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Abstract
Policy gradient methods in reinforcement learning
update policy parameters by taking steps in the di-
rection of an estimated gradient of policy value. In
this paper, we consider the statistically efficient es-
timation of policy gradients from off-policy data,
where the estimation is particularly non-trivial.
We derive the asymptotic lower bound on the fea-
sible mean-squared error in both Markov and non-
Markov decision processes and show that existing
estimators fail to achieve it in general settings.
We propose a meta-algorithm that achieves the
lower bound without any parametric assumptions
and exhibits a unique 3-way double robustness
property. We discuss how to estimate nuisances
that the algorithm relies on. Finally, we establish
guarantees at the rate at which we approach a sta-
tionary point when we take steps in the direction
of our new estimated policy gradient.

1. Introduction
Learning sequential decision policies from observational
off-policy data is an important problem in settings where
exploration is limited and simulation is unreliable. A key
application is reinforcement learning (RL) for healthcare
(Gottesman et al., 2019). In such settings, data is limited
and it is crucial to use the available data efficiently. Re-
cent advances in off-policy evaluation (Kallus & Uehara,
2019a;b) have shown how efficiently leveraging problem
structure, such as Markovianness, can significantly improve
off-policy evaluation and tackle such sticky issues as the
curse of horizon (Liu et al., 2018). An important next step
is to translate these successes in off-policy evaluation to
off-policy learning. In this paper we tackle this question by
studying the efficient estimation of the policy gradient from
off-policy data and the implications of this for learning via
estimated-policy-gradient ascent.
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Table 1. Comparison of off-policy policy gradient estimators. Here,
f = Θ(g) means 0 < lim inf f/g ≤ lim sup f/g < ∞ (not to
be confused with the policy parameter space Θ). In the second row,
nuisances must be estimated at n−1/2-rates, and in the rows below
it, nuisances may be estimated at slow non-parametric rates.

Estimator MSE Efficient Nuisances

Reinforce, Eq. (4) 2Θ(H)Θ(1/n) none
PG, Eq. (5) 2Θ(H)Θ(1/n) q (parametric)
EOPPG (NMDP) 2Θ(H)Θ(1/n) q,∇q
EOPPG (MDP) Θ(H4/n) q, µ,∇q,∇µ

Policy gradient algorithms (Sutton & Barto, 2018, Chapter
13) enable one to effectively learn complex, flexible policies
in potentially non-tabular, non-parametric settings and are
therefore very popular in both on-policy and off-policy RL.
We begin by describing the problem and our contributions,
before reviewing the literature in Section 1.2.

Consider a (H + 1)-long Markov decision process (MDP),
with states st ∈ St, actions at ∈ At, rewards rt ∈ R, initial
state distribution p0(s0), transition distributions pt(st+1 |
st, at), and reward distribution pt(rt | st, at), for t =
0, . . . ,H . A policy (πt(at | st))t≤H induces a distribution
over trajectories T = (s0, a0, r0, . . . , sT , aH , rH , sH+1):

pπ(T ) = (1)

p0(s0)
∏H
t=0 πt(at | st)pt(rt | st, at)pt(st+1 | st, at).

Given a class of policies πθt (at | st) parametrized by θ ∈
Θ ∈ RD, we seek the parameters with greatest average
reward, defined as

J(θ) = Ep
πθ

[∑H
t=0 rt

]
. (Policy Value)

A generic approach is to repeatedly move θ in the direction
of the policy gradient (PG), defined as

Z(θ) = ∇θJ(θ) (Policy Gradient)

= Ep
πθ

[∑H
t=0 rt

∑t
k=0∇θ log πθk(ak | sk)

]
For example, in the on-policy setting, we can generate trajec-
tories from πθ, T (1), . . . , T (n) ∼ pπθ , and the (GPOMDP
variant of the) REINFORCE algorithm (Baxter & Bartlett,
2001) advances in the direction of the stochastic gradient

Ẑon-policy(θ) =
1

n

n∑
i=1

H∑
t=0

r
(i)
t

t∑
k=0

∇θ log πθk(a
(i)
k | s

(i)
k ).
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In the off-policy setting, however, we cannot generate trajec-
tories from any given policy and, instead our data consists
only of trajectory observations from one fixed policy,

T (1), . . . , T (n) ∼ pπb , (Off-policy data)

where πb is known as the behavior policy. With this data,
Ẑon-policy(θ) is no longer a stochastic gradient (i.e., it is
biased and inconsistent) and we must seek other ways to
estimate Z(θ) in order to make policy gradient updates.

This paper addresses the efficient estimation of Z(θ) from
off-policy data and its use in off-policy policy learning.
Specifically, our contributions are:

(Section 2) We calculate the asymptotic lower bound on
the minimal-feasible mean-squared error (MSE) in esti-
mating the policy gradient, which is of orderO(H4/n).
In addition, we demonstrate that existing off-policy pol-
icy gradient approaches fail to achieve this bound and
may even have exponential dependence on the horizon.

(Section 3.1) We propose a meta-algorithm called Efficient
Off-Policy Policy Gradient (EOPPG) that achieves this
bound without any parametric assumptions. In addi-
tion, we prove it enjoys a unique 3-way double robust-
ness property.

(Section 3.3) We show how to estimate the nuisance func-
tions needed for our meta-algorithm by introducing
the concepts of Bellman equations for the gradient of
q-function and stationary distributions.

(Section 4) We establish guarantees for the rate at which
we approach a stationary point when we take steps
in the direction of our new estimated policy gradient.
Based on efficiency results for our gradient estimator,
we can prove the regret’s horizon dependence is H2.

