A. Trigonometric identity

Fact A.1.

$$\frac{\sin(\beta + \frac{\alpha}{2} - \theta)}{\sin(\alpha/2)} - \frac{\sin(\beta - \theta)}{\sin(\alpha)} = \frac{\sin(\beta - \theta + \alpha)}{\sin(\alpha/2)}$$

Proof.

$$\begin{split} &\frac{\sin(\beta + \frac{\alpha}{2} - \theta)}{\sin(\alpha/2)} - \frac{\sin(\beta - \theta)}{\sin(\alpha)} \\ &= \frac{\sin(\beta + \frac{\alpha}{2} - \theta)\sin(\alpha) - \sin(\beta - \theta)\sin(\alpha/2)}{\sin(\alpha)\sin(\alpha/2)} \\ &= \frac{1}{2\sin(\alpha)\sin(\frac{\alpha}{2})} \Big(\cos(\beta - \theta - \frac{\alpha}{2}) \\ &- \cos(\beta - \theta + \frac{3\alpha}{2}) \\ &- \cos(\beta - \theta - \frac{\alpha}{2}) + \cos(\beta - \theta + \frac{\alpha}{2})\Big) \\ &= \frac{\cos(\beta - \theta + \frac{\alpha}{2}) - \cos(\beta - \theta + \frac{3\alpha}{2})}{2\sin(\alpha)\sin(\alpha/2)} \\ &= \frac{\sin(\beta - \theta + \alpha)\sin(\alpha)}{\sin(\alpha)\sin(\alpha/2)} \\ &= \frac{\sin(\beta - \theta + \alpha)}{\sin(\alpha/2)} \end{split}$$

where we use the identity that $\sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$

B. Low Width Neural Network for Sparse Vectors

B.1. Theorems

Lemma B.1. Suppose $\alpha < \frac{1}{n^{8k}}$, then with high probability, for all $S, S' \subseteq [n]$ such that |S| = |S'| = k,

$$||w_S - w_{S'}||_2 \le \alpha^{\frac{1}{4}}$$

Proof. Consider a fixed set $S \subseteq [n]$ such that |S| = k. Now for any $S' \neq S$ such that |S| = k, consider the set $T' = S' \setminus S$.

$$\Pr[\|w_S - w_{S'}\|_2 \le \alpha^{\frac{1}{4}}] \le \Pr[\forall i \in T', w_S \in W_i]$$

$$= \prod_{i \in T'} \Pr[w_S \in W_i]$$

$$= \alpha^{|T'|/4}$$

So, then the probability that there exists a set S' such that

 w_S' is close is given by:

$$\Pr[\exists S' : \|w_S - w_{S'}\|_2 \le \alpha^{\frac{1}{4}}] \le \sum_{\substack{S' \subseteq [n] \\ |S'| = k, S' \ne S}} \alpha^{|S' \setminus S|/4}$$

$$= \sum_{i=1}^k \binom{k}{i} \binom{n-k}{i} \alpha^i$$

$$\le (nk\alpha^{\frac{1}{4}})$$

where the last inequality follows because $\alpha < 1/nk$. Now, applying a union bound over all choices of S, we get

$$\Pr[\exists S, S' : \|w_S - w_{S'}\|_2 \le \alpha] \le \binom{n}{k} \times (nk\alpha^{\frac{1}{4}})$$
$$\le 1/n^k$$

Lemma B.2. Suppose $\alpha < \frac{1}{n^{8k}}$, then given $S_1, S_2 \subseteq [n]$, such that $|S_1| = |S_2| = k$ and $|S_1 \cap S_2| = l$,

$$W_{S_1} \cap W_{S_2} = \emptyset$$

with probability $1 - 1/n^{6k}$

Proof. Let us denote $R = \|w_{S_1} - w_{S_2}\|_2$. We know from Lemma B.1 that with high probability $\|w_{S_1} - w_{S_2}\|_2 \ge \alpha^{1/4}$.

Since $\tan(\alpha) \approx \alpha$ when α is small, we will substitute α in place of $\tan(\alpha)$.

