Statistically Efficient Off-Policy Policy Gradients

A. Notation
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Table 2. Notation
Behavior policy, Evaluation policy

Horizon

Final optimization step

Derivative w.r.t 6

History up to ay, (S0, ag, -, St, a;) (Rewards are excluded)
History up to sy, (so, ao, -, $¢) (Rewards are excluded)
History up to ay, (s9, ao, 7o, -, at) (Rewards are included)
History up to s¢, (S0, ag, o, -, S¢, ar) (Rewards are included)
Expectation is taken w.r.t policy 7

Empirical approximation

Value of 7

VJ(6)

DAG MDP, Tree MDP

State action value function at ¢

State Value function at ¢

H(éq:i 7Tz‘9 / 77'?

Hi:a 7(-%9 / ﬂ-?

) /7

Pre (St)/pﬂ"b (St)

Ratio of marginal distribution at ¢

Vi(s,a), Vi(s,a

Vaqi(s,a), Vu(s,a)

99"

Score function of the policy: V log 7/ (a; | s;)
Distribution mismatch constants

O S Tt S Rmax

||gt||op S Gmax

Function class

Operator norm

L2-integral norm with respect to the behavior policy
Euclidean norm

Parameter space

B — A is a semi-positive definite matrix

Identity matrix

Efficient influence functions (IFs) of Z(#) under MDP and NMDP

k-th partitioned data

Data except for Uy,

projection

Parameter space

Diameter of ©

Dimension of 0

Inner product a " b

Inequality up to absolute constant
Identiry matrix
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B. Semiparametric Theory for Off-Policy RL: A General Conditioning Framework

Here, we summarize a general framework to obtain efficiency bounds and efficient influence functions for various quantities
of interest under NMDP or MDP, which we then use in order to derive these for the policy gradient case. First, we present
the framework in generality. Then, we show how to use this framework to re-derive the efficiency bounds and efficient
influence functions for OPE of Kallus & Uehara (2019b), who derived it for the first time but from scratch. Our proofs for
our policy gradient case in the subsequent sections use the observations from this section.

B.1. General Conditioning Framework
B.1.1. GENERAL SEMIPARAMETRIC INFERENCE

Consider observing n iid observations O(?) ~ P from some distribution P. We are interested in the estimand R(P) where
the unknown P is assumed to live in some (nonparametric) model P € M and R : M — RP”. Estimators of this estimand
are functions of the data, R = R(O(l), ..., 0™), Regular estimators are, roughly speaking, those for which the distribution
of \/E(R — R(P)) converges to a limiting distribution in a locally uniform sense in M (van der Vaart, 1998, Chapter 25).
Under certain differentiability conditions on R(-), the efficiency bound is the smallest asymptotic MSE (the second moment
of the distributional limit of /(R — R(P))) among all regular estimators R (van der Vaart, 1998, Theorem 25.20), which
also lower bounds the limit infimum of nE[(R — R(P))?] via Fatou’s lemma. The efficiency bound even lower bounds the
limit infimum of the MSE of any estimator in a local asymptotic minimax sense (van der Vaart, 1998, Theorem 25.21). In
particular, the efficiency bound is given by varp[¢*(O)] for some function ¢*(O).

Asymptotically linear estimators 2 are ones for which there exists a function ¢(O) such that R = E,, ¢ + 0,(n"1/2),
E¢ = R(P).> The function ¢ is known as the influence function of R. Clearly, the asymptotic MSE of R is varp[¢(O)].
Thus, an asymptotic linear estimator would be efficient if its influence function were ¢*, which is called the efficient influence
function. In fact, under the same differentiability conditions on R(-), efficient (regular) estimators are exactly those with the
influence function ¢* (van der Vaart, 1998, Theorem 25.23). Under certain regularity, the set of influence functions (minus
R(P)) is equal to the set of pathwise derivatives of R(-) at P, and the function ¢* is exactly given by that with minimal Lo
norm among this set (Bickel et al., 1993; Klaassen, 1987). Thus, ¢* can be gotten by a projection of any influence function,
which is a generic recipe for deriving the efficient influence function and the efficiency bound.

