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Abstract

Federated Averaging (FEDAVG) has emerged as
the algorithm of choice for federated learning
due to its simplicity and low communication
cost. However, in spite of recent research ef-
forts, its performance is not fully understood. We
obtain tight convergence rates for FEDAVG and
prove that it suffers from ‘client-drift’ when the
data is heterogeneous (non-iid), resulting in un-
stable and slow convergence.

As a solution, we propose a new algorithm
(SCAFFOLD) which uses control variates (vari-
ance reduction) to correct for the ‘client-drift’ in
its local updates. We prove that SCAFFOLD re-
quires significantly fewer communication rounds
and is not affected by data heterogeneity or client
sampling. Further, we show that (for quadratics)
SCAFFOLD can take advantage of similarity in
the client’s data yielding even faster convergence.
The latter is the first result to quantify the useful-
ness of local-steps in distributed optimization.

1. Introduction
Federated learning has emerged as an important paradigm
in modern large-scale machine learning. Unlike in tradi-
tional centralized learning where models are trained using
large datasets stored in a central server (Dean et al., 2012;
Iandola et al., 2016; Goyal et al., 2017), in federated learn-
ing, the training data remains distributed over a large num-
ber of clients, which may be phones, network sensors, hos-
pitals, or alternative local information sources (Konečnỳ
et al., 2016b;a; McMahan et al., 2017; Mohri et al., 2019;
Kairouz et al., 2019). A centralized model (referred to
as server model) is then trained without ever transmitting
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client data over the network, thereby ensuring a basic level
of privacy. In this work, we investigate stochastic optimiza-
tion algorithms for federated learning.

The key challenges for federated optimization are 1) deal-
ing with unreliable and relatively slow network connections
between the server and the clients, 2) only a small subset
of clients being available for training at a given time, and
3) large heterogeneity (non-iid-ness) in the data present on
the different clients (Konečnỳ et al., 2016a). The most pop-
ular algorithm for this setting is FEDAVG (McMahan et al.,
2017). FEDAVG tackles the communication bottleneck by
performing multiple local updates on the available clients
before communicating to the server. While it has shown
success in certain applications, its performance on hetero-
geneous data is still an active area of research (Li et al.,
2018; Yu et al., 2019; Li et al., 2019b; Haddadpour & Mah-
davi, 2019; Khaled et al., 2020). We prove that indeed such
heterogeneity has a large effect on FEDAVG—it introduces
a drift in the updates of each client resulting in slow and un-
stable convergence. Further, we show that this client-drift
persists even if full batch gradients are used and all clients
participate throughout the training.

As a solution, we propose a new Stochastic Controlled Av-
eraging algorithm (SCAFFOLD) which tries to correct for
this client-drift. Intuitively, SCAFFOLD estimates the up-
date direction for the server model (c) and the update direc-
tion for each client ci.1 The difference (c − ci) is then an
estimate of the client-drift which is used to correct the local
update. This strategy successfully overcomes heterogene-
ity and converges in significantly fewer rounds of commu-
nication. Alternatively, one can see heterogeneity as intro-
ducing ‘client-variance’ in the updates across the different
clients and SCAFFOLD then performs ‘client-variance re-
duction’ (Schmidt et al., 2017; Johnson & Zhang, 2013;
Defazio et al., 2014). We use this viewpoint to show that
SCAFFOLD is relatively unaffected by client sampling.

Finally, while accommodating heterogeneity is important,
it is equally important that a method can take advantage of
similarities in the client data. We prove that SCAFFOLD
indeed has such a property, requiring fewer rounds of com-

1We refer to these estimates as control variates and the result-
ing correction technique as stochastic controlled averaging.
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munication when the clients are more similar.

Contributions. We summarize our main results below.

• We derive tighter convergence rates for FEDAVG than
previously known for convex and non-convex functions
with client sampling and heterogeneous data.

• We give matching lower bounds to prove that even with
no client sampling and full batch gradients, FEDAVG
can be slower than SGD due to client-drift.

• We propose a new Stochastic Controlled Averaging al-
gorithm (SCAFFOLD) which corrects for this client-
drift. We prove that SCAFFOLD is at least as fast as
SGD and converges for arbitrarily heterogeneous data.

• We show SCAFFOLD can additionally take advantage
of similarity between the clients to further reduce the
communication required, proving the advantage of tak-
ing local steps over large-batch SGD for the first time.

• We prove that SCAFFOLD is relatively unaffected by
the client sampling obtaining variance reduced rates,
making it especially suitable for federated learning.

