On the Power of Compressed Sensing with Generative Models

A. Trigonometric identity

Fact A.1.
sin(B+ § —6)  sin(—0) _ sin(8 — 6 + «)
sin(a/2) sin(a) sin(a/2)
Proof.
sin(B+ 5 —0)  sin(8-0)
sin(a/2) sin(a)
_ sin(f + § — 0) sin(a) — sin(8 — 0) sin(a/2)
sin(«) sin(a/2)
1 «
~ 2sin(a)sin(2) (COS(B —0- 5)
—cos(f — 0+ 37&)

—cos(f — 0 — %) +cos(— 0+ %))

B cos(B—0+ %) fcos(ﬂfGJr%a)
2sin(a) sin(«/2)
sin(8 — 0 + «) sin(«)
sin(a) sin(a/2)
sin(f — 0 + «)
sin(a/2)

where we use the identity that sin(A) sin(B) = 1[cos(4 —

B) — cos(A + B)] O

B. Low Width Neural Network for Sparse
Vectors

B.1. Theorems
Lemma B.1. Suppose a < n% then with high probability,

Sforall S, S" C [n] such that |S| = |S'| =k,

lws — wsr ||, < af

Proof. Consider a fixed set S C [n] such that |S| = k.
Now for any S’ # S such that |S| = k, consider the set
T =5"\5.

Pr[||lws — ws/||2 < ai] < Pr[Vvi € T ws € Wil

= H Pr[ws S Wi]
€T’
= a|T/‘/4

So, then the probability that there exists a set S’ such that

- . )
wy is close is given by:

Pr[35" : |lwg — wg |, < aT] <

Z a|s’\s|/4

S'C[n]
|S"|=k,s'#S

> ()

where the last inequality follows because o < 1/nk. Now,
applying a union bound over all choices of .S, we get

Pr[35,5" : [lws —ws |, < a] < (Z) X (nka%)
k

<1/n

O

Lemma B.2. Suppose o < #, then given Sy, Ss C [n],

such that |S1| = |S2| = k and |S1 N S| =1,
W81 n W52 =0

with probability 1 — 1/n%"

Proof. Let us denote R = ||wg, — ws,||,. We know from

Lemma B.1 that with high probability ||ws, —ws,||, >
1/4
at/t,

Since tan(a) =~ a when « is small, we will substitute « in
place of tan(c).

Let V¢ denote a matrix whose rows consist of {v] | i € S}.
Observe that Wg, N W, = ) is equivalent to stating that

fz e sk HvslleOO <0¢/\HV§2$||OO <« 4)

Consider an e-net N over S* where ¢ = a. If the above
guarantee holds with 2cc when restricted to points in NV,
then for any element z € Sk, if p € N is the element
closest to ;, we have a b € {1, 2} for which we know that
||V§bp||OO > 2a. Hence

Va2l = Vapl. = [IVé, (@ =P
>2a —¢
>«

o0

So, we prove that
freN: Vx| <an|Viz| <o &)
We split this into two cases.

Case 1: Points close to either W, or Wg,
Consider the set T = {z € N | [z —wg, |, <
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R/2}. We can partition this into sets Ti(l) ={x e N |

lz —ws,|l, € [27 %, 2%]} for i € [1,log(R/e)], and
1

T ={w € N |z —ws,, < e}.

Observe that for any point z € Tr(l),

Pr {HVS’I(JC —ws,)|| . <an||VE,(z—ws,)|, < a}
= Pr [ |[Vé, (2 = ws,) |, <[V, (e —ws,)]|, <

- Pr [HVéz(x —ws,)|| . < oz]

@ k—1 o )k

le —ws, ;" "z —ws,ll;

Qg1 200
< (= -
< Gy

ok o 2k
= Jk-IRk
Since the Tr(l)‘ < (r/€)*(by a volume argument):

Pr [Elm € Tr(l) :

||V5’~1(x — 1051)||OO <aA ||V5/<2(£E - wSQ)HOO < oz}
ok o2k
= Cager)

So, if we take a union bound over the r = 1,. .., log(R/¢)
values, we get

Pr [ax ALK

mg@_w&mw<aAm@@_w&mw<4
2ka2k—l

< log(R/e)(W)

We can similarly show this for every z € T'(2).

Pr [Elx ceT® .