1.1. Notation and definitions

We define the following variables (note the implicit depen-
dence on θ):

gt = ∇θ log πθ,t(at | st), (Policy score)

qt = Ep
πθ

[∑H
k=t rk | st, at

]
, (q-function)

vt = Ep
πθ

[∑H
k=t rk | st

]
, (v-function)

ν̃t =
πθt (at|st)
πbt (at|st)

, (Density Ratio)

νt′:t =
∏t
k=t′ ν̃k, (Cumulative Density Ratio)

µ̃t =
p
πθ

(st)

p
πb

(st)
(Marginal State Density Ratio)

µt = µ̃tν̃t, (Marginal State-Action Density Ratio)
dqt = ∇θqt, dvt = ∇θvt, dµt = ∇θµt, dνt = ∇θν0:t.

Note that all of the above are simply functions of the trajec-
tory, T , and θ. To make this explicit, we sometimes write,
for example, qt = qt(st, at) and refer to qt as a function.
Similarly, when we estimate this function by q̂t we also refer
to q̂t as the random variable gotten by evaluating it on the
trajectory, q̂t(st, at).

We write a � b to mean that there exists a universal constant
C satisfying a ≤ Cb, such as a number like 5, which doesn’t
depend on any instance-specific parameters. We let ‖ · ‖2
denote the Euclidean vector norm and ‖ · ‖op denote the
matrix operator norm.

All expectations, variances, and probabilities without sub-
scripts are understood to be with respect to pπb . Given a
vector-valued function of trajectory, f , we define its L2

norm as
‖f‖2L2

b
= E‖f(T )‖22.

Further, given trajectory data, T (1), . . . , T (n), we define the
empirical expectation as

Enf = En[f(T )] = 1
n

∑n
i=1 f(T (i)).

MDP and NMDP. Throughout this paper, we focus on the
MDP setting where the trajectory distribution pπ is given
by Eq. (1). For completeness, we also consider relaxing
the Markov assumption, yielding a non-Markov decision
process (NMDP), where the trajectory distribution pπ(T ) is

p0(s0)
∏H
t=0 πt(at | Hst)pt(rt | Hat)pt(st+1 | Hat),

whereHat is (s0, a0, · · · , at) andHst is (s0, a0, · · · , st).

Assumptions. Throughout we assume that ∀t ≤ H:
0 ≤ rt ≤ Rmax, ‖gt‖op ≤ Gmax, ν̃t ≤ C1, µ̃t ≤ C ′2.
And, we define C2 = C1C

′
2 so that µt ≤ C2.

The bounds on ν̃t, µt are often called (sequential) overlap
or concentrability conditions. The bounds on gt is used
to bound the variance of the policy gradient. A similar
assumption is made in Agarwal et al. (2019). The above
uniform bounds may also be replaced with bounds on second
moments at the cost of stronger conditions on nuisance
estimate convergence in, e.g., Theorem 7; we omit these
details to focus on the more common L2 mode of estimate
convergence and uniform bounds on rewards, density ratios,
and policy scores.

1.2. Related literature

1.2.1. OFF-POLICY POLICY GRADIENTS

A standard approach to dealing with off-policy data is to
correct the policy gradient equation using importance sam-
pling (IS) using the cumulative density ratios, ν0:t (see, e.g.,
Papini et al., 2018, Appendix A; Hanna & Stone, 2018).
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This allows us to rewrite the policy gradient Z(θ) as an ex-
pectation over pπb and then estimate it using an equivalent
empirical expectation.

The off-policy version of the classic REINFORCE algorithm
(Williams, 1992) recognizes

Z(θ) = E
[
ν0:H

(∑H
t=0 rt

)(∑H
t=0 gt

)]
(2)

(recall that E is understood as Ep
πb

) and uses the esti-
mated policy gradient given by replacing E with En. The
GPOMDP variant (Baxter & Bartlett, 2001) refines this by

Z(θ) = E
[
ν0:H

∑H
t=0 rt

∑t
s=0 gs

]
, (3)

whose empirical version (En) has less variance and is there-
fore preferred. A further refinement is given by a step-wise
IS (Precup et al., 2000) as in Deisenroth et al. (2013):

Z(θ) = E
[∑H

t=0 ν0:trt
∑t
s=0 gs

]
. (4)

Following Degris et al. (2012), Chen et al. (2019) replace
ν0:t with ν̃t in Eq. (4) to reduce variance, but this is an
approximation that incurs non-vanishing bias.

By exchanging the order of summation in Eq. (4) and recog-
nizing qt = E

[∑H
j=t νt+1:jrj | st, at

]
, we obtain a policy

gradient in terms of the q-function (Sutton et al., 1998),

Z(θ) = E
[∑H

t=0 ν0:tgtqt

]
. (5)

The off-policy policy gradient (Off-PAC) of Degris et al.
(2012) is obtained by replacing ν0:t with ν̃t in Eq. (5), es-
timating qt by q̂t and plugging it in, and taking the em-
pirical expectation. Replacing ν0:t with ν̃t is intended to
reduce variance but it is an approximation that ignores the
state distribution mismatch (essentially, µt) and incurs non-
vanishing bias. Since it amounts to a reweighting and the
unconstrained optimal policy remains optimal on any input
distribution, in the tabular and fully unconstrained case con-
sidered in Degris et al. (2012), we may still converge. But
this fails in the general non-parametric, non-tabular setting.
We therefore focus only on consistent estimates of Z(θ) in
this paper (which requires zero or vanishing bias).

Many of the existing off-policy RL algorithms including
DDPG (Silver et al., 2014) and Off-PAC with emphatic
weightings (Imani et al., 2018) also use the above trick, i.e.,
ignoring the state distribution mismatch. Various recent
work deals with this problem (Dai et al., 2019; Liu et al.,
2019; Tosatto et al., 2020). These, however, both assume the
existence of a stationary distribution and are not efficient.
We do not assume the existence of a stationary distribution
since many RL problems have a finite horizon and/or do
not have a stationary distribution. Moreover, our gradient
estimates are efficient in that they achieve the MSE lower
bound among all regular estimators.