Finally, we confirm our theoretical results on simulated and
real datasets (extended MNIST by Cohen et al. (2017)).

Related work. For identical clients, FEDAVG coincides
with parallel SGD analyzed by (Zinkevich et al., 2010) who
proved asymptotic convergence. Stich (2018) and, more
recently Stich & Karimireddy (2019); Patel & Dieuleveut
(2019); Khaled et al. (2020), gave a sharper analysis of the
same method, under the name of local SGD, also for iden-
tical functions. However, there still remains a gap between
their upper bounds and the lower bound of Woodworth
et al. (2018). The analysis of FEDAVG for heterogeneous
clients is more delicate due to the afore-mentioned client-
drift, first empirically observed by Zhao et al. (2018). Sev-
eral analyses bound this drift by assuming bounded gradi-
ents (Wang et al., 2019; Yu et al., 2019), or view it as addi-
tional noise (Khaled et al., 2020), or assume that the client
optima are ε-close (Li et al., 2018; Haddadpour & Mahdavi,
2019). In a concurrent work, (Liang et al., 2019) propose to
use variance reduction to deal with client heterogeneity but
still show rates slower than SGD and do not support client
sampling. Our method SCAFFOLD can also be seen as an
improved version of the distributed optimization algorithm
DANE by (Shamir et al., 2014), where a fixed number of
(stochastic) gradient steps are used in place of a proximal
point update. A more in-depth discussion of related work
is given in Appendix A. We summarize the complexities of
different methods for heterogeneous clients in Table 2.

2. Setup
We formalize the problem as minimizing a sum of stochas-
tic functions, with only access to stochastic samples:

Table 1. Summary of notation used in the paper

N , S, and i total num., sampled num., and index of clients
R, r number, index of communication rounds
K, k number, index of local update steps
xr aggregated server model after round r
yri,k ith client’s model in round r and step k
cr, cri control variate of server, ith client after round r

min
x∈Rd

{
f(x) :=

1

N

N∑
i=1

(fi(x) := Eζi [fi(x; ζi)])
}
.

The functions fi represents the loss function on client i. All
our results can be easily extended to the weighted case.

We assume that f is bounded from below by f? and fi is
β-smooth. Further, we assume gi(x) := ∇fi(x; ζi) is an
unbiased stochastic gradient of fi with variance bounded
by σ2. For some results, we assume µ ≥ 0 (strong) con-
vexity. Note that σ only bounds the variance within clients.
We also define two non-standard terminology below.

(A1) (G,B)-BGD or bounded gradient dissimilarity:
there exist constants G ≥ 0 and B ≥ 1 such that

1

N

N∑
i=1

‖∇fi(x)‖2 ≤ G2 +B2‖∇f(x)‖2 , ∀x .

If {fi} are convex, we can relax the assumption to

1

N

N∑
i=1

‖∇fi(x)‖2 ≤ G2 + 2βB2(f(x)− f?) , ∀x .

(A2) δ-BHD or bounded Hessian dissimilarity:
‖∇2fi(x)−∇2f(x)‖ ≤ δ , ∀x .

Further, fi is δ-weakly convex i.e. ∇2fi(x) � −δI .

The assumptions A1 and A2 are orthogonal—it is possible
to have G = 0 and δ = 2β, or δ = 0 but G� 1.

3. Convergence of FedAvg
In this section we review FEDAVG and improve its conver-
gence analysis by deriving tighter rates than known before.
The scheme consists of two main parts: local updates to the
model (1), and aggregating the client updates to update the
server model (2). In each round, a subset of clients S ⊆ [N ]
are sampled uniformly. Each of these clients i ∈ S copies
the current sever model yi = x and performs K local up-
dates of the form:

yi ← yi − ηlgi(yi) . (1)

Here ηl is the local step-size. Then the clients’ updates
(yi−x) are aggregated to form the new server model using
a global step-size ηg as:

x← x+
ηg
|S|
∑
i∈S

(yi − x) . (2)
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Table 2. Number of communication rounds required to reach ε accuracy for µ strongly convex and non-convex functions (log factors
are ignored). Set µ = ε for general convex rates. (G,B) bounds gradient dissimilarity (A1), and δ bounds Hessian dissimilarity (A2).
Our rates for FEDAVG are more general and tighter than others, even matching the lower bound. However, SGD is still faster (B ≥ 1).
SCAFFOLD does not require any assumptions, is faster than SGD, and is robust to client sampling. Further, when clients become more
similar (small δ), SCAFFOLD converges even faster.

