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A. Trigonometric identity
Fact A.1.
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where we use the identity that sin(A) sin(B) = 1
2 [cos(A−

B)− cos(A+B)]

B. Low Width Neural Network for Sparse
Vectors

B.1. Theorems

Lemma B.1. Suppose α < 1
n8k , then with high probability,

for all S, S′ ⊆ [n] such that |S| = |S′| = k,

‖wS − wS′‖2 ≤ α
1
4

Proof. Consider a fixed set S ⊆ [n] such that |S| = k.
Now for any S′ �= S such that |S| = k, consider the set
T ′ = S′ \ S.

Pr[‖wS − wS′‖2 ≤ α
1
4 ] ≤ Pr[∀i ∈ T ′, wS ∈Wi]

=
∏
i∈T ′

Pr[wS ∈Wi]

= α|T ′|/4

So, then the probability that there exists a set S′ such that

w′S is close is given by:

Pr[∃S′ : ‖wS − wS′‖2 ≤ α
1
4 ] ≤

∑
S′⊆[n]

|S′|=k,S′ �=S
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where the last inequality follows because α < 1/nk. Now,
applying a union bound over all choices of S, we get

Pr[∃S, S′ : ‖wS − wS′‖2 ≤ α] ≤
(
n

k

)
× (nkα

1
4 )

≤ 1/nk

Lemma B.2. Suppose α < 1
n8k , then given S1, S2 ⊆ [n],

such that |S1| = |S2| = k and |S1 ∩ S2| = l,

WS1
∩WS2

= ∅
with probability 1− 1/n6k

Proof. Let us denote R = ‖wS1
− wS2

‖2. We know from
Lemma B.1 that with high probability ‖wS1

− wS2
‖2 ≥

α1/4.

Since tan(α) ≈ α when α is small, we will substitute α in
place of tan(α).

Let V ′S denote a matrix whose rows consist of {v′i | i ∈ S}.
Observe that WS1

∩WS2
= ∅ is equivalent to stating that

�x ∈ Sk :
∥∥V ′S1

x
∥∥
∞ < α ∧ ∥∥V ′S2

x
∥∥
∞ < α (4)

Consider an ε-net N over Sk where ε = α. If the above
guarantee holds with 2α when restricted to points in N ,
then for any element x ∈ Sk, if p ∈ N is the element
closest to x, we have a b ∈ {1, 2} for which we know that∥∥V ′Sb

p
∥∥
∞ ≥ 2α. Hence
∥∥V ′Sb

x
∥∥
∞ ≥

∥∥V ′Sb
p
∥∥
∞ −

∥∥V ′Sb
(x− p)

∥∥
∞

≥ 2α− ε

≥ α

So, we prove that

�x ∈ N :
∥∥V ′S1

x
∥∥
∞ < α ∧ ∥∥V ′S2

x
∥∥
∞ < α (5)

We split this into two cases.

Case 1: Points close to either WS1
or WS2

Consider the set T (1) = {x ∈ N | ‖x− wS1‖2 ≤
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R/2}. We can partition this into sets T
(1)
i = {x ∈ N |

‖x− wS1
‖2 ∈ [2i−1ε, 2iε]} for i ∈ [1, log(R/ε)], and

T
(1)
0 = {x ∈ N | ‖x− wS1‖2 < ε}.

Observe that for any point x ∈ T
(1)
r ,
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(x− wS2
)
∥∥
∞ < α

]

= Pr
[ ∥∥V ′S1

(x− wS1
)
∥∥
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∥∥
∞ < α

]

≤ (
α

‖x− wS1
‖2
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α
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α

r
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R
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Since the
∣∣∣T (1)

r

∣∣∣ ≤ (r/ε)k(by a volume argument):

Pr
[
∃x ∈ T (1)
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∥∥
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≤ (
2kα2k−l
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)

So, if we take a union bound over the r = 1, . . . , log(R/ε)
values, we get

Pr
[
∃x ∈ T (1) :
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)
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We can similarly show this for every x ∈ T (2).

Pr
[
∃x ∈ T (2) :

∥∥V ′S1
(x− wS1

)
∥∥
∞ < α ∧ ∥∥V ′S2
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≤ log(R/ε)(
2kα2k−l

εkRk−l
)

Case 2: Points close to neither WS1
nor WS2

Let T ′ =
{x ∈ N | ‖x− wS1‖2 > R/2 ∧ ‖x− wS1‖2 > R/2}. We
partition T ′ into the sets T ′0, T

′
1, . . . .