1.2.2. OTHER LITERATURE

Online off-policy PG. Online policy gradients have
shown marked success in the last few years (Schulman
et al., 2015). Various work has investigated incorporating
offline information into online policy gradients (Gu et al.,
2017; Metelli et al., 2018). Compared with this setting, our
setting is completely off-policy with no opportunity of col-
lecting new data from arbitrary policies, as considered in,
e.g., Athey & Wager (2017); Kallus (2018); Kallus & Zhou
(2018); Swaminathan & Joachims (2015) for H = 0 and
Chen et al. (2019); Fujimoto et al. (2019) for H ≥ 1.

Variance reduction in PG. Variance reduction has been
a central topic for PG (Greensmith et al., 2004; Schulman
et al., 2016; Tang & Abbeel, 2010; Wu et al., 2018). These
papers generally consider a given class of estimators given
by an explicit formula (such as given by all possible base-
lines) and show that some estimator is optimal among the
class. In our work, the class of estimators among which we
are optimal is all regular estimators, which both extremely
general and also provides minimax bounds in any vanishing
neighborhood of pπb (van der Vaart, 1998, Thm. 25.21).

Off-policy evaluation (OPE). OPE is the problem of es-
timating J(θ) for a given θ from off-policy data. Step-wise
IS (Precup et al., 2000) and direct estimation of q-functions
(Munos & Szepesvári, 2008) are two common approaches
for OPE. However, the former is known to suffer from the
high variance and the latter from model misspecification. To
alleviate this, the doubly robust estimate combines the two;
however, the asymptotic MSE still explodes exponentially
in the horizon like Ω(CH1 H

2/n) (Jiang & Li, 2016; Thomas
& Brunskill, 2016). Kallus & Uehara (2019b) show that the
efficiency bound in the MDP case is actually polynomial
in H and give an estimator achieving it, which combines
marginalized IS (Xie et al., 2019) and q-modeling using
cross-fold estimation. This achieves MSE O(C2H

2/n).
Kallus & Uehara (2019a) further study efficient OPE in the
infinite horizon MDP setting with non-iid batch data.

Offline policy learning There are many types of meth-
ods for offline policy learning (batch RL) such as fitted
Q-iteration (Munos & Szepesvári, 2008), bellman residual
minimization (Antos et al., 2008), and minimax learning
(Chen & Jiang, 2019). We focus on the policy gradient
approach since it can be easily applied very generally, in
particular when actions are continuous. As far as we know,
there are few studies of offline policy gradient with regret
guarantee as in our Section 4.
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2. Efficiency Bound for Estimating Z(θ)
Our target estimand is Z(θ) so a natural question is what is
the least-possible error we can achieve in estimating it. In
parametric models, the Cramér-Rao bound lower bounds the
variance of all unbiased estimators and, due to Hájek (1970),
also the asymptotic MSE of all (regular) estimators. Our
model, however, is nonparametric as it consists of all MDP
distributions, i.e., any choice for p0(s0), pt(rt | st, at),
pt(rt | st, at), and πt(at | st) in Eq. (1). Semiparametric
theory gives an answer to this question. We first informally
state the key property of the efficient influence function (EIF)
from semiparametric theory. The EIF is a function defined
in terms of only the estimand (map from data generating
distribution to quantity of interest), model (set of possible
data generating distributions), and instance in the model (the
specific unknown data generating distribution). It provides
a lower bound on the feasible asymptotic MSE in estimating
the estimand, which is sometimes achievable. And, we
will then show how to achieve the corresponding bound
in the next section. We present the key property in terms
of our own model, which is all MDP distributions, and
our estimand, which is Z(θ). For additional detail, see
Appendix B and Tsiatis (2006); van der Vaart (1998).

Theorem 1 (Informal description of van der Vaart (1998),
Theorem 25.20). The EIF ξMDP(T ; pπb) satisfies that for
any MDP distribution pπb and any regular estimator Ẑ(θ),

inf‖v‖2≤1 v
T (AMSE[Ẑ(θ)]− var[ξMDP])v = 0,

where AMSE[Ẑ(θ)] =
∫
zzT dF (z) is the second moment

of F the limiting distribution of
√
n(Ẑ(θ)− Z(θ)).

This also implies ‖AMSE[Ẑ(θ)]‖op ≥ ‖var[ξMDP]‖op.
Here, var[ξMDP] is called the efficiency bound (note it is a
covariance matrix). Estimators satisfying AMSE[Ẑ(θ)] =
var[ξMDP] are called efficient. A regular estimator is any
whose limiting distribution is insensitive to small changes of
order O(1/

√
n) to pπb that keep it an MDP distribution (see

van der Vaart, 1998, Chapter 25). So the above provides a
lower bound on the variance of all regular estimators, which
is a very general class. It is so general that the bound also
applies to all estimators at all in a local asymptotic minimax
sense (see van der Vaart, 1998, Theorem 25.21).

Technically, we first need to prove that the EIF ξMDP exists
in order to obtain the bound in Theorem 1. The following
result does so and derives it explicitly (in terms of unknown
nuisance functions). The result after does the same in the
NMDP model. (Note that, while by the usual convention
the EIF refers to a function with 0 mean, instead we let
the EIF have mean Z(θ) everywhere as it simplifies the
presentation. Since adding a constant does not change the
variance, Theorem 1 is unchanged.)