Method Strongly convex Non-convex Sampling Assumptions

SGD (large batch) σ2

µNKε
+ 1

µ
σ2

NKε2
+ 1

ε
× –

FedAvg
(Li et al., 2019b) σ2

µ2NKε
+ G2K

µ2ε
– × (G, 0)-BGD

(Yu et al., 2019) – σ2

NKε2
+ G2NK

ε
× (G, 0)-BGD

(Khaled et al., 2020) σ2+G2

µNKε
+ σ+G

µ
√
ε

+ NB2

µ
– × (G,B)-BGD

Ours (Thm. I)1 M2

µSKε
+ G

µ
√
ε

+ B2

µ
M2

SKε2
+ G

ε3/2
+ B2

ε
X (G,B)-BGD

Lower-bound (Thm. II) Ω( σ2

µNKε
+ G√

µε
) ? × (G, 1)-BGD

FedProx (Li et al., 2018)2 B2

µ
B2

ε
(weakly convex) X σ = 0, (0, B)-BGD

DANE (Shamir et al., 2014)2,3 δ2

µ2
– × σ = 0, δ-BHD

VRL-SGD (Liang et al., 2019) – Nσ2

Kε2
+ N

ε
× –

SCAFFOLD

Theorem III σ2

µSKε
+ 1

µ
+ N

S
σ2

SKε2
+ 1

ε
(N
S

)
2
3 X –

Theorem IV3 σ2

µNKε
+ 1

µK
+ δ

µ
σ2

NKε2
+ 1

Kε
+ δ

ε
× δ-BHD

1 M2 := σ2 +K(1− S
N )G2. Note that M

2

S = σ2

N when no sampling (S = N ).
2 proximal point method i.e. K � 1.
3 proved only for quadratic functions.

3.1. Rate of convergence

We now state our novel convergence results for functions
with bounded dissimilarity (proofs in Appendix D.2).

Theorem I. For β-smooth functions {fi} which satisfy
(A1), the output of FEDAVG has expected error smaller
than ε in each of the below three cases for some values of
ηl and ηg , with the following bound on R

• µ Strongly convex:

R = Õ
(

σ2

µKSε
+
(
1− S

N

) G2

µSε
+

√
βG

µ
√
ε

+
B2β

µ

)
,

• General convex:

R = O
(
σ2D2

KSε2
+
(
1− S

N

)G2D2

Sε2
+

√
βG

ε
3
2

+
B2βD2

ε

)
,

• Non-convex:

R = O
(
βσ2F

KSε2
+
(
1− S

N

)G2F

Sε2
+

√
βG

ε
3
2

+
B2βF

ε

)
,

where D := ‖x0 − x?‖2 and F := f(x0)− f?.

The exact values of ηl and ηg decreases with the number
of rounds R and can be found in the proofs in the Ap-
pendix. It is illuminating to compare our rates with those
of the simpler iid. case i.e. with G = 0 and B = 1. Our
strongly-convex rates become σ2

µSKε + 1
µ . In comparison,

the best previously known rate for this case was by Stich
& Karimireddy (2019) who show a rate of σ2

µSKε + S
µ . The

main source of improvement in the rates came from the
use of two separate step-sizes (ηl and ηg). By having a
larger global step-size ηg , we can use a smaller local step-
size ηl thereby reducing the client-drift while still ensur-
ing progress. However, even our improved rates do not
match the lower-bound for the identical case of σ2

µSKε+ 1
Kµ

(Woodworth et al., 2018). We bridge this gap for quadratic
functions in Section 6.

We now compare FEDAVG to two other algorithms Fed-
Prox by (Li et al., 2018) (aka EASGD by (Zhang et al.,
2015)) and to SGD. Suppose that G = 0 and σ = 0 i.e.
we use full batch gradients and all clients have very similar
optima. In such a case, FEDAVG has a complexity of B2

µ
which is identical to that of FedProx (Li et al., 2018). Thus,
FedProx does not have any theoretical advantage.
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Figure 1. Client-drift in FEDAVG is illustrated for 2 clients with
3 local steps (N = 2, K = 3). The local updates yi (in blue)
move towards the individual client optima x?

i (orange square).
The server updates (in red) move towards 1

N

∑
i x

?
i instead of to

the true optimum x? (black square).