Let V_S' denote a matrix whose rows consist of $\{v_i' \mid i \in S\}$. Observe that $W_{S_1} \cap W_{S_2} = \emptyset$ is equivalent to stating that

Consider an ϵ -net N over \mathbb{S}^k where $\epsilon = \alpha$. If the above guarantee holds with 2α when restricted to points in N, then for any element $x \in \mathbb{S}^k$, if $p \in N$ is the element closest to x, we have a $b \in \{1,2\}$ for which we know that $\|V_{S_b}'p\|_{\infty} \geq 2\alpha$. Hence

$$||V'_{S_b}x||_{\infty} \ge ||V'_{S_b}p||_{\infty} - ||V'_{S_b}(x-p)||_{\infty}$$

$$\ge 2\alpha - \epsilon$$

$$> \alpha$$

So, we prove that

$$\nexists x \in N : ||V'_{S_1}x||_{\infty} < \alpha \wedge ||V'_{S_2}x||_{\infty} < \alpha \qquad (5)$$

We split this into two cases.

Case 1: Points close to either W_{S_1} or W_{S_2} Consider the set $T^{(1)} = \{x \in N \mid ||x - w_{S_1}||_2 \le$

R/2. We can partition this into sets $T_i^{(1)} = \{x \in N \mid \|x - w_{S_1}\|_2 \in [2^{i-1}\epsilon, 2^i\epsilon]\}$ for $i \in [1, \log(R/\epsilon)]$, and $T_0^{(1)} = \{x \in N \mid \|x - w_{S_1}\|_2 < \epsilon\}$.

Observe that for any point $x \in T_r^{(1)}$,

$$\Pr\left[\|V'_{S_{1}}(x - w_{S_{1}})\|_{\infty} < \alpha \wedge \|V'_{S_{2}}(x - w_{S_{2}})\|_{\infty} < \alpha \right]$$

$$= \Pr\left[\|V'_{S_{1}}(x - w_{S_{1}})\|_{\infty} < \alpha | \|V'_{S_{2}}(x - w_{S_{2}})\|_{\infty} < \alpha \right]$$

$$\cdot \Pr\left[\|V'_{S_{2}}(x - w_{S_{2}})\|_{\infty} < \alpha \right]$$

$$\leq \left(\frac{\alpha}{\|x - w_{S_{1}}\|_{2}} \right)^{k-l} \left(\frac{\alpha}{\|x - w_{S_{2}}\|_{2}} \right)^{k}$$

$$\leq \left(\frac{\alpha}{r} \right)^{k-l} \left(\frac{2\alpha}{R} \right)^{k}$$

$$= \frac{2^{k} \alpha^{2k-l}}{r^{k-l} R^{k}}$$

Since the $\left|T_r^{(1)}\right| \leq (r/\epsilon)^k$ (by a volume argument):

$$\Pr\left[\exists x \in T_r^{(1)} : \|V_{S_1}'(x - w_{S_1})\|_{\infty} < \alpha \wedge \|V_{S_2}'(x - w_{S_2})\|_{\infty} < \alpha\right]$$

$$\leq \left(\frac{2^k \alpha^{2k-l}}{\epsilon^k R^{k-l}}\right)$$

So, if we take a union bound over the $r=1,\ldots,\log(R/\epsilon)$ values, we get

$$\Pr\left[\exists x \in T^{(1)}: \left\|V'_{S_1}(x - w_{S_1})\right\|_{\infty} < \alpha \wedge \left\|V'_{S_2}(x - w_{S_2})\right\|_{\infty} < \alpha\right]$$

$$\leq \log(R/\epsilon)\left(\frac{2^k \alpha^{2k-l}}{\epsilon^k R^{k-l}}\right)$$

We can similarly show this for every $x \in T^{(2)}$.

$$\Pr\left[\exists x \in T^{(2)} : \|V'_{S_1}(x - w_{S_1})\|_{\infty} < \alpha \wedge \|V'_{S_2}(x - w_{S_2})\|_{\infty} < \alpha\right]$$

$$\leq \log(R/\epsilon) \left(\frac{2^k \alpha^{2k-l}}{\epsilon^k R^{k-l}}\right)$$

Case 2: Points close to neither W_{S_1} nor W_{S_2} Let $T' = \{x \in N \mid ||x - w_{S_1}||_2 > R/2 \wedge ||x - w_{S_1}||_2 > R/2\}$. We partition T' into the sets T'_0, T'_1, \ldots