B.1.2. A CONDITIONING FRAMEWORK FOR NONPARAMETRIC FACTORABLE MODELS

We now summarize how additional graphical structure on the variable O can further simplify the above recipe for deriving
the efficient influence function in a particular class of models, which includes the MDP and NMDP models. Suppose each
observation O has J component variables, O = (Oq,...,0 ). Suppose moreover that we have some tree on the nodes
[J] = {1,...,J} described by the parentage relationship Pa : [J] — 2[/] mapping a node to its parents and such that P
satisfies the factorization

J
P(0) =[] Pi(O; | Opagy))- )
j=1

Consider the nonparametric model of all distributions that satisfy this factorization
J
M=<Q : QO)= H Q;(Oj | Opagjy) for some conditional distributions @ ;
j=1

Then, a standard result (see van Der Laan & Robins, 2003, van der Laan & Rose, 2018, §A.7) is that, given any ¢ that is a
valid influence function for R(P) in M, the efficient influence function for R(P) is given by

J
¢"(0) = R(P) =) _ (E[$(0) | O}, Opa(y)] — E[$(O) | Opagy)) -

j=1
This arises due to the above-mentioned projection interpretation of the efficient influence function.

?Note that conventionally one restricts E¢ = 0 and writes R — R(P) = E,¢ + 0,(n~%/?), but we deviate slightly here for clearer
and more succinct presentation in the main text.
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Now, suppose that the estimand only depends on a particular part of the factorization:
R(Q) = R(Q') whenever Q; = Q/; forall j € Jy, (10)

for some index set Jo C [J]. Thatis, R(Q) is only a function of @, = (Q;);e, and is independent of @ ;o = (Q;) ¢,
Consider the model where we assume that P; is known for every j ¢ Jo,

J

Mo=1Q : Q) =[] Q;(0; | Opagy)) for some Q, and Qe = Pye

=1
Then, as long as R(-) satisfies Eq. (10), its efficient influence function under M and M must be the same (similarly for the
efficiency bound).

Combining the above observations, we have that if (a) our model satisfies the nonparametric factorization as in Eq. (9) and
(b) our estimand only depends on some subset .Jy of the factorization as in Eq. (10), then given any ¢ that is a valid influence
function for R(P) in M, the efficient influence function for R(P) under M is in fact also just given by

¢*(0) = R(P) = ) (E[$(0) | O}, Opa(y)] — E[$(O) | Opa()) - (11)

jeJ§

B.2. Application to Off-Policy RL

In off-policy RL, our data are observations of trajectories 7 = (sg, ao, 7o, - - -, ST, @5, TH, SH+1) generated by the behavior
policy. Here 7 stands for a single observation (above O in the general case) and s;, a;, r; are individual components (above
O; in the general case). Moreover, in the MDP model, the data-generating distribution satisfies a factorization like Eq. (9):

7rf(at | s6)pe(re | s65a0)pe(se41 | 8¢, a¢).

P (T) = po(so)

M=

t=0

Finally, we have that off-policy quantities such as the policy value and policy gradient for 7¥ are independent of the behavior
policy, that is, satisfy Eq. (10) where J§ corresponds to the 7%(a; | s;) part in the factorization above. Here, the model
M would correspond to the model where the behavior policy is known (and indeed the efficiency bound is independent of
whether it is known or not).

Similarly, in the NMDP model we have an alternative factorization, where each node’s parent set is much larger:

H

pre(T) = po(so) [ [ mh(ar | Ha)pe(re | Ha)pe(se41 | Ha,)-

t=0

Again, off-policy quantities of interest are independent of of the behavior policy.

These observations imply that in order to derive the efficient influence function (and hence the efficiency bound) for any
appropriate off-policy quantity, we simply need to identify one valid influence function in M and then compute Eq. (11).
This is exactly the approach we take in our proofs for the policy gradient.

Before proceeding to our proofs, which for the first time derive the efficiency bounds for off-policy gradients, as an
illustrative case we first show how we can use this framework to derive the efficient influence functions and efficiency
bounds for J () under MDP and NMDP, which was first derived by Kallus & Uehara (2019b).