Next, suppose that all clients participate (no sampling) with
S = N and there is no variance σ = 0. Then, the
above for strongly-convex case simplifies to G

µ
√
ε

+ B2

µ . In
comparison, extending the proof of (Khaled et al., 2020)
using our techniques gives a worse dependence on G of
G2

µKNε + G
µ
√
ε
. Similarly, for the non-convex case, our rates

are tighter and have better dependence onG than (Yu et al.,
2019). However, simply running SGD in this setting would
give a communication complexity of βµ which is faster, and
independent of similarity assumptions. In the next section
we examine the necessity of such similarity assumptions.

3.2. Lower bounding the effect of heterogeneity

We now show that when the functions {fi} are distinct,
the local updates of FEDAVG on each client experiences
drift thereby slowing down convergence. We show that the
amount of this client drift, and hence the slowdown in the
rate of convergence, is exactly determined by the gradient
dissimilarity parameter G in (A1).

We now examine the mechanism by which the client-drift
arises (see Fig. 1). Let x? be the global optimum of f(x)
and x?i be the optimum of each client’s loss function fi(x).
In the case of heterogeneous data, it is quite likely that each
of these x?i is far away from the other, and from the global
optimum x?. Even if all the clients start from the same
point x, each of the yi will move towards their client opti-
mum x?i . This means that the average of the client updates
(which is the server update) moves towards 1

N

∑N
i=1 x

?
i .

This difference between 1
N

∑N
i=1 x

?
i and the true optimum

x? is exactly the cause of client-drift. To counter this drift,
FEDAVG is forced to use much smaller step-sizes which in
turn hurts convergence. We can formalize this argument to
prove a lower-bound (see Appendix D.4 for proof).

Theorem II. For any positive constants G and µ, there

Algorithm 1 SCAFFOLD: Stochastic Controlled Averag-
ing for federated learning

1: server input: initial x and c, and global step-size ηg
2: client i’s input: ci, and local step-size ηl
3: for each round r = 1, . . . , R do
4: sample clients S ⊆ {1, . . . , N}
5: communicate (x, c) to all clients i ∈ S
6: on client i ∈ S in parallel do
7: initialize local model yi ← x
8: for k = 1, . . . ,K do
9: compute mini-batch gradient gi(yi)

10: yi ← yi − ηl (gi(yi)− ci + c)
11: end for
12: c+i ← (i) gi(x), or (ii) ci − c+ 1

Kηl
(x− yi)

13: communicate (∆yi,∆ci)← (yi − x, c+i − ci)
14: ci ← c+i
15: end on client
16: (∆x,∆c)← 1

|S|
∑
i∈S(∆yi,∆ci)

17: x← x+ ηg∆x and c← c+ |S|
N ∆c

18: end for

exist µ-strongly convex functions satisfying A1 for which
FEDAVG with K ≥ 2, σ = 0 and N = S has an error

f(xr)− f(x?) ≥ Ω

(
G2

µR2

)
.

This implies that the G√
ε

term is unavoidable even if there
is no stochasticity. Further, because FEDAVG uses RKN
stochastic gradients, we also have the statistical lower-
bound of σ2

µKNε . Together, these lower bounds prove that
the rate derived in Theorem I is nearly optimal (up to de-
pendence on µ). In the next section, we introduce a new
method SCAFFOLD to mitigate this client-drift.

4. SCAFFOLD algorithm
In this section we first describe SCAFFOLD and then dis-
cuss how it solves the problem of client-drift.

Method. SCAFFOLD has three main steps: local up-
dates to the client model (3), local updates to the client
control variate (4), and aggregating the updates (5). We
describe each in more detail.

Along with the server model x, SCAFFOLD maintains a
state for each client (client control variate ci) and for the
server (server control variate c). These are initialized to
ensure that c = 1

N

∑
ci and can safely all be initialized to

0. In each round of communication, the server parameters
(x, c) are communicated to the participating clients S ⊂
[N ]. Each participating client i ∈ S initializes its local
model with the server model yi ← x. Then it makes a pass
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correction

local gradient
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Figure 2. Update steps of SCAFFOLD on a single client. The
local gradient (dashed black) points to x?

1 (orange square), but
the correction term (c − ci) (in red) ensures the update moves
towards the true optimum x? (black square).

over its local data performing K updates of the form:

yi ← yi − ηl(gi(yi) + c− ci) . (3)

Then, the local control variate ci is also updated. For this,
we provide two options:

c+i ←
{

Option I. gi(x) , or
Option II. ci − c+ 1

Kηl
(x− yi) .

