
Supplementary Material for “Learning and Evaluating Contextual Embedding
of Source Code”

Aditya Kanade * 1 2 Petros Maniatis * 2 Gogul Balakrishnan 2 Kensen Shi 2

A. Open-Sourced Artifacts
We release data and some source-code utilities at
https://github.com/google-research/
google-research/tree/master/cubert. The
repository contains the following:

GitHub Manifest A list of all the file versions we included
into our pre-training corpus, after removing files simi-
lar to the fine-tuning corpus1, and after deduplication.
The manifest can be used to retrieve the file contents
from GitHub or Google’s BigQuery. This dataset was
retrieved from Google’s BigQuery on June 21, 2020.

Vocabulary Our subword vocabulary, computed from the
pre-training corpus.

Pre-trained Models Pre-trained models on the pre-
training corpus, after 1 and 2 epochs, for examples
of length 512, and the BERT Large architecture.

Task Datasets Datasets containing training, validation, and
testing examples for each of the 6 tasks. For the clas-
sification tasks, we provide original source code and
classification labels. For the localization and repair
task, we provide subtokenized code, and masks speci-
fying the targets.

Fine-tuned Models Fine-tuned models for the 6 tasks.
Fine-tuning was done on the 1-epoch pre-trained model.
For each classification task, we provide the checkpoint
with highest validation accuracy; for the localization
and repair task, we provide the checkpoint with highest
localization and repair accuracy. These are the check-
points we used to evaluate on our test datasets, and to
compute the numbers in the main paper.

*Equal contribution 1Indian Institute of Science, Bangalore,
India 2Google Brain, Mountain View, USA. Correspondence to:
Aditya Kanade <kanade@iisc.ac.in>, Petros Maniatis <mani-
atis@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1https://github.com/
google-research-datasets/eth_py150_open

Code-encoding Library We provide code for tokenizing
Python code, and for producing inputs to CuBERT’s
pre-training and fine-tuning models.

Localization-and-repair Fine-tuning Model We provide
a library for constructing the localization-and-repair
model, on top of CuBERT’s encoder layers. For the
classification tasks, the model is identical to that of
BERT’s classification fine-tuning model.

Please see the README for details, file encoding and
schema, and terms of use.

B. Data Preparation for Fine-Tuning Tasks
B.1. Label Frequencies

All four of our binary-classification fine-tuning tasks had
an equal number of buggy and bug-free examples. The
Exception task, which is a multi-class classification task,
had a different number of examples per class (i.e., exception
types). For the Exception task, we show the breakdown of
example counts per label for our fine-tuning dataset splits in
Table 1.

B.2. Fine-Tuning Task Datasets

In this section, we describe in detail how we produced our
fine-tuning datasets (Section 3.4 of the main paper).

A common primitive in all our data generation is splitting
a Python module into functions. We do this by parsing
the Python file and identifying function definitions in the
Abstract Syntax Tree that have no other function definition
between themselves and the root of the tree. The resulting
functions include functions defined at module scope, but
also methods of classes and subclasses. Not included are
functions defined within other function and method bodies,
or methods of classes that are, themselves, defined within
other function or method bodies.

We do not filter functions by length, although task-specific
data generation may filter out some functions (see below).
When generating examples for a fixed-length pre-training or
fine-tuning model, we prune all examples to the maximum
target sequence length (in this paper we consider 128, 256,

https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research-datasets/eth_py150_open
https://github.com/google-research-datasets/eth_py150_open


Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

Exception Type Test Validation Train
100% 66% 33%

ASSERTION_ERROR 155 29 323 189 86
ATTRIBUTE_ERROR 1,372 274 2,444 1,599 834
DOES_NOT_EXIST 7 2 3 3 2
HTTP_ERROR 55 9 104 78 38
IMPORT_ERROR 690 170 1,180 750 363
INDEX_ERROR 586 139 1,035 684 346
IO_ERROR 721 136 1,318 881 427
KEY_ERROR 1,926 362 3,384 2,272 1,112
KEYBOARD_INTERRUPT 232 58 509 336 166
NAME_ERROR 78 19 166 117 60
NOT_IMPLEMENTED_ERROR 119 24 206 127 72
OBJECT_DOES_NOT_EXIST 95 16 197 142 71
OS_ERROR 779 131 1,396 901 459
RUNTIME_ERROR 107 34 247 159 80
STOP_ITERATION 270 61 432 284 131
SYSTEM_EXIT 105 16 200 120 52
TYPE_ERROR 809 156 1,564 1,038 531
UNICODE_DECODE_ERROR 134 21 196 135 63
VALIDATION_ERROR 92 16 159 96 39
VALUE_ERROR 2,016 415 3,417 2,232 1,117

Table 1. Example counts per class for the Exception Type task, broken down into the dataset splits. We show separately the 100% train
dataset, as well as its 33% and 66% subsamples used in the ablations.

512, and 1,024 subtokenized sequence lengths). Note that
if a synthetically generated buggy/bug-free example pair
differs only at a location beyond the target length (say on
the 2,000-th subtoken), we still retain both examples. For
instance, for the Variable-Misuse Localization and Repair
task, we retain both buggy and bug-free examples, even if
the error and/or repair locations lie beyond the end of the
maximum target length. During evaluation, if the error or
repair locations fall beyond the length limit of the example,
we count the example as a model failure.

B.2.1. REPRODUCIBLE DATA GENERATION

We make pseudorandom choices at various stages in fine-
tuning data generation. It was important to design a pseu-
dorandomness mechanism that gave (a) reproducible data
generation, (b) non-deterministic choices drawn from the
uniform distribution, and (c) order independence. Order
independence is important because our data generation is
done in a distributed fashion (using Apache Beam), so dif-
ferent pseudorandom number generator state machines are
used by each distributed worker.

Pseudorandomness is computed based on an experiment-
wide seed, but is independent of the order in which exam-
ples are generated. Specifically, to make a pseudorandom
choice about a function, we hash (using MD5) the seed and
the function data (its source code and metadata about its
provenance), and use the resulting hash as a uniform pseudo-

random value from the function, for whatever needs the data
generator has (e.g., in choosing one of multiple choices). In
that way, the same function will always result in the same
choices given a seed, regardless of the order in which each
function is processed, thereby ensuring reproducible dataset
generation.

To select among multiple choices, we hash the function’s
pseudorandom value along with all choices (sorted in a
canonical order) and use the digest to compute an index
within the list of choices. Note that given two choices
over different candidates but for the same function, inde-
pendent decisions will be drawn. We also use such order-
independent pseudorandomness when subsampling datasets
(e.g., to generate the validation datasets). In those cases, we
hash a sample with the seed, as above, and turn the resulting
digest into a pseudorandom number in [0, 1], which can be
used to decide given a target sampling rate.

B.2.2. VARIABLE-MISUSE CLASSIFICATION

A variable use is any mention of a variable in a load scope.
This includes a variable that appears in the right-hand side of
an assignment, or a field dereference. We regard as defined
all variables mentioned either in the formal arguments of a
function definition, or on the left-hand side of an assignment.
We do not include in our defined variables those declared in
module scope (i.e., globals).



Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

Commutative Non-Commutative
Arithmetic +, * -, /, %

Comparison ==, !=, is, is not <, <=, >, >=
Membership in, not in

Boolean and, or

Table 2. Binary operators.

To decide whether to generate examples from a function, we
parse it, and collect all variable-use locations, and all defined
variables, as described above. We discard the function if it
has no variable uses, or if it defines fewer than two variables;
this is necessary, since if there is only one variable defined,
the model has no choice to make but the default one. We also
discard the function if it has more than 50 defined variables;
such functions are few, and tend to be auto-generated. For
any function that we do not discard, i.e., an eligible function,
we generate a buggy and a bug-free example, as described
next.