Example 5 (Off-policy evaluation in MDP). First we derive the efficient influence function. Under the model My where
the behavior policy is known we know that J(0) = E [Zf:o Vo;t’l“t} and therefore j(@) =E, [ZtH:O Vozt’l“t} is a consistent

linear estimator for J(0). Hence, ¢(T) = {Zfi 0 1/0;,57“,5} must be a valid influence function. Plugging into the right-hand
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side of Eq. (1 1) we obtain:

H H H
E § VOtTt|rjvsjaaj E VOtrt|5]7aj +E§ VOtTt|3]va] 15 85— 1 E VOtTt|a] 1y 85— 1]

§=0 t=0 t=0 t=0
H H
:Z{E[Vozﬂsjvaﬂ rj — Elvo.7jls;, a5 JFIEZVOW | 55, a5,85-1] ZVOtTt | sj-1,a;-1]}
Jj=0 t=yj
H H
=> {u r]+EZVotrt\sj,a],s] 1] =E[ > voure | sj-1,a;-1] — E[vo:nralsr, aul}
7=0 t=j t=j5—1

I
Mm

{1 rj—i-EZVOtrt\sj,aJ 1,851 ZVOH“MSJJIJ}

j=0 t=j
H H H
= {njrs +Elvoyalsj a1, 85 1 JED>_vjure | 5] = Elvoy | 55, 0,JE[>  vjiaare | s5,a5]} — J(6)
§j=0 t=j t=j
H H H
= {,ujrj + E[V@;j_1|8j, aj_l, Sj_l]E[Z I/j:t’l“t | Sj] — ]E[l/o;j | Sj, CLj]]E[Z Vj+1:t7"t | Sj, a]‘}} — J(O)
j=0 t=j t=yj
H
= vo(s0) + Y (85, a){rs + vj11(s5401) — g5 (s5,a5)} = J(9).
=0

And therefore the efficient influence function is

H

¢ (T) =vo(s0) + > mi(s5,a5){rj + vj11(s551) — ¢;(s5,a5)}-
j=0

The efficiency bound is given by its variance. This matches Kallus & Uehara (2019b).

Example 6 (Off-policy evaluation in NMDP). We repeat the above in the NMDP case. Again, we know that J 0) =
E, {Eio u():trt} is still a consistent linear estimator for J(0). Hence, ¢(T) = [Zf:o u():trt} must be a valid influence
function. Plugging into the right-hand side of Eq. (11), we obtain:

H H H H H
> {E[Z vourt | 75, hay) = B[ vours | Ha,) + B vourils;, Ha, ] — E[> uo:tnﬂaj_l]}
t=0 t=0 t=0

j=0 t=0

I
Mm

H H
{Elvo[Ha,]r; — Elvoyrj|Ha,] + B> voure | 55, Ha, ] = EDY _ vours | Ha,_, ]}

Jj=0 t*j
H
:Z{VOJTJ +EZVOtrt | HSJ - Z Vo:tTt |HaJ 1] - [VO:HTH|H0,H]}
j=0 t=j t=j—1
H H
ZZ{V(JJTJ +EZV0 e | M, E[ZVO:tTt | Ha,]} — J(0)
Jj=0 t=j t=j
H H
= {057 + Elvoy1[Hs,] ZVJ i | Hey] = Blvoy | Ha)JEDY | vigrare | Ha,l} — J(6)
3=0 t=J
H
= vo(s0) + Y o {rs +vis1(Msy,,) — ¢;(Hay)} — ().
j=0

And therefore the efficient influence function is

H

(b* (T> = UO(SO) + Z VO:j{Tj + Uj+1(HSj+1) —4j (Haj)}'

Jj=0



Statistically Efficient Off-Policy Policy Gradients

The efficiency bound is given by its variance. This matches Jiang & Li (2016); Kallus & Uehara (2019b); Thomas &
Brunskill (2016).