Consider T ′0 = {x ∈ N | ‖x− wS1‖2 ≥ R/2 ∧
‖x− wS2‖2 ≥ R/2 ∧ ‖x− ((wS1 + wS2)/2)‖2 ≤ R}.

For any point x ∈ T ′0:

Pr
[ ∥∥V ′S1

(x− wS1
)
∥∥
∞ < α ∧ ∥∥V ′S2

(x− wS2
)
∥∥
∞ < α

]

= Pr
[ ∥∥V ′S1

(x− wS1
)
∥∥
∞ < α

]

· Pr
[ ∥∥V ′S2

(x− wS2
)
∥∥
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α
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α
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)k−l

≤ (
2α

R
)k(
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R
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= (
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R
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and since |T ′0| � (R/ε)k, we can conclude

Pr
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Define T ′i = {x ∈ Sk | ‖x− ((wS1
+ wS2

)/2)‖2 ∈
[2i−1R, 2iR]}. For any x ∈ T ′i ,
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So, taking a union bound over all points in T ′i , we have:
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So, bounding over all partitions of T ′, we get:
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So, (5) holds with probability:

Pr
[
∃x ∈ N :

∥∥V ′S1
(x− wS1

)
∥∥
∞ < α ∧ ∥∥V ′S2

(x− wS2
)
∥∥
∞ < α

]

≤ log(R/ε)(
2kα2k−l

εkRk−l
)

≤ log(R/ε)(
2kα2k−l

αkαk−l/4
)

= log(R/ε)2kα3(k−l)/4

Since log(R/ε) � k log(n) and α3(k−l)/4 < 1
n6k , this is

bounded by 1
n6k . Further, because of the argument which

showed that (5) implies (4), up to a factor 2 scaling of α,
we get that:

Pr
[
∃x ∈ Sk :

∥∥V ′S1
(x− wS1)

∥∥
∞ < α ∧ ∥∥V ′S2

(x− wS2)
∥∥
∞ < α

]

≤ 1/n6k

Lemma B.3. Suppose α < 1
n8k , for all sets, S1, S2 ⊆ [n],

such that |S1| = |S2| = k,

WS1
∩WS2

= ∅

with probability 1− 1/n3k

Proof. For any two sets S1 and S2 such that the S1\S2 = l,
we know that:

WS1
∩WS2

= ∅
with probability ≥ 1− α3/4 So, for a given set S1,

Pr
[
∃S ⊆ [n], |S| = k : WS1

∩WS �= ∅
]

≤
k∑

i=1

(
k

i

)(
n− k

i

)
α3/4

≤ n2kα3/4

Further, taking a union bound over all choices of S, we get

Pr
[
∃S1 �= S2 ⊆ [n], |S1| = |S2| = k : WS1 ∩WS2 �= ∅

]

≤
(
n

k

)
n2kα3k/4

≤ n3kα3/4

≤ 1/n3k

Proof. of Theorem 2.2 Let y ∈ Rn be a k-sparse vector and
let S = {i ∈ [n] | yi �= 0}. From Lemma B.1 and Lemma
B.3, we know that there exists a point wS such that G(wS)
is non-zero at exactly the points {i ∈ [n] | yi �= 0}.
Consider the polytope on Sk defined by WS which contains
wS . As illustrated in Figure 1, each Fi partitions each WS

into 2 linear regions. So, there exist 2k polytopes which
within WS such that for each polytope, wS is a vertex.
Consider one such polytope P defined by 〈x, αv′i+vi〉 > 0
and 〈x, vi〉 ≤ 0.

Let x0 be the point in P such that 〈x0, vi + αv′i〉 = 0 for
all i ∈ S. Let 〈x0, vi〉 = −ri for each i ∈ S and define
r = 1

2 mini∈S ri.

Now, solve for δ such that 〈δ, vi + αv′i〉 = |yi| / ‖y‖2 r for
all i ∈ S. Observe that for such a δ:

〈x+ δ, vi〉 = 〈x, vi〉+ 〈δ, vi〉
= −ri + 〈δ, vi〉
≤ −ri + ‖δ‖2 · ‖vi‖2
≤ −ri/2

So, x + δ lies within P and G(x + δ)i = yi/ ‖y‖2 r. So,
since G(a · x) = a ·G(x), we have:

G(‖y‖2 · r · (x+ δ)) = y