Consider
$$T_0' = \{x \in N \mid ||x - w_{S_1}||_2 \ge R/2 \land ||x - w_{S_2}||_2 \ge R/2 \land ||x - ((w_{S_1} + w_{S_2})/2)||_2 \le R\}.$$

For any point $x \in T'_0$:

$$\Pr\left[\left\|V_{S_{1}}'(x-w_{S_{1}})\right\|_{\infty} < \alpha \wedge \left\|V_{S_{2}}'(x-w_{S_{2}})\right\|_{\infty} < \alpha\right]$$

$$= \Pr\left[\left\|V_{S_{1}}'(x-w_{S_{1}})\right\|_{\infty} < \alpha\right]$$

$$\cdot \Pr\left[\left\|V_{S_{2}}'(x-w_{S_{2}})\right\|_{\infty} < \alpha\right]$$

$$= \left(\frac{\alpha}{\|x-w_{S_{1}}\|_{2}}\right)^{k} \left(\frac{\alpha}{\|x-w_{S_{2}}\|_{2}}\right)^{k-l}$$

$$\leq \left(\frac{2\alpha}{R}\right)^{k} \left(\frac{2\alpha}{R}\right)^{k-l}$$

$$= \left(\frac{2\alpha}{R}\right)^{2k-l}$$

and since $|T_0'| = (R/\epsilon)^k$, we can conclude

$$\Pr\left[\exists x \in T_0': \|V_{S_1}'(x - w_{S_1})\|_{\infty} < \alpha \wedge \|V_{S_2}'(x - w_{S_2})\|_{\infty} < \alpha\right]$$

$$\leq \frac{(2\alpha)^{2k-l}}{\epsilon^k R^{k-l}}$$

Define $T_i' = \{x \in \mathbb{S}^k \mid \|x - ((w_{S_1} + w_{S_2})/2)\|_2 \in [2^{i-1}R, 2^iR]\}$. For any $x \in T_i'$,

$$\Pr\left[\left\| V_{S_{1}}'(x - w_{S_{1}}) \right\|_{\infty} < \alpha \wedge \left\| V_{S_{2}}'(x - w_{S_{2}}) \right\|_{\infty} < \alpha \right]$$

$$\leq \left(\frac{\alpha}{\|x - w_{S_{1}}\|_{2}} \right)^{k} \left(\frac{\alpha}{\|x - w_{S_{2}}\|_{2}} \right)^{k}$$

$$\leq \left(\frac{\alpha}{2^{i-1}R} \right)^{k} \left(\frac{2\alpha}{2^{i-1}R} \right)^{k-l}$$

$$= \left(\frac{8\alpha}{2^{i}R} \right)^{2k-l}$$

So, taking a union bound over all points in T'_i , we have:

$$\Pr\left[\exists x \in T_i': \|V_{S_1}'(x - w_{S_1})\|_{\infty} < \alpha \wedge \|V_{S_2}'(x - w_{S_2})\|_{\infty} < \alpha\right]$$

$$\leq \left(\frac{2^i R}{\epsilon}\right)^k \left(\frac{4\alpha}{2^i R}\right)^{2k - l}$$

$$= \frac{(8\alpha)^{2k - l}}{(2^i R)^{k - l} \epsilon^k}$$

So, bounding over all partitions of T', we get:

$$\Pr\left[\exists x \in T' : \left\|V'_{S_1}(x - w_{S_1})\right\|_{\infty} < \alpha \wedge \left\|V'_{S_2}(x - w_{S_2})\right\|_{\infty} < \alpha\right]$$

$$\leq \sum_{i=0}^{\infty} \frac{(4\alpha)^{2k-l}}{(2^i R)^{k-l} \epsilon^k}$$

$$\leq \frac{(8\alpha)^{2k-l}}{R^{k-l} \epsilon^k}$$

So, (5) holds with probability:

$$\Pr\left[\exists x \in N : \|V'_{S_1}(x - w_{S_1})\|_{\infty} < \alpha \wedge \|V'_{S_2}(x - w_{S_2})\|_{\infty} < \alpha\right]$$

