0.6353
DAGMM 0.4656 (0.0481) 0.4859 (0.0502) 0.4755 (0.0491)
Thyroid RaDOGAGA(d) 0.6313 (0.0476) 0.6587 (0.0496) 0.6447 (0.0486)
RaDOGAGA(log(d)) | 0.6562 (0.0572) 0.6848 (0.0597) 0.6702 (0.0585)
ALAD* 0.5000 (0.0208) 0.5313 (0.0221) 0.5152 (0.0214)

GMVAE* 0.4375 0.4242 0.4308
Arrythmia DAGMM 0.4985 (0.0389) 0.5136 (0.0401) 0.5060 (0.0395)
RaDOGAGA(d) 0.5353 (0.0461) 0.5515 (0.0475) 0.5433 (0.0468)
RaDOGAGA(log(d)) | 0.5294 (0.0405) 0.5455 (0.0418) 0.5373 (0.0411)
DAGMM 0.9778 (0.0018) 0.9779 (0.0017) 0.9779 (0.0018)
KDDCup-rev | RaDOGAGA(d) 0.9768 (0.0033) 0.9827 (0.0012) 0.9797 (0.0015)
RaDOGAGA(log(d)) | 0.9864 (0.0009) 0.9865 (0.0009) 0.9865 (0.0009)

*Scores are cited from Zenati et al. (2018) (ALAD), Song & Ou (2018) (INRF), and Liao et al. (2018) (GMVAE).

detected as an anomaly. As metrics, precision, recall, and
F1 score are calculated. We run experiments 20 times for
each dataset split by 20 different random seeds.

5.3.2. BASELINE METHODS

As in the previous section, DAGMM is taken as a baseline.
We also compare the scores of our method with the ones
reported in previous works conducting the same experiments
(Zenati et al., 2018; Song & Ou, 2018; Liao et al., 2018).

5.3.3. CONFIGURATION

As in Zong et al. (2018), in addition to the output from the
encoder, Hw”;“ﬁ;‘h and \Imlﬁi\\mm’l\z are concatenated to z and
sent to EN. Note that z is sent to the decoder before concate-
nation. Other configuration a except for the hyperparameter
is same as in the previous experiment. The hyperparameter
for each dataset is described in Appendix G. The input data
are max-min normalized.

5.3.4. RESULTS

Table 1 reports the average scores and standard deviations
(in brackets). Compared to DAGMM, RaDOGAGA has a
better performance regardless of types of h(:). Note that,
our method does not increase model complexity at all. Sim-
ply introducing the RDO mechanism to the autoencoder is
effective for anomaly detection. Moreover, RaDOGAGA
achieves the highest performance compared to other meth-
ods. RaDOGAGA (log(d)) is superior to RaDOGAGA(d)

except for Arrhythmia. This result suggests that a much
rigid orthonormality can likely bring better performance.

6. Conclusion

In this paper, we propose RaDOGAGA which embeds data
in a low-dimensional Euclidean space isometrically. With
RaDOGAGA, the relation of latent variables and data is
quantitatively tractable. For instance, P, () obtained by
the proposed method is related to P, (x) in a clear form,
e.g., they are proportional when A(x) = I. Furthermore,
thanks to these properties, we achieve a state-of-the-art
performance in anomaly detection.

Although we focused on the PDF estimation as a practi-
cal task in this paper, the properties of RaDOGAGA will
benefit a variety of applications. For instance, data inter-
polation will be easier because a straight line in the latent
space is geodesic in the data space. It also may help the
unsupervised or semi-supervised learning since the distance
of z reliably reflects the distance of x. Furthermore, our
method will promote disentanglement because, thanks to
the orthonormality, PCA-like analysis is possible.

To capture the essential features of data, it is important to
fairly evaluate the significance of latent variables. Because
isometric embedding ensures this fairness, we believe that
RaDOGAGA will bring a Breakthru for generative analysis.
As a future work, we explore the usefulness of this method
in various tasks mentioned above.
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