V4, & —wsi), < oA [V, (@ —ws,)|, <o

Qka2k—l

< 1Og(R/€)(W

)

Case 2: Points close to neither W, nor W, Let T =
{ze N|lz—ws [y > R/2N e —ws, |, > R/2}. We
partition 7" into the sets Tp), 77, . . ..

Consider Ty = {x € N | |z —ws|, > R/2 A
e —ws,ll, = R/2A |lz = ((ws, +ws,)/2)ll, < R}

For any point x € T:
Pr[ [V, (@ = ws,)| . < A [[Vi, (0 = ws,)|, <o
=Pr [HVgl(m —ws,)|. < a}

- Pr [ Ve, (& —ws,) || < a}
_ o k @ yht
Iz —ws, [lo" "l = ws,ly
2c0 20 g
= (f)k(ﬁ)k :
_ 200y

and since |T}| = (R/e€)*, we can conclude

Pr [EIxGTé:

1V, (2 = ws,) . < A [[Vi, (2 = ws,)|, < @

(2a)2k7l
ek Rk—1

Define T, = {z € S |l = ((ws, +ws,)/2)ll, €
[2i71R,2'R]}. Forany z € T},

Pr[ [V, (@ = ws,)| . < A [[Vi, (0 = ws,)||, < o

o «
< ( * )
||x_w51||2 ||x—w52||2
a g, 20
< - -
- (21—1R) (27.—1R)
_ 8o gy

So, taking a union bound over all points in 7}, we have:
Pr [Hx eT;:
mg@_w&mw<aAm@@_w&mm<4

< (%)k(&)Qk—l

€ 2iR
- (80[)2kfl
T (2IR)kFlek

So, bounding over all partitions of 7", we get:
Pri3zeT:

mg@_w&mw<aAmg@_w&mm<4
e (40[)2’94
< Z (20 R)k~lek
=0
(80&)2167[
= Rk—lck
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So, (5) holds with probability:

Pr[EIJ:EN:

V4, 2 = ws.)|, < oA [V, (@ —ws,)l|, <o

Qka2k—l

ok R
ok o 2k—1
< log(R/e)(W)

= log(R/€)2*a3k—1/4

< log(R/e)( )

Since log(R/e) ~ klog(n) and o®F=0/% < - this is
bounded by n% Further, because of the argument which
showed that (5) implies (4), up to a factor 2 scaling of «,
we get that:

Pr [Elx e Sk

[V, (2 = ws,) . < @A [[Vi, (2 = ws,)|, < o

S l/nﬁk
]

Lemma B.3. Suppose o < n—ék,for all sets, S1,S2 C [n],
such that |S1| = |Sa| =k,

Ws, NWg, =10

with probability 1 — 1 /nF

Proof. For any two sets S7 and So such that the S7\ 52 = [,
we know that:

VVS1 n W52 =0

with probability > 1 — a3/* So, for a given set S},
Pr (35 C (1], 18] =k We, N Ws # 0]
k
K\ /n—k
< 3/4
<2 (")
< n2k o34
Further, taking a union bound over all choices of .S, we get

Pr [35) # S5 C [n], 1] = |Sa = k s W, 1 W, # 0]

< (Z) n2k o 3k/4

< kB4

S 1/n3k

Proof. of Theorem 2.2 Lety € R™ be a k-sparse vector and
let S = {i € [n] | y; # 0}. From Lemma B.1 and Lemma
B.3, we know that there exists a point wg such that G(wg)
is non-zero at exactly the points {7 € [n] | y; # 0}.

Consider the polytope on S* defined by W which contains
wg. As illustrated in Figure 1, each F; partitions each Wg
into 2 linear regions. So, there exist 2 polytopes which
within W such that for each polytope, wg is a vertex.
Consider one such polytope P defined by (z, av;+v;) > 0
and (x,v;) <O0.

Let x be the point in P such that (xg,v; + av}) = 0 for
all i € S. Let (xg,v;) = —r; for each i € S and define
= % min;egs ;.

Now, solve for § such that (6, v; + o) = |y;| / ||y||5 7 for
all 7 € S. Observe that for such a ¢:

(x + 0,v;) = (@, v;) + (0,v;)
—ri + (0, v;)
=1 + [[0]ly - [Jvill

<
< -rg/2

So, x + 0 lies within P and G(z + 0); = v,/ |ly||y 7. So,
since G(a - x) = a - G(x), we have:

G(lylly-r-(x+9)) =y