C. Proofs

Proof of Theorem 2. Part 1: deriving the efficient influence function. We use the general framework from Appendix B.
Letg, = >.'_, gi- Noting that Z(§) = E [Eio TtVQ;tgt} , we see that ZtH:O r+Vo:tg, 1s an influence function for Z(6) in
the model where the behavior policy is known. Plugging it into the right-hand-side of Eq. (11), we obtain

H
E lz TtVO:tgt‘|
=0

H H H H
= Z{E Zrtvo;tﬁt | rj,s5,a;| —E Zﬁevo;tﬁt | sj,a;| +E Zrtvo:tﬁt | sj,a5-1,8j-1
=0  Li=o0 =0 =0
H
—E [Z Tev0:4G; | aj—1,85-1|}
t=0
H H
= {E [v03; | 55, 05) 75 — B [voy@ym; | 55005 + B | D rivoady | 55,051,551
=0 =
H
-E ZTtVo:t@e laj-1,85-1]}
t=
H H H
= Z E [VO:jgj ‘ sj,aj] i — E ZTtVOItgt | Sj,Q5-1,8j—1 + E ZTtVOitgt | aj,S;j — Z(Q)
=0 t=j t=j
Then, by substituting g, = ZE:O g;, We obtain
H t
E ZTtVO:t {qu} | aj, s;
t=j i=0
H t H J
B[S e d S 0| 4B |3 s {zgz} Las.5:
t—j i=j+1 t—j i=0

H
E Y rwigie | aj,s;

H t
= Elvo,laj, s;JE | Y rivjiaad Y gi g laj,s;| +E
=j t=j

i=j+1

j
V0.5 gi ¢ | aj,s;
=0
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In addition,

H t
ZTtVO:t {Z!]z} | 85> @5-1,55-1
t=j =0
H t
=E ZTtVO:t Z gi |Sj7aj 1,85—-1 +E ZTtVOt{Zgz}|Sjaaj 1,85—-1
t=j

i=j+1
H
+E E Tev0:t95 | 85, 05-1,85-1
=
H H
= E[voj-1]aj—1,5;-1]E E T¢Vj E gi ¢ | 55| +E[vo -1 E gi ¢ laj—1,s;—1]E E TVjst | 85
t=j i=j+1 t=j

Ero[Q;95 | 8-
To sum up, the efficient influence function of Z(¢) under MDP is
H

> {d (s, a5)r; — (55, a5)dl(s;, a5) — di (s5,a5) (55, a5) (12)
=0

+ pi—1(sj-1,a5-1)d5 (s5) + di_y (sj—1,a;-1)v;(s;)},

where

Elvo.j | 85, a;] = pj(sj, a5),

H t
ST orwizag > gigp | siai| =di(ss,a5),

t=j+1 i=j+1
J
E |f’0:j {Zgi} | Sjaaj] = d; (s}, a;),
=0

Ero[d](sj,a;) + 4595 | s5] = d"(s;).

Part 2: calculating the variance. Next, we calculate the variance of the efficient influence function using a law of total
variance:

H
var |df(so,a0) + Y d(s5,a5){r; — q;(s5,a5) + w1 (sj10)} + (85, a){d%1 (s511) — di(s;,05)}
=0
1 [ H
= Y E |var |E[df(so,a0) + Y d(sj,a;){r; — (s, a5) + vj1(s541)} + (55, a;){d¥ 41 (s541) — d2(s5, a5)} T, ) Tay_,
k=0 | | =0
H+1 [ [ H
= Z E | var Z df (s, a;){rj — a;(85, a5) +vit1(sj+1)} + w5 (85, a){di 11 (s541) — df (85, a5) HTar ]| Tas
L L j=k—1
i1

Z E [var [d}_, (sk—1, ar—1){rk—1 — @Gr—1(Sk—1, an—1) + ve(sk)} + pr—1(sk—1, ap—1){d}(sk) — di _ (sk—1, ar—1)}HTap_.]]
k=0
H+1
= > B [var [d_(sk-1,ak-1){rk—1 — qe—1(sk—1, an—1) + vr(st)} + -1 (61, ar—1){d} () — di_ (sk—1, ar—1)}sk-1, ax-1]]
k=0
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From the third line to the fourth line, we have used the following Bellman equations:

0=E[rt —qr +vrs1 | sx,0x), 0=E[-d] +d}j | sx,an].
Next, note that ,
dj(s,a) = p;(s,a)Vlogpf (s,a).
Therefore, the variance is written as