(4)

Option I involves making an additional pass over the local
data to compute the gradient at the server model x. Op-
tion II instead re-uses the previously computed gradients
to update the control variate. Option I can be more stable
than II depending on the application, but II is cheaper to
compute and usually suffices (all our experiments use Op-
tion II). The client updates are then aggregated and used to
update the server parameters:

x← x+
ηg
|S|
∑
i∈S

(yi − x) ,

c← c+
1

N

∑
i∈S

(c+i − ci) .
(5)

This finishes one round of communication. Note that the
clients in SCAFFOLD are stateful and retain the value of
ci across multiple rounds. Further, if ci is always set to 0,
then SCAFFOLD becomes equivalent to FEDAVG. The
full details are summarized in Algorithm 1.

Usefulness of control variates. If communication cost
was not a concern, the ideal update on client i would be

yi ← yi +
1

N

∑
j

gj(yi) . (6)

Such an update essentially computes an unbiased gradient
of f and hence becomes equivalent to running FEDAVG
in the iid case (which has excellent performance). Unfor-
tunately such an update requires communicating with all
clients for every update step. SCAFFOLD instead uses
control variates such that

cj ≈ gj(yi) and c ≈ 1

N

∑
j

gj(yi) .

Then, SCAFFOLD (3) mimics the ideal update (6) with

(gi(yi)− ci + c) ≈ 1

N

∑
j

gj(yi) .

Thus, the local updates of SCAFFOLD remain synchro-
nized and converge for arbitrarily heterogeneous clients.

5. Convergence of SCAFFOLD

We state the rate of SCAFFOLD without making any as-
sumption on the similarity between the functions. See Ap-
pendix E for the full proof.

Theorem III. For any β-smooth functions {fi}, the output
of SCAFFOLD has expected error smaller than ε for in
each of the below three cases for some values of ηl and ηg ,
with the following bound on R

• µ Strongly convex:

R = Õ
(

σ2

µKSε
+
β

µ
+
N

S

)
,

• General convex:

R = Õ
(
σ2D2

KSε2
+
βD2

ε
+
NF

S

)
,

• Non-convex:

R = O
(
βσ2F

KSε2
+

(
N

S

) 2
3 βF

ε

)
,

where D := ‖x0 − x?‖2 and F := f(x0)− f?.

The exact values of ηl and ηg decreases with the number
of rounds R and can be found in the proofs in the Ap-
pendix. Let us first examine the rates without client sam-
pling (S = N ). For the strongly convex case, the number
of rounds becomes σ2

µNKε + 1
µ . This rate holds for arbi-

trarily heterogeneous clients unlike Theorem I and further
matches that of SGD with K times larger batch-size, prov-
ing that SCAFFOLD is at least as fast as SGD. These rates
also match known lower-bounds for distributed optimiza-
tion (Arjevani & Shamir, 2015) (up to acceleration) and are
unimprovable in general. However in certain cases SCAF-
FOLD is provably faster than SGD. We show this fact in
Section 6.

Now let σ = 0. Then our rates in the strongly-convex case

are 1
µ + N

S and
(
N
S

) 2
3 1
ε in the non-convex case. These ex-

actly match the rates of SAGA (Defazio et al., 2014; Reddi
et al., 2016c). In fact, when σ = 0, K = 1 and S = 1,
the update of SCAFFOLD with option I reduces to SAGA
where in each round consists of sampling one client fi.
Thus SCAFFOLD can be seen as an extension of vari-
ance reduction techniques for federated learning, and one
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could similarly extend SARAH (Nguyen et al., 2017), SPI-
DER (Fang et al., 2018), etc. Note that standard SGD with
client sampling is provably slower and converges at a sub-
linear rate even with σ = 0.

Proof sketch. For simplicity, assume that σ = 0 and con-
sider the ideal update of (6) which uses the full gradient
∇f(y) every step. Clearly, this would converge at a lin-
ear rate even with S = 1. FEDAVG would instead use an
update ∇fi(y). The difference between the ideal update
(6) and the FEDAVG update (1) is ‖∇fi(y) − ∇f(y)‖.
We need a bound on the gradient-dissimilarity as in (A1)
to bound this error. SCAFFOLD instead uses the update
∇fi(y)− ci + c, and the difference from ideal update be-
comes∑
i

‖(∇fi(y)−ci+c)−∇f(y)‖2 ≤
∑
i

‖ci−∇fi(y)‖2 .

Thus, the error is independent of how similar or dissimilar
the functions fi are, and instead only depends on the qual-
ity of our approximation ci ≈ ∇fi(y). Since fi is smooth,
we can expect that the gradient∇fi(y) does not change too
fast and hence is easy to approximate. Appendix E trans-
lates this intuition into a formal proof.