Theorem 2. The EIF of Z(θ) under MDP, ξMDP, exists and

is equal to∑H
j=0(dµj (rj − qj)− µjdqj + µj−1d

v
j + dµj−1vj),

where µ−1 = 1, dµ−1 = 0.

And, in particular,

‖var[ξMDP]‖op ≤ C2R
2
maxGmax(H + 1)2(H + 2)2/4.

Theorem 3. The EIF of Z(θ) under NMDP, ξNMDP, exists
and is equal to∑H

j=0(dνj (rj − qj)− ν0:jd
q
j + ν0:j−1d

v
j + dνj−1vj),

where ν0:−1 = 1, dν−1 = 0. (Note that here ν0:j , d
ν
j , d

q
j , d

q
j

are actually functions of all ofHaj and not just of (sj , aj)
as in MDP case in Theorem 2.)

And, in particular,

‖var[ξNMDP]‖op ≤ CH1 R2
maxGmax(H + 1)2(H + 2)2/4.

Roughly speaking, the EIFs of Z(θ) in Theorems 2 and 3
are derived by differentiating the EIFs of J(θ) obtained in
Kallus & Uehara (2019b) with respect to θ, since we have
the relation Z(θ) = ∇J(θ). That is why dµj , d

q
j appear in

addition to µj , qj in the EIFs above. In fact,

ξMDP = ∇
{
v0 +

∑H
j=0 µj(rj − qj + vj+1)

}
,

ξNMDP = ∇
{
v0 +

∑H
j=0 ν0:j(rj − qj + vj+1)

}
.

Formulae for var[ξMDP] and var[ξNMDP] are given in Ap-
pendix C. Theorem 3 showed var[ξNMDP] is at most expo-
nential; we next show it is also at least exponential.
Theorem 4. Suppose that ν̃t ≥ C3 and that
var[(

∑
h gh)(rH − qH) | HaH ] � cI . Then,

‖var[ξNMDP]‖op ≥ C2H
3 c.

Theorems 3 and 4 show that the curse of horizon is generally
unavoidable in NMDP since the lower bound in is at least
exponential in horizon. On the other hand, Theorem 2 shows
there is a possibility we can avoid the curse of horizon in
MDP in the sense that the lower bound is at most polynomial
in horizon as long asC2 is bounded asH grows. This is true,
for example, if pπb(st) converges in distribution, which will
necessarily occur if the MDP is ergodic.

We show that REINFORCE necessarily suffers from the
curse of horizon.
Theorem 5. The MSE of step-wise REINFORCE Eq. (4) is∑H+1

k=0 E[ν2
k−1×

var[E[
∑H
t=k−1 νk:trt

∑t
s=k−1 gs | Hak ] | Hak−1

]],

which is no smaller than the MSE of REINFORCE Eq. (2)
and GOMDP-REINFROCE Eq. (3). (Equation references
refer to the estimate given by replacing E with En.)
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Algorithm 1 Efficient Off-Policy Policy Gradient

Take a K-fold random partition (Ik)Kk=1 of the observa-
tion indices {1, . . . , n} such that the size of each fold,
|Ik|, is within 1 of n/K.
Let Lk = {T (i) : i ∈ Ik}, Uk = {T (i) : i /∈ Ik}
for k ∈ {1, · · · ,K} do

Using only Lk as data, construct nuisance estimators
q̂

(k)
j , µ̂

(k)
j , d̂

q(k)
j , d̂

µ(k)
j for ∀j ≤ H (see Section 3.3)

By integrating/summing w.r.t aj ∼ πθj (aj | sj), set

v̂j(sj) = Eπθj [q̂j | sj ], d̂vj (sj) = Eπθj [d̂qj + q̂jgj | sj ] (6)

Construct an intermediate estimate:

Ẑk(θ) = EUk
[∑H

j=0

(
d̂
µ(k)
j (rj − q̂(k)

j )− µ̂(k)
j d̂

q(k)
j

+ µ̂
(k)
j−1d̂

v(k)
j + d̂

µ(k)
j−1 v̂

(k)
j

)]
,

where EUk is the empirical expectation over Uk
end for
Return ẐEOPPG(θ) = 1

K

∑K
k=1 Ẑk.

Theorem 6. Suppose that ν̃t ≥ C3 and that var[rHgH |
HaH ] � cI . Then, the operator norm of the variance of
step-wise REINFORCE is lower bounded by cC2H

3 /n.

3. Efficient Policy Gradient Estimation
In this section we develop an estimator, EOPPG, for Z(θ)
achieving the lower bound in Theorem 2 under weak non-
parametric rate assumptions.

3.1. The Meta-Algorithm

Having derived the EIF of Z(θ) under MDP in Theorem 2,
we use a meta-algorithm based on estimating the unknown
functions (aka nuisances) µj , d

q
j , qj , d

µ
j and plugging them

into ξMDP, as described in Algorithm 1, which we call the
Efficient Off-Policy Policy Gradient (EOPPG). In particu-
lar, we use a cross-fitting technique (Chernozhukov et al.,
2018; van der Vaart, 1998) to avoid technical smoothness
conditions on our nuisance estimates. We refer to this as a
meta-algorithm as it relies on given nuisances estimators:
we show to construct these in Section 3.3.

Note Eq. (6) in Algorithm 1 is computed simply by taking
an integral over aj (or, sum, for finite actions) with respect
to the known measure (or, mass function) πθj (aj | sj).

We next prove that EOPPG achieves the efficiency bound un-
der MDP and enjoys a 3-way double robustness (see Fig. 1).
We require the following about our nuisance estimators,
which arises from the boundedness assumed in Section 1.1.