$$\leq \log(R/\epsilon) \left(\frac{2^k \alpha^{2k-l}}{\epsilon^k R^{k-l}}\right)$$

$$\leq \log(R/\epsilon) \left(\frac{2^k \alpha^{2k-l}}{\alpha^k \alpha^{k-l/4}}\right)$$

$$= \log(R/\epsilon) 2^k \alpha^{3(k-l)/4}$$

Since $\log(R/\epsilon) \approx k \log(n)$ and $\alpha^{3(k-l)/4} < \frac{1}{n^{6k}}$, this is bounded by $\frac{1}{n^{6k}}$. Further, because of the argument which showed that (5) implies (4), up to a factor 2 scaling of α , we get that:

$$\Pr\left[\exists x \in \mathbb{S}^k : \|V'_{S_1}(x - w_{S_1})\|_{\infty} < \alpha \wedge \|V'_{S_2}(x - w_{S_2})\|_{\infty} < \alpha\right]$$

$$\leq 1/n^{6k}$$

Lemma B.3. Suppose $\alpha < \frac{1}{n^{8k}}$, for all sets, $S_1, S_2 \subseteq [n]$, such that $|S_1| = |S_2| = k$,

$$W_{S_1} \cap W_{S_2} = \emptyset$$

with probability $1 - 1/n^{3k}$

Proof. For any two sets S_1 and S_2 such that the $S_1 \setminus S_2 = l$, we know that:

$$W_{S_1} \cap W_{S_2} = \emptyset$$

with probability $\geq 1 - \alpha^{3/4}$ So, for a given set S_1 ,

$$\Pr\left[\exists S \subseteq [n], |S| = k : W_{S_1} \cap W_S \neq \emptyset\right]$$

$$\leq \sum_{i=1}^k \binom{k}{i} \binom{n-k}{i} \alpha^{3/4}$$

$$\leq n^{2k} \alpha^{3/4}$$

Further, taking a union bound over all choices of S, we get

$$\Pr\left[\exists S_1 \neq S_2 \subseteq [n], |S_1| = |S_2| = k : W_{S_1} \cap W_{S_2} \neq \emptyset\right]$$

$$\leq \binom{n}{k} n^{2k} \alpha^{3k/4}$$

$$\leq n^{3k} \alpha^{3/4}$$

$$\leq 1/n^{3k}$$

Proof. of Theorem 2.2 Let $y \in \mathbb{R}^n$ be a k-sparse vector and let $S = \{i \in [n] \mid y_i \neq 0\}$. From Lemma B.1 and Lemma B.3, we know that there exists a point w_S such that $G(w_S)$ is non-zero at exactly the points $\{i \in [n] \mid y_i \neq 0\}$.

Consider the polytope on \mathbb{S}^k defined by W_S which contains w_S . As illustrated in Figure 1, each F_i partitions each W_S into 2 linear regions. So, there exist 2^k polytopes which within W_S such that for each polytope, w_S is a vertex. Consider one such polytope P defined by $\langle x, \alpha v_i' + v_i \rangle > 0$ and $\langle x, v_i \rangle \leq 0$.

Let x_0 be the point in P such that $\langle x_0, v_i + \alpha v_i' \rangle = 0$ for all $i \in S$. Let $\langle x_0, v_i \rangle = -r_i$ for each $i \in S$ and define $r = \frac{1}{2} \min_{i \in S} r_i$.

Now, solve for δ such that $\langle \delta, v_i + \alpha v_i' \rangle = |y_i| / ||y||_2 r$ for all $i \in S$. Observe that for such a δ :

$$\begin{split} \langle x + \delta, v_i \rangle &= \langle x, v_i \rangle + \langle \delta, v_i \rangle \\ &= -r_i + \langle \delta, v_i \rangle \\ &\leq -r_i + \|\delta\|_2 \cdot \|v_i\|_2 \\ &\leq -r_i/2 \end{split}$$

So, $x + \delta$ lies within P and $G(x + \delta)_i = y_i / ||y||_2 r$. So, since $G(a \cdot x) = a \cdot G(x)$, we have:

$$G(\|y\|_2 \cdot r \cdot (x+\delta)) = y$$