To generate a buggy example from an eligible function, we
choose one variable use pseudorandomly (see above how
multiple-choice decisions are done), and replace its current
occupant with a different pseudorandomly-chosen variable
defined in the function (with a separate multiple-choice
decision).

Note that in the work by Vasic et al. (2019), a buggy and
bug-free example pair was generated for every variable use
in an eligible function. In the work by Hellendoorn et al.
(2020), a buggy and bug-free example pair was generated for
up to three variable uses in an eligible function, i.e., some
functions with one use would result in one example pair,
whereas functions with many variable uses would result in
three example pairs. In contrast, our work produces exactly
one example pair for every eligible function. Eligibility was
defined identically in all three projects.

B.2.3. WRONG BINARY OPERATOR

This task considers both commutative and non-commutative
binary operators (unlike the Swapped-Argument Classifica-
tion task). See Table 2 for the full list, and note that we have
excluded relatively infrequent operators, e.g., the Python
integer division operator //.

If a function has no binary operators, it is discarded. Other-
wise, it is used to generate a bug-free example, and a single
buggy example as follows: one of the operators is chosen
pseudorandomly (as described above), and a different oper-
ator chosen to replace it from the same row of Table 2. So,
for instance, a buggy example would only swap == with
is, but not with not in, which would not type-check if
we performed static type inference on Python.

We take appropriate care to ensure the code parses after a

bug is introduced. For instance, if we swap the operator in
the expression 1==2 with is, we ensure that there is space
between the tokens (i.e., 1 is 2 rather than the incorrect
1is2), even though the space was not needed before.

B.2.4. SWAPPED OPERAND

Since this task targets swapping the arguments of binary
operators, we only consider non-commutative operators
from Table 2.

Functions without eligible operators are discarded, and the
choice of the operator to mutate in a function, as well as
the choice of buggy operator to use, are done as above, but
limiting choices only to non-commutative operators.

To avoid complications due to format changes, we only
consider expressions that fit in a single line (in contrast to
the Wrong Binary Operator Classification task). We also do
not consider expressions that look the same after swapping
(e.g., a - a).

B.2.5. FUNCTION-DOCSTRING MISMATCH

In Python, a function docstring is a string literal that di-
rectly follows the function signature and precedes the main
function body. Whereas in other common programming
languages, the function documentation is a comment, in
Python it is an actual, semantically meaningful string literal.

We discard functions that have no docstring from this
dataset, or functions that have an empty docstring. We
split the rest into the function definition without the doc-
string, and the docstring summary (i.e., the first line of text
from its docstring), discarding the rest of the docstring.

We create bug-free examples by pairing a function with its
own docstring summary.

To create buggy examples, we pair every function with an-
other function’s docstring summary, according to a global
pseudorandom permutation of all functions: for all i, we
combine the i-th function (without its docstring) with the
Pi-th function’s docstring summary, where P is a pseudoran-
dom permutation, under a given seed. We discard pairings
in which i == P [i], but for the seeds we chose, no such
pathological permuted pairings occurred.

B.2.6. EXCEPTION TYPE

Note that, unlike all other tasks, this task has no notion of
buggy or bug-free examples.

We discard functions that do not have any except clauses
in them.

For the rest, we collect all locations holding exception types
within except clauses, and choose one of those locations
to query the model for classification. Note that a single



Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

except clause may hold a comma-separated list of ex-
ception types, and the same type may appear in multiple
locations within a function. Once a location is chosen, we
replace it with a special HOLE token, and create a clas-
sification example that pairs the function (with the masked
exception location) with the true label (the removed excep-
tion type).

The count of examples per exception type can be found in
Table 1.