Assumption 1. ∀k ≤ K, ∀j ≤ H , we have 0 ≤ q̂
(k)
j ≤

Rmax(H + 1− j), µ̂(k)
j ≤ C2, ‖d̂q(k)

j ‖op, ‖d̂µ(k)
j ‖op ≤ C4.

q dq

µ dµ

Figure 1. Doubly robust and efficient structure of EOPPG. Ev-
ery circle represents the event that the corresponding nuisance is
well-specified. The cyan-shaded region represents the event that
ẐEOPPG(θ) is consistent. The red-shaded region represents the
event that ẐEOPPG(θ) is efficient (when nuisances are consistently
estimated non-parametrically at slow rates).

Theorem 7 (Efficiency). Suppose ∀k ≤ K, ∀j ≤ H ,

‖µ̂(k)
j − µj‖L2

b
= op(n

−α1), ‖d̂µ(k)
j − dµj ‖L2

b
= op(n

−α2),

‖q̂(k)
j − qj‖L2

b
= op(n

−α3), ‖d̂q(k)
j − dqj‖L2

b
= op(n

−α4),

min(α1, α2)+min(α3, α4) ≥ 1/2 and α1, α2, α3, α4 > 0.

Then,
√
n(ẐEOPPG(θ)− Z(θ))

d→ N (0, var[ξMDP]).

An important feature of Theorem 7 is that the required
nuisance convergence rates are nonparametric (slower than
n−1/2) and no metric entropy condition (e.g., Donsker) is
needed. In particular, the result does not depend on the
particular nuisance estimates used, and we experience no
variance inflation due to plugging-in estimates instead of
true nuisances. While usually we can expect inflation due to
nuisance variance (e.g., PG Eq. (5) generally has MSE worse
than Θ(n−1/2) if we use an estimate q̂ with a nonparametric
rate), we avoid this due to the special doubly robust structure
of ξMDP that renders our estimate insensitive to the way
nuisances are estimated.

To establish this doubly robust structure – the key step of
the proof – we show that ẐEOPPG(θ) is equal to

En[ξMDP] +K−1
∑K
k=1

∑H
j=0 Biask,j + op(n

−1/2), (7)

where ‖Biask,j‖2 is upper bounded up to constant by the
following

‖Biask,j‖2 � ‖µ̂(k)
j − µj‖L2

b
‖‖d̂q(k)

j − dqj‖L2
b

(8)

+ ‖d̂µ(k)
j − dµj ‖L2

b
‖q̂(k)
j − qj‖L2

b

+ ‖µ̂(k)
j−1 − µj−1‖L2

b
‖d̂v(k)
j − dvj‖L2

b

+ ‖d̂µ(k)
j−1 − d

µ
j−1‖L2

b
‖v̂(k)
j − vj‖L2

b
.

After establishing this key result, Eqs. (7) and (8), Theo-
rem 7 follows by showing that the bias term is op(n

−1/2)
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and applying CLT. This asymptotic results can also be ex-
tended to a finite-sample results by assuming finite-sample
bounds on nuisance estimates, following Kallus & Uehara
(2019b).

We also obtain the following from Eq. (7) via LLN.
Theorem 8 (3-way double robustness). Suppose ∀k ≤
K, ∀j ≤ H, ‖µ̂(k)

j − µ†j‖L2
b
, ‖d̂q(k)

j − dq†j ‖L2
b
, ‖q̂(k)

j −
q†j‖L2

b
, ‖d̂µ(k)

j − dµ†j ‖L2
b

all converge to 0 in probability.

Then ẐEOPPG(θ)→p Z(θ) if one the following hold: µ†j =

µj , d
µ†
j = dµj ; q†j = qj , d

q†
j = dqj ; or µ†j = µj , q

†
j = qj .

That is, as long as (a) µ̂, d̂µ are correct, (b) q̂, d̂q are correct,
or (c) µ̂, q̂ are correct, EOPPG is still consistent. The reason
the estimator is not consistent when only d̂q, d̂µ are correct
is because d̂v is constructed using both q̂, d̂q (see Eq. (6)).
Commonly double robustness refers to a situation with two
nuisances where an estimator is consistent as long as either
nuisance estimate is consistent (Rotnitzky & Vansteelandt,
2014). In doubly robust OPE in MDPs, these nuisances
are µ and q (Kallus & Uehara, 2019b). Here, for policy
gradient estimation, we have four nuisances and we have
a new 3-way double robustness wherein there are three
pairs of nuisances where only one pair need be consistently
estimated to make the final estimator consistent.

3.2. Special Cases

Example 1 (On-policy case). If πb = πθ, then

ξNMDP =
∑H
j=0((

∑H
i=j ri + vi+1 − qi)gj + dvj − d

q
j),

ξMDP =
∑H
j=0(dµj (rj − qj)− dqj + dvj + dµj−1vj),

where dµj = E[
∑j
i=0 gi(ai | si) | aj , sj ]. (Recall that

qj , d
q
j are functions ofHaj in NMDP but only of (sj , aj) in

MDP; similarly for vj , dvj andHsj compared to just sj .)

In the on-policy case, Cheng et al. (2019); Huang & Jiang
(2019) propose estimators equivalent to estimating q, dq and
plugging into the above equation for ξNMDP. Using our
results (establishing the efficiency bound and that ξNMDP is
the EIF under NMDP) these estimators can then be shown
to be efficient for NMDP (either under a Donsker condition
or using cross-fitting instead of their in-sample estimation).
These are not efficient under MDP, however, and ξMDP will
still have lower variance. However, in the on-policy case,
C1 = 1, so the curse of horizon does not affect ξNMDP and
since it requires fewer nuisances it might be preferable.

Example 2 (Logged bandit case). If H = 0 (one decision
point), then ξMDP = ξNMDP are both equal to

ν̃0(r0 − q0)g0 + Eπθ0(a0|s0)[q0g0 | s0].