6. Usefulness of local steps
In this section we investigate when and why taking local
steps might be useful over simply computing a large-batch
gradient in distributed optimization. We will show that
when the functions across the clients share some similarity,
local steps can take advantage of this and converge faster.
For this we consider quadratic functions and express their
similarity with the δ parameter introduced in (A2).

Theorem IV. For any β-smooth quadratic functions {fi}
with δ bounded Hessian dissimilarity (A2), the output of
SCAFFOLD with S = N (no sampling) has error smaller
than ε in each of the following two cases with ηg = 1, some
value of ηl, and R satisfying

• Strongly convex:

R = Õ
(

βσ2

µKNε
+
β + δK

µK

)
,

• Weakly convex:

R = O
(
βσ2F

KNε2
+

(β + δK)F

Kε

)
,

where we define F := (f(x0)− f?).

Here again the exact value of ηl decreases with the num-
ber of rounds R and can be found in the proofs in the Ap-
pendix. When σ = 0 and K is large, the complexity of

SCAFFOLD becomes δ
µ . In contrast DANE, which be-

ing a proximal point method also uses large K, requires
( δµ )2 rounds (Shamir et al., 2014) which is significantly
slower, or needs an additional backtracking-line search to
match the rates of SCAFFOLD (Yuan & Li, 2019). Fur-
ther, Theorem IV is the first result to demonstrate improve-
ment due to similairty for non-convex functions as far as
we are aware.

Suppose that {fi} are identical. Recall that δ in (A2) mea-
sures the Hessian dissimilarity between functions and so
δ = 0 for this case. Then Theorem IV shows that the com-
plexity of SCAFFOLD is σ2

µKNε + 1
µK which (up to ac-

celeration) matches the i.i.d. lower bound of (Woodworth
et al., 2018). In contrast, SGD with K times larger batch-
size would require σ2

µKNε + 1
µ (note the absence ofK in the

second term). Thus, for identical functions, SCAFFOLD
(and in fact even FEDAVG) improves linearly with increas-
ing number of local steps. In the other extreme, if the func-
tions are arbitrarily different, we may have δ = 2β. In this
case, the complexity of SCAFFOLD and large-batch SGD
match the lower bound of Arjevani & Shamir (2015) for the
heterogeneous case.

The above insights can be generalized to when the func-
tions are only somewhat similar. If the Hessians are δ-close
and σ = 0, then the complexity is β+δK

µK . This bound im-
plies that the optimum number of local steps one should
use is K = β

δ . Picking a smaller K increases the com-
munication required whereas increasing it further would
only waste computational resources. While this result is
intuitive—if the functions are more ‘similar’, local steps
are more useful—Theorem IV shows that it is the similar-
ity of the Hessians which matters. This is surprising since
the Hessians of {fi} may be identical even if their individ-
ual optima x?i are arbitrarily far away from each other and
the gradient-dissimilarity (A1) is unbounded.

Proof sketch. Consider a simplified SCAFFOLD up-
date with σ = 0 and no sampling (S = N ):

yi = yi − η(∇fi(yi) +∇f(x)−∇fi(x)) .

We would ideally want to perform the update yi = yi −
η∇f(yi) using the full gradient ∇f(yi). We reinterpret
the correction term of SCAFFOLD (c − ci) as perform-
ing the following first order correction to the local gradient
∇fi(yi) to make it closer to the full gradient∇f(yi):

∇fi(yi)−∇fi(x)︸ ︷︷ ︸
≈∇2fi(x)(yi−x)

+ ∇f(x)︸ ︷︷ ︸
≈∇f(yi)+∇2f(x)(x−yi)

≈ ∇f(yi) + (∇2fi(x)−∇2f(x))(yi − x)

≈ ∇f(yi) + δ(yi − x)

Thus the SCAFFOLD update approximates the ideal up-
date up to an error δ. This intuition is proved formally for
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Figure 3. SGD (dashed black), FedAvg (above), and SCAFFOLD
(below) on simulated data. FedAvg gets worse as local steps in-
creases with K = 10 (red) worse than K = 2 (orange). It also
gets slower as gradient-dissimilarity (G) increases (to the right).
SCAFFOLD significantly improves with more local steps, with
K = 10 (blue) faster than K = 2 (light blue) and SGD. Its per-
formance is identical as we vary heterogeneity (G).

quadratic functions in Appendix F. Generalizing these re-
sults to other functions is a challenging open problem.