H
6
ZE[Miq(Sk—h ag—1)var[Vlogpgr i (sp—1,ar—1){re—1 — qr—1(Sk—1,ar-1) + vr(sk)}
k=0
+ {di(sk) — dif 1 (sp—1,an-1)}|sk—1, ar-1]]. (13)
Remark 6 (More specific presentation of the variance). Note that by covariance formula, the above efficiency bound is
equal to
H+1 ,
> E [szl(skflv ak—1){®V log pi_1(sk—1,ar—1)}var [rg—1lsg—1, ax—1]
k=0
H+1 ,
+ ) E [ui_l(sk—uak—l)VIOgPZ_ﬂSk—hak—l)E {re-1—qe-1(sk—1,ar-1) + Uk(sk)}dZ(Sk)T|5k—17ak—l]]
k=0
H+1
+ ) B [pFy (sk—1, ar—1)var [df (si)|sk—1, ax—1]] -
k=0

Part 3: a simple bound for the variance.

Consider the on-policy case when p; = 1. Then, from (13), the efficiency bound of Z(6) under MDP is

kH:JBI E o [var [V Ingge_l(Skfhalcfl){kal — qi—1(Sk—1,ak-1) + vi(sk)} +{dp(sk) — df 1 (Sk—1,ak-1)}|Sk—1, akAH .

(14)

Since this is the lower bound regarding asymptotic MSE among regular estimators of Z (), it is smaller than the variance of
H t
Dm0 Tt 2og—o Ik (Sk | ak),

noting E,, [Zf:o T ZZ:O 9k (sk | ag)] is an asymptotic linear estimator. The variance of this estimator is bounded by

H ¢
H
Var, .o |3 4ot S o gk (st | ak)} = anaxvarpwe [Z ng(sk | ak)]

t=0 k=0
H t
= Rhux > D _var o [g(sk | ax)]
t=0 k=0
H+1)(H+2))?
j R?naxGmax {(H;—i_)} IDXD~ (15)

Here, from the first line to the second line, we use the fact that the covariance across the time is zero:
cov o [gr(sk | ar), g;(s; | a;)] =0, (k # j),
since when k < j
cov o [gr(sk | ar), g5 (s; | ;)] = E 2o [grgs] — E w0 [9k]E 20 [95] = B ro [grE 20 [95 | 55, a5]) = 0.

Therefore, the quantity (14) is also bounded by RHS of (15).
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Let us go back to the general off—policy case. For any functions k(s;, a;) taking a real number, by importance sampling, we
have

Epﬂ'b [M%(St, at)k(styat)] = Epw [Mt(suat)k(st, at)] < Epwe [k(St,at)]Cg,

since y; is upper bounded by C,. Therefore, noting the difference of (13) and (14), the quantity ||var[{mpp]|op 1S
upper-bounded by

CoR?

max

G { (H+1)2(H+2) }2 .
O

Proof of Theorem 3. We omit the proof of the first and second parts since it is almost the same as Theorem 3, where we
simply replace 1 (s¢, at), i (se, at), di (st, ar), di (se, ar) with vo. (Ha, ), ¢t (Ha, ), df (Ha, ), d¥ (Ha, ). Then, based on (12),
the efficient influence function of Z(6) under NMDP is
H
Enmpp = 3 _{d¥ (Ha,)rj — 0 (Ha, )dd (Ha,) — d% (Ha,)g; (Ma,)
j=0
+ V0:j-1 (Hajfl )d;J (Hsj) + d;—l (Haj—l )U(Hs]' )}

The efficiency bound of Z(6) under NMDP is

PV ER (Mo )var[V10g pF - (Mo ) {rh—1 — Qo1 (Hay o) + 0k (Ha )} + {d(Hay) — d2 | (Hap ) HHan ),
(16)

where V log pge (Ha,,) = E?:o 9j(Ha,). Again, consider the on-policy case where vq.; = 1. Then, the above is equal to

WV E o [var[Vlog pf ) (Hay ) {71 — @1 (Hay_,) + ve(Ha )} + {di(Ha,) — df_y (Hay_)HHa,]) (A7)