We can construct an estimator by cross-fold estimation of
q0 (note the last expectation is just an integral/sum with

respect to the measure πθ(a0 | s0) for a given s0). While
policy gradients are used in the logged bandit case in the
counterfactual learning community (e.g. Swaminathan &
Joachims, 2015, which use the gradient ν̃0r0g0), as far as
we know, no one uses this efficient estimator for the gradient
even in the logged bandit case, where NMDP and MDP are
the same.
Example 3. By Theorem 8, each of the following is a new
policy gradient estimator that is consistent given consistent
estimates of its respective nuisances:
a) µ̂ = 0, d̂µ = 0: En[d̂v0],
b) q̂ = 0, d̂q = 0: En[

∑H
j=0 d̂

µ
j rj ],

c) d̂q = 0, d̂µ = 0: En[
∑H
j=0 Eπθ [µ̂j−1q̂jgj | sj ]],

where the inner expectation is only over aj ∼ πθ(aj | sj).
Example 4 (Stationary infinite-horizon case). Suppose the
MDP transition and reward probabilities and the behavior
and target policy (πθ) are all stationary (i.e., time invariant
so that π = πt, g = gt, pt = p, etc.). Suppose more-
over that, as H → ∞ the Markov chain on the variables
{(st, at, rt) : t = 0, 1, . . . } is ergodic under either the be-
havior or target policy. Consider estimating the derivative of
the long-run average reward Z∞(θ) = limH→∞ Z(θ)/H .
By taking the limit of ξMDP/H as H →∞, we obtain

ξ∞MDP
dist
= dµ(s′, a′)(r′ − q(s′, a′))− µ(s′, a′)dq(s′, a′)

+ µ(s, a)dv(s′) + dµ(s, a)v(s′),

where (s, a, r, s′, a′) are distributed as the stationary distri-
bution of (st, at, rt, st+1, at+1) under the behavior policy,
µ(s, a) is the ratio of stationary distributions of (st, at) un-
der the target and behavior policies, q(s, a) and v(s) are
the long-run average q- and v-functions under the target
policy, and dµ, dq, dv are the derivatives with respect to θ.

It can be shown that under appropriate conditions, ξ∞MDP is
in fact the EIF for Z∞(θ) if our data were iid observations
of (s, a, r, s′, a′) from the stationary distribution under the
behavior policy. If our data consists, as it does, of n obser-
vations of (H + 1)-long trajectories, then we can instead
construct the estimator

1
n(H+1)

∑n
i=1

∑H
j=0

(
dµ(s

(i)
j , a

(i)
j )(r

(i)
j − q(s

(i)
j , a

(i)
j ))

− µ(s
(i)
j , a

(i)
j )dq(s

(i)
j , a

(i)
j ) + µ(s

(i)
j−1, a

(i)
j−1)dv(s

(i)
j )

+ dµ(s
(i)
j−1, a

(i)
j−1)v(s

(i)
j )
)
,

where the nuisances µ, dµ, q, dq are appropriately estimated
in a cross-fold manner as in Algorithm 1. Following similar
arguments as in Kallus & Uehara (2019a), which study
infinite-horizon OPE, one can show that this extension of
EOPPG maintains its efficiency and 3-way robustness guar-
antees as long as our data satisfies appropriate mixing
conditions (which ensures it appropriately approximates
observing draws from the stationary distribution). Fleshing
out these details is beyond the scope of this paper.
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3.3. Estimation of Nuisance Functions

We next explain how to estimate the nuisances dµj and dqj .
The estimation of qj is covered by Chen & Jiang (2019);
Munos & Szepesvári (2008) and the estimation of µj by
Kallus & Uehara (2019b); Xie et al. (2019). In this section,
we focus on the case where the behavior policy (and thus
ν̃t) is known. When the behavior policy is unknown, each
method can be adapted by estimating the behavior policy
first and then plugging it in. The error from estimating
the behavior policy will be additive and hence might not
deteriorate the rates of the below methods unless it is strictly
slower.

Monte-Carlo approach. First we explain a Monte-Carlo
way to estimate dqj , d

µ
j . We use the following theorem.

Theorem 9 (Monte Carlo representations of dµj , d
q
j ).

dqj = E
[∑H

t=j+1 rtνj+1:t

∑t
`=j+1 g` | aj , sj

]
,

dµj = E
[
ν0:j

∑j
`=0 g` | aj , sj

]
.

Based on this result, we can simply learn dqj , d
µ
j using

any regression algorithm. Specifically, we construct the
response variables y(i)

dqj
=
∑H
t=j+1 r

(i)
t ν

(i)
j+1:t

∑t
`=j+1 g

(i)
` ,

y
(i)

dµj
= ν

(i)
0:j

∑j
`=0 g

(i)
` , and we regress these on (a

(i)
j , s

(i)
j ).

For example, we can use empirical risk minimization:

d̂qj = arg minf∈F
1
n

∑n
i=1

(
y

(i)

dqj
− f(aj , sj)

)2

,

d̂µj = arg minf∈F
1
n

∑n
i=1

(
y

(i)

dµj
− f(aj , sj)

)2

.

Examples for F include RKHS norm balls, an expanding
subspace of L2 (i.e., a sieve), and neural networks. Rates for
such estimators can, for example, be derived from Bartlett
et al. (2005); Wainwright (2019).

A careful reader might wonder whether estimating nuisances
in this way causes the final EOPPG estimator to suffer from
the curse of horizon, since ν0:j can be exponentially growing
in j. However, as long as we have suitable nonparametric
rates (in n) for the nuisances as in Theorem 7, the asymptotic
MSE of ẐEOPPG(θ) does not depend on the estimation
error of the nuisances. These errors only appear in higher-
order (in n) terms and therefore vanish. This is still an
important concern in finite samples, which is why we next
present an alternative nuisance estimation approach.