7. Experiments
We run experiments on both simulated and real datasets
to confirm our theory. Our main findings are i) SCAF-
FOLD consistently outperforms SGD and FEDAVG across
all parameter regimes, and ii) the benefit (or harm) of local
steps depends on both the algorithm and the similarity of
the clients data.

7.1. Setup

Our simulated experiments uses N = 2 quadratic func-
tions based on our lower-bounds in Theorem II. We use
full-batch gradients (σ = 0) and no client sampling. Our
real world experiments run logistic regression (convex) and
2 layer fully connected network (non-convex) on the EM-
NIST (Cohen et al., 2017). We divide this dataset among
N = 100 clients as follows: for s% similar data we allocate
to each client s% i.i.d. data and the remaining (100− s)%
by sorting according to label (cf. Hsu et al. (2019)).

We consider four algorithms: SGD, FEDAVG SCAF-
FOLD and FEDPROX with SGD as the local solver (Li
et al., 2018). On each client SGD uses the full local data
to compute a single update, whereas the other algorithms
take 5 steps per epoch (batch size is 0.2 of local data). We
always use global step-size ηg = 1 and tune the local step-
size ηl individually for each algorithm. SCAFFOLD uses
option II (no extra gradient computations) and FEDPROX
has fixed regularization = 1 to keep comparison fair. Ad-
ditional tuning of the regularization parameter may some-
times yield improved empirical performance.

7.2. Simulated results

The results are summarized in Fig. 3. Our simulated data
has Hessian difference δ = 1 (A2) and β = 1. We vary the
gradient heterogeneity (A1) asG ∈ [1, 10, 100]. For all val-
ued of G, FEDAVG gets slower as we increase the number
of local steps. This is explained by the fact that client-drift
increases as we increase the number of local steps, hinder-
ing progress. Further, as we increaseG, FEDAVG continues
to slow down exactly as dictated by Thms. I and II. Note
that when heterogeneity is small (G = β = 1), FEDAVG
can be competitive with SGD.

SCAFFOLD is consistently faster than SGD, with K = 2
being twice as fast and K = 10 about 5 times faster. Fur-
ther, its convergence is completely unaffected by G, con-
firming our theory in Thm. III. The former observation that
we do not see linear improvement with K is explained by
Thm. IV since we have δ > 0. This sub linear improvement
is still significantly faster than both SGD and FEDAVG.

7.3. EMNIST results

We run extensive experiments on the EMNIST dataset to
measure the interplay between the algorithm, number of
epochs (local updates), number of participating clients, and
the client similarity. Table 3 measures the benefit (or harm)
of using more local steps, Table 4 studies the resilience to
client sampling, and Table 5 reports preliminary results on
neural networks. We are mainly concerned with minimiz-
ing the number of communication rounds. We observe that

SCAFFOLD is consistently the best. Across all range
of values tried, we observe that SCAFFOLD outperforms
SGD, FEDAVG, and FEDPROX. The latter FEDPROX is
always slower than the other local update methods, though
in some cases it outperforms SGD. Note that it is possible
to improve FEDPROX by carefully tuning the regularization
parameter (Li et al., 2018). FEDAVG is always slower than
SCAFFOLD and faster than FEDPROX.

SCAFFOLD > SGD > FedAvg for heterogeneous
clients. When similarity is 0%, FEDAVG gets slower with
increasing local steps. If we take more than 5 epochs, its
performance is worse than SGD’s. SCAFFOLD initially
worsens as we increase the number of epochs but then flat-
tens. However, its performance is always better than that of
SGD, confirming that it can handle heterogeneous data.

SCAFFOLD and FedAvg get faster with more similar-
ity, but not SGD. As similarity of the clients increases, the
performance of SGD remains relatively constant. On the
other hand, SCAFFOLD and FEDAVG get significantly
faster as similarity increases. Further, local steps become
much more useful, showing monotonic improvement with
the increase in number of epochs. This is because with
increasing the i.i.d.ness of the data, both the gradient and
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Table 3. Communication rounds to reach 0.5 test accuracy for logistic regression on EMNIST as we vary number of epochs. 1k+
indicates 0.5 accuracy was not reached even after 1k rounds, and similarly an arrowhead indicates that the barplot extends beyond the
table. 1 epoch for local update methods corresponds to 5 local steps (0.2 batch size), and 20% of clients are sampled each round. We
fix µ = 1 for FEDPROX and use variant (ii) for SCAFFOLD to ensure all methods are comparable. Across all parameters (epochs and
similarity), SCAFFOLD is the fastest method. When similarity is 0 (sorted data), FEDAVG consistently gets worse as we increase the
number of epochs, quickly becoming slower than SGD. SCAFFOLD initially gets worse and later stabilizes, but is always at least as
fast as SGD. As similarity increases (i.e. data is more shuffled), both FEDAVG and SCAFFOLD significantly outperform SGD though
SCAFFOLD is still better than FEDAVG. Further, with higher similarity, both methods benefit from increasing number of epochs.