B.2.7. VARIABLE MISUSE LOCALIZATION AND REPAIR

The dataset for this task is identical to that for the Variable-
Misuse Classification task (Section B.2.2). However, unlike
the classification task, examples contain more features rele-
vant to localization and repair. Specifically, in addition to
the token sequence describing the program, we also extract
a number of boolean input masks:

• A candidates mask, which marks as True all tokens
holding a variable, which can therefore be either the
location of a bug, or the location of a repair. The first
position is always a candidate, since it may be used to
indicate a bug-free program.

• A targets mask, which marks as True all tokens holding
the correct variable, for buggy examples. Note that the
correct variable may appear in multiple locations in a
function, therefore this mask may have multiple True
positions. Bug-free examples have an all-False targets
mask.

• An error-location mask, which marks as True the loca-
tion where the bug occurs (for buggy examples) or the
first location (for bug-free examples).

All the masks mark as True some of the locations that hold
variables. Because many variables are subtokenized into
multiple tokens, if a variable is to be marked as True in the
corresponding mask, we only mark as True its first subtoken,
keeping trailing subtokens as False.

C. Attention Visualizations
In this section, we provide sample code snippets used to test
the different classification tasks. Further, Figures 1–5 show
visualizations of the attention matrix of the last layer of the
fine-tuned CuBERT model (Coenen et al., 2019) for the code
snippets. In the visualization, the Y-axis shows the query
tokens and X-axis shows the tokens being attended to. The
attention weight between a pair of tokens is the maximum of
the weights assigned by the multi-head attention mechanism.
The color changes from dark to light as weight changes from
0 to 1.

References
Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas,

F., and Wattenberg, M. Visualizing and Measuring the
Geometry of BERT. ArXiv, abs/1906.02715, 2019.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and
Bieber, D. Global relational models of source code. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=B1lnbRNtwr.

Vasic, M., Kanade, A., Maniatis, P., Bieber, D., and Singh,
R. Neural program repair by jointly learning to localize
and repair. CoRR, abs/1904.01720, 2019. URL http:
//arxiv.org/abs/1904.01720.

https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
http://arxiv.org/abs/1904.01720
http://arxiv.org/abs/1904.01720


Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

def on_resize(self, event):
event.apply_zoom()

Figure 1. Variable Misuse Example. In the code snippet, ‘event.apply zoom’ should actually be ‘self.apply zoom’. The
CuBERT variable-misuse model correctly predicts that the code has an error. As seen from the attention map, the query tokens are
attending to the second occurrence of the ‘event’ token in the snippet, which corresponds to the incorrect variable usage.



Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

def__gt__(self,other):
if isinstance(other,int)and other==0:
return self.get_value()>0

return other is not self

Figure 2. Wrong Operator Example. In this code snippet, ‘other is not self’ should actually be ‘other < self’. The
CuBERT wrong-binary-operator model correctly predicts that the code snippet has an error. As seen from the attention map, the query
tokens are all attending to the incorrect operator ‘is’.



Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

def__contains__(cls,model):
return cls._registry in model

Figure 3. Swapped Operand Example. In this code snippet, the return statement should be ‘model in cls. registry’. The
swapped-operand model correctly predicts that the code snippet has an error. The query tokens are paying substantial attention to ‘in’
and the second occurrence of ‘model’ in the snippet.



Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

Docstring: ’Get form initial data.’
Function:
def__add__(self,cov):
return SumOfKernel(self,cov)

Figure 4. Function Docstring Example. The CuBERT function-docstring model correctly predicts that the docstring is wrong for this code
snippet. Note that most of the query tokens are attending to the tokens in the docstring.



Supplementary Material for “Learning and Evaluating Contextual Embedding of Source Code”

try:
subprocess.call(hook_value)
return jsonify(success=True), 200

except __HOLE__ as e:
return jsonify(success=False,
error=str(e)), 400

Figure 5. Exception Classification Example. For this code snippet, the CuBERT exception-classification model correctly predicts
‘ HOLE ’ as ‘OSError’. The model’s attention matrix also shows that ‘ HOLE ’ is attending to ‘subprocess’, which is indicative
of an OS-related error.