Again, this quantity is bounded by RHS of (15). Go back to the general off-policy case. For any functions k(s;, a;) taking a
real number, by importance sampling, we have

o [V2(s¢,a4)k(se,ar)] = O [Vo.¢(st, ar)k(se, ar)] < E .o [k(s¢,a)]CH,

noting vo.; < C}. Therefore, noting the difference of (13) and (14), the term ||var[émpp]||op is upper-bounded by

max

Proof of Theorem 4. The efficiency bound of Z(0) under NMDP is written as 34 E [17_ cax—1(Hy—1)], where

7T9 v
k-1 (,kal) = V&I‘[V Ingk,1 (Hak—l ){kal — k-1 (Hak—l) + U (Hsk )} + {dk (Hsk) - di—l(Hﬂ«k—l )}|Hak—1]'
From the assumption, this efficiency bound is lower bounded:
kHthl ]Ep.,rb [uz_lak,l(?{ak_l )] E Ep."b [V?{OtH(HaH)} t CgHEp,,rb [OlH(/HaHﬂ t C:?HC.
Here, we also have used oy, (H,,, ) foreach —1 < k < H — 1 is a semi-positive definite matrix, and

ap(Hay) = var[V 1og ply (Hap ) {ra — am} | Hay)-
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Proof of Theorem 5. We have

H+1
var[Zf:gl Vo.tT¢ ZZ:O gs] Z Elvar] Z Vo:tTt ng | Tar) | Tar_1]]
H+1
= Z EV&I‘[E Z Vo:tTt Z s ‘ 7;% ‘ 7;% 1”
t=k—1 s=k—1
H+1 H t
= Z E Vk 1V&I‘ Z Vi:tTt Z gs |7:1k] |7:1k'—1]]'
t=k—1 s=k—1
H+1 H t
= Z E[ Vk var[E Z Vit Tt Z 9s | Hap] | Haps]l-
t=k—1 s=k—1

Proof of Theorem 6. Based on Theorem 5, as in the proof of Theorem 4, when ¢Z < var[rggy | Ha,, ], this variance is
lower bounded by C3c. O

Proof of Theorem 7. For the simplicity of the notation, we prove the case where K = 2. Recall that the influence function
of {umpp is

Empp (T ¢, p, d9, dH) Z{d sj, ;)5 — (s, a;)d3(s5, a;5) — di (sj, a;)q;(s5, a;) (18)

+ uj—l(ijla aj—1)d;(s;) +df_y(sj-1,a;-1)v;(s;)}. (19)
Here, n = {p1;},q9 = {q;}, d* = {d}}, d" = {d}/}. Then, the estimator ZEOPPG (g jg
0.5By, [énpp (T3¢0, a0, d7M) drM)] 4+ 0.5, [Evpp (T3¢, @), d1@ | dr2))].

Then, we have

Vi{Bay, [Enpp (T q(2), ﬂ(2), Ciqw)’ dH(Q))] — Z(6)}

= V{Gu, [Eupp (T3¢, 43, d1®) d"®)) — &upp(T; ¢, 1, d?, d"))] (20)
+Vn(Elénpe(T5¢P, 4P, d"?,d*)) | §®, 4P, d7®, d*P) — Elénpe (T; 4, p,d?, d)]} @1
+ V{Bu, [Empp (T ¢, 1, d?, d)] — Z(6)}.

The first term (20) is o, (1) following the proof of Theorem 5 (Kallus & Uehara, 2019b) (Also from doubly robust struture
of EIF from the following lemma). The second term (21) is following Lemma 14.

Lemma 14. The term (21) is 0,(1).
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Proof.
E[fMDP(T;d(2)7ﬂ(2)7(iQ(2)762“(2) \q(2) 7 (2) da(2) du(Q)] E[évpp (T g, g, d9, d™)]

=B (7 = ) (<™ ) + () = i) (-5 + ) | 22

2 (2 (2 ~(2
(2, — ) (@ — dg) + (d2P) — di_ ) (07 — o) | Lo]
4 (g — 42 + p(dl — d1P) | L]
d_ (07 — o) + o1 (Bae |41 + 47 gi | 58] — Ene [d2 + qrogne | si]) | L2