Recursive approach. Next, we explain a recursive way
to estimate dqj , d

µ
j . This relies on the following result.

Theorem 10 (Bellman equations of dqj , d
µ
j ).

dqj(sj , aj) = E[dvj+1 | sj , aj ], dvj (sj) = Eπθ [d
q
j + gjqj | sj ]

dµj (sj , aj) = E[dµj−1ν̃j | sj , aj ] + µjgj .

Algorithm 2 Estimation of dqj (Recursive way)

Input: q-estimates q̂j , hypothesis classes Fd
q
j

Set d̂vH = d̂qH = 0
for j = H − 1, H − 2, · · · do

Set d̂qj ∈ arg min

f∈Fd
q
j

n∑
i=1

(
d̂vj+1(s

(i)
j+1)− f(s

(i)
j , a

(i)
j )
)2

Set d̂vj (sj) = Eπθj [d̂qj + q̂jgj | sj ]
(by integrating/summing w.r.t aj ∼ πθj (aj | sj))

end for

Algorithm 3 Estimation of dµj (Recursive way)

Input: µ-estimates µ̂j , hypothesis classes Fd
µ
j

Set d̂µ0 = ν0g0

for j = 1, 2, · · · do
Set d̂µj = arg min

f∈∈Fd
µ
j

∑n
i=1

(
f(s

(i)
j , a

(i)
j )

−ν̃(i)
j d̂µj−1(s

(i)
j−1, a

(i)
j−1)−µ̂(i)

j g
(i)
j

)2
end for

Algorithm 4 Off-policy projected gradient ascent

Input: An initial point θ1 ∈ Θ and step size schedule αt
for t = 1, 2, · · · do
θ̃t+1 = θt + αtẐ

EOPPG(θt)
θt+1 = ProjΘ(θ̃t+1)

end for

This is derived by differentiating the Bellman equations:

qj(sj , aj) = E[r + vj+1(sj+1) | sj , aj ],
µj(sj , aj) = E[µj−1(sj−1, aj−1)ν̃j |sj , aj ].

Following Theorem 10, we propose the recursive Algo-
rithms 2 and 3 that estimate dqj using backwards recursion
and dµj using forward recursion.

Remark 1. Morimura et al. (2010) discussed a way to
estimate the gradient of the stationary distribution in an
on-policy setting. In comparison, our setting is off-policy.

Remark 2. We have directly estimated dµj . Another way
is using dµj = ν̃j∇θµ̃j + µ̃jgj and estimating∇θµ̃j recur-
sively based on a Bellman equation for ∇µ̃j , derived in a
similar way to that for dµj in Theorem 10.

4. Off-policy Optimization with EOPPG
Next, we discuss how to use the EOPPG estimator presented
in Section 3 for off-policy optimization using projected
gradient ascent and the resulting guarantees. The algorithm
is given in Algorithm 4.

Then, by defining an error Bt = ẐEOPPG(θt)− Z(θt), we
have the following theorem.

Theorem 11. Assume the function J(θ) is differentiable
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and M -smooth in θ, M < 1/(4αt), and θ̃t = θt.1 Set
J∗ = maxθ∈Θ J(θ). Then, {θt}Tt=1 in Algorithm 4 satisfies

1
T

∑T
t=1 αt‖Z(θt)‖22 ≤

4(J∗−J(θ1))
T + 3

T

∑T
t=1 αt‖Bt‖22.

Theorem 11 gives a bound on the average derivative. That is,
if we let θ̂ be chosen at random from {θt}Tt=1 with weights
αt, then via Markov’s inequality,

Z(θ̂) = Op( 4
T (J∗ − J(θ1)) + 3

T

∑T
t=1 αt‖Bt‖22).

So as long as we can bound the error term
∑
t αt‖Bt‖22/T ,

we have that θ̂ becomes a near-stationary point.

This error term comes from the noise of the EOPPG estima-
tor. A heuristic calculation based on Theorem 7 that ignores
the fact that θt is actually random would suggest

‖Bt‖22 � trace(var[ξMDP]) + op(1/n)

�
DC2R

2
maxGmax(H + 1)2(H + 2)2

n
+ op(1/n).

To establish this formally, we recognize that θt is a random
variable and bound the uniform deviation of EOPPG over
all θ ∈ Θ. We then obtain the following high probability
bound on the cumulative errors.
Theorem 12 (Bound for cumulative errors). Suppose the
assumptions of Theorem 7 hold, that θ → ξMDP,j is almost
surely differentiable with derivatives bounded by L for j ∈
{1, · · · , D}, where ξMDP,j is a j-th component of ξMDP,
and that Θ is compact with diameter Υ.

Then, for any δ, there existsNδ such that ∀n ≥ Nδ , we have
that, with probability at least 1− δ,
1
T

∑
t ‖Bt‖22 � Un,T,δ,

Un,T,δ =
D(L2DΥ2+C2GmaxR

2
max(H+1)2(H+2)2 log(TD/δ))

n .

This shows that, by letting T = nβ (β > 1) be sufficiently
large, we can obtain Z(θ̂) = Op(H4C2 log(n)/n) for θ̂
chosen at random from {θt}Tt=1 as above. Note that if we
had used other policy gradient estimators such as (step-wise)
REINFORCE, PG as in Eq. (5), or off-policy variants of the
estimators of Cheng et al. (2019); Huang & Jiang (2019),
then the term CH1 would have appeared in the bound and the
curse of horizon would have meant that our learned policies
would not be near-stationary for long-horizon problems.
Remark 3. Many much more sophisticated gradient-based
optimization methods equipped with our EOPPG gradient
estimator can be used in place of the vanilla projected gradi-
ent ascent in Algorithm 4. We refer the reader to Jain & Kar
(2017) for a review of non-convex optimization methods.