Epochs 0% similarity (sorted) 10% similarity 100% similarity (i.i.d.)
Num. of rounds Speedup Num. of rounds Speedup Num. of rounds Speedup

SGD 1 317 (1×) 365 (1×) 416 (1×)
SCAFFOLD1 77 (4.1×) 62 (5.9×) 60 (6.9×)

5 152 (2.1×) 20 (18.2×) 10 (41.6×)
10 286 (1.1×) 16 (22.8×) 7 (59.4×)
20 266 (1.2×) 11 (33.2×) 4 (104×)

FedAvg 1 258 (1.2×) 74 (4.9×) 83 (5×)
5 428 (0.7×) 34 (10.7×) 10 (41.6×)
10 711 (0.4×) 25 (14.6×) 6 (69.3×)
20 1k+ (< 0.3×) 18 (20.3×) 4 (104×)

FedProx 1 1k+ (< 0.3×) 979 (0.4×) 459 (0.9×)
5 1k+ (< 0.3×) 794 (0.5×) 351 (1.2×)
10 1k+ (< 0.3×) 894 (0.4×) 308 (1.4×)
20 1k+ (< 0.3×) 916 (0.4×) 351 (1.2×)

Table 4. Communication rounds to reach 0.45 test accuracy for
logistic regression on EMNIST as we vary the number of sam-
pled clients. Number of epochs is kept fixed to 5. SCAFFOLD is
consistently faster than FEDAVG. As we decrease the number of
clients sampled in each round, the increase in number of rounds
is sub-linear. This slow-down is better for more similar clients.

Clients 0% similarity 10% similarity

SCAFFOLD 20% 143 (1.0×) 9 (1.0×)
5% 290 (2.0×) 13 (1.4×)
1% 790 (5.5×) 28 (3.1×)

FEDAVG 20% 179 (1.0×) 12 (1.0×)
5% 334 (1.9×) 17 (1.4×)
1% 1k+ (5.6+×) 35 (2.9×)

Hessian dissimilarity decrease.

SCAFFOLD is resilient to client sampling. As we de-
crease the fraction of clients sampled, SCAFFOLD ,and
FEDAVG only show a sub-linear slow-down. They are
more resilient to sampling in the case of higher similarity.

SCAFFOLD outperforms FedAvg on non-convex exper-
iments. We see that SCAFFOLD is better than FEDAVG
in terms of final test accuracy reached, though interestingly
FEDAVG seems better than SGD even when similarity is 0.

Table 5. Best test accuracy after 1k rounds with 2-layer fully con-
nected neural network (non-convex) on EMNIST trained with
5 epochs per round (25 steps) for the local methods, and 20%
of clients sampled each round. SCAFFOLD has the best ac-
curacy and SGD has the least. SCAFFOLD again outperforms
other methods. SGD is unaffected by similarity, whereas the local
methods improve with client similarity.

0% similarity 10% similarity

SGD 0.766 0.764
FEDAVG 0.787 0.828
SCAFFOLD 0.801 0.842

However, much more extensive experiments (beyond cur-
rent scope) are needed before drawing conclusions.

8. Conclusion
Our work studied the impact of heterogeneity on the per-
formance of optimization methods for federated learning.
Our careful theoretical analysis showed that FEDAVG can
be severely hampered by gradient dissimilarity, and can be
even slower than SGD. We then proposed a new stochastic
algorithm (SCAFFOLD) which overcomes gradient dis-
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similarity using control variates. We demonstrated the ef-
fectiveness of SCAFFOLD via strong convergence guar-
antees and empirical evaluations. Further, we showed that
while SCAFFOLD is always at least as fast as SGD, it can
be much faster depending on the Hessian dissimilarity in
our data. Thus, different algorithms can take advantage of
(and are limited by) different notions of dissimilarity. We
believe that characterizing and isolating various dissimilar-
ities present in real world data can lead to further new algo-
rithms and significant impact on distributed, federated, and
decentralized learning.
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