1This means all iterates remain in Θ so the projection is identity.
This is a standard condition in the analysis of non-convex optimiza-
tion method that can be guaranteed under certain assumptions; see
Khamaru & Wainwright (2018); Nesterov & Polyak (2006).

The concave case. The previous results study the guaran-
tees of Algorithm 4 in terms of convergence to a stationary
point, which is the standard form of analysis for non-convex
optimization. If we additionally assume that J(θ) is a con-
cave function then we can see how the efficiency of EOPPG
translates to convergence to an optimal solution in terms of
the regret compared to the optimal policy. In this case we
set θ̂ = 1

T

∑T
t=1 θt, for which we can prove the following:

Theorem 13 (Regret bound). Suppose the assumptions of
Theorem 12 hold, that J(θ) is a concave function, and that
Θ is convex. For a suitable choice of αt we have that, for
any δ, there exists Nδ such that ∀n ≥ Nδ, we have that,
with probability at least 1− δ,

J∗ − J(θ̂) � Υ
supθ∈Θ ‖Z(θ)‖2 +

√
Un,T,δ√

T
.

Here, the first term is the optimization error if we knew the
true gradient Z(θ). The second term is the approximation
error due to the error in our estimated gradient ẐEOPPG(θ).
When we set T = nβ (β > 1), the final regret bound is

Op
(

ΥRmaxH
2
√
DβGmaxC2 log(nD/δ))/

√
n
)
.

The regret’s horizon dependence is H2. This is a crucial
result since the regret with polyomial horizon dependence
is a desired result in RL (Jiang & Agarwal, 2018). Again,
if we had used other policy gradient methods, then an ex-
ponential dependence via CH1 would appear. Moreover, the
regret depends on C2, which corresponds to a concentrabil-
ity coefficient (Antos et al., 2008).

Remark 4. Recent work studies the global convergence
of online-PG algorithms without concavity (Agarwal et al.,
2019; Bhandari & Russo, 2019). This may be applicable
here, but our setting is completely off-policy and therefore
different and requiring future work. Notably, the above
focus on optimization rather than PG variance reduction.
In a truly off-policy setting, the available data is limited and
statistical efficiency is crucial and is our focus here.

Remark 5 (Comparison with other results for off-policy pol-
icy learning). In the logged bandit case (H = 0), the regret
bound of off-policy learning via exhaustive search (non-
convex) optimization is Op(

√
τ(Π) log(1/δ)/n), where

τ(Π) represents the complexity of the hypothesis class (Fos-
ter & Syrgkanis, 2019; Zhou et al., 2018). In this bandit
case, the nuisance functions of the EIF do not depend on
the policy itself, making this analysis tractable. However,
for our RL problem (H > 0), nuisance functions depend on
the policy; thus, these techniques do not extend directly. Nie
et al. (2019) do extend these types of regret results to an RL
problem but where the problem has a special when-to-treat
structure, not the general MDP case.
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Figure 2. Comparison of MSE of gradient estimation
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Figure 3. Comparison of regret after gradient ascent

5. Experiments
We conducted an experiment in a simple environment to
confirm the theoretical guarantees of the proposed estimator.
The setting is as follows. Set St = R, At = R, s0 = 0.
Then, set the transition dynamics as st = at−1 − st−1,
the reward as rt = −s2

t , the behavior policy as πbt (a |
s) = N (0.8s, 0.22), the policy class as N (θs, 0.22), and
horizon as H = 49. Then, θ∗ = 1 with optimal value J∗ =
−1.96, obtained by analytical calculation. We compare
REINFORCE (Eq. (4)), PG (Eq. (5)), and EOPPG with
K = 2. Nuisances functions q, µ, dq, dµ are estimated by
polynomial sieve regressions (Chen, 2007). Additionally, to
investigate 3-way double robustness, we consider corrupting
the nuisance models by adding noise N (0, 1); we consider
thus corrupting (q, dq), (µ, dµ), or (dµ, dq).

First, in Fig. 2, we compare the MSE of these gradient esti-
mators at θ = 1.0 using 100 replications of the experiment
for each of n = 800, 1600, 3200, 6400 . As can be seen,
the performance of EOPPG is superior to existing estima-
tors in terms of MSE, validating our efficiency results. We
can also see that the EOPPG with misspecified models still
converges, validating our 3-way double robustness results.

Second, in Fig. 3, we apply a gradient ascent as in Algo-

rithm 4 with αt = 0.15 and T = 40. We compare the regret
of the final policy, i.e., J(θ∗) − J(θ̂40), using 60 replica-
tions of the experiment for each of n = 200, 400, 800, 1600.
Notice that the lines decrease roughly as 1/

√
n but because

of the large differences in values, the lines only appear
somewhat flat. This shows that the efficiency and 3-way
double robustness translate to good regret performance, as
predicted by our policy learning analysis.

6. Conclusions
We established an MSE efficiency bound of orderO(H4/n)
for estimating a policy gradient in an MDP in an off-policy
manner. We proposed an estimator, EOPPG, that achieves
the bound, enjoys 3-way double robustness, and leads to
regret dependence of order H2/

√
n when used for pol-

icy learning. Notably, this is much smaller than other ap-
proaches, which incur exponential-in-H errors. This paper
is only a first step toward efficient and effective off-policy
policy gradients in MDPs. Remaining questions include
how to estimate dq, dµ in a large-scale environments, the
performance of more practical implementations that alter-
nate in updating θ and nuisance estimates with only one
gradient update, and extending our theory to the determinis-
tic policy class as in Silver et al. (2014).
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