~(2) _d1 dv CZN@) iy _ L
(fay, pe) (—dil +di 1) + (dy W) (T — ar + vrgr) | Lo

H
~(2 2q(2 (2 ~(2

=E[> (37 — ) (~di? +dl) + (@D — (07 + ) | L]

H
+ED (A7) — e ) (dy® — dp) + (@) — )0 —up) | La].

k=0
Here, we use
0 = E[urf(sk,ar) — pr—1Ero [f (58, ar) | sk]]s
0=E[d} f(sk.ar) — df _ Epo[f(sk,ar) | sk] — 0" Ero[f(sk, ar)ar | sk,
0 =E[f(sk, a)(rr — @ + vis1)],
0 = E[f(sk, ar)(—d} + dj1)]-

Then, from Holder’s inequality, the Euclidean norm of the above is upper bounded by up to some absolute constant:

2q(2 (2 ~(2
Z 1A — el 2™ — d2allze + 1142 — izl 22 138 — qell o2

+

H
(2 (2 ~(2
Z| — i1 l2 Ny ® = dgllallpz + ) — di_y ol 21657 — vl e

S

=0
0p(n™ " )op(n™ ) + 0p(n” )0y (N~ ) + 0p(n™ " )op(n~ min(a&a‘k)) +0p(n”*?)op(n™)
o

n= mm{al,ag}) p(n_ min{a37a4}> — Op(n_1/2).

Here, the convergence rates of 0, d* are proved as follows:

9% — vil72 = Exe [{Ero [Gr(sk, an) | 5t) — Exolar (s, ar) | sk} | da]
< Eooo [Bro [{ G5k ar) — qr(sk, an) Y | sk] | G
< CLE o [Ero [{dn (5, ar) — a(sk, an)}> | ] | G
< CyEr [{ Gk (k5 ar) — qi(sk, a)} | @] = op(n™°%)

The first line to the second line is proved by conditional Jensen’s inequality. In the same way, by defining g;, ; as a i-th
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component of gy,

g = dy I2: < Exo[{Enol(d], — df ) + (Gr — ar) 12 | G, dJ]
< B [Ero[{(df; — df ;) + (G — @) gr,i}> | se] | Gr. di]
< CLEn B [{(dY, — di) + (G — ax)gr,i}? | se] | i, d)
< ClE[{(dL; — df ) + (G — au)gr.i}? | i df] = o (n~ min(es0a)y,

O
Finally, combining everything, we have
0.5y, [Enpe (7541, 41, 7D, d*)] +0.5B, [évpp (T3¢, 1), d*3), d#2))]
= 0‘5]EU1 [gMDP (T7 q, K, dq7 dﬂ)] + 0.5]EZ,{2 [é-MDP (Ta q, K, dq7 dﬂ)] + Op(n_l/Q)
= B, [émpp (T ¢, 1%, d")] + 0y (n™1/2).
Finally, CLT concludes the proof. O

Proof of Theorem 8. For the simplicity of the notation, we prove the case where K = 2. Recall that the influence function
of {mpp s

H

Eupp (T3¢, d?,d") =Y {d! (s, a5)r; — pi(s;, a5)d2 (55, a5) — d¥ (55, a;)q(s5, a;) (22)
j=0

+ pj-1(sj-1,a;-1)E[d] (55, a;)[s;] + di_y (sj-1, a;-1)E[g; (s}, a;)|s;]}- (23)

Here, = {p1;},q9 = {¢;}, d* = {d}}, d* = {d//}. Then, the estimator ZEOPPG () s

0.5E, [énpp (T G, ﬂ(l), Ci(l(l)7 d/t(l))] + 0.5Ey, [Empp (T FONNOR (Zq(2), J/L(Q))].

Then, we have

{E, [énmpp (T34, 4P, d1®)  d+3)] — Z(0)}
{Gu2 [§MDP(T (2) A(2) dq(2) du@)) fMDP(T' qT MT qrT qu)] (24)
+ {E[émpp (T § (2) i (2) dq(2) qr ) | (2) M(2) 442 du(2)] E[¢nmpp (T qT,u’r,duT’qu)]} (25)

+ {Eu, [Snpp (T ¢, d*F, d7T)] — Z(6)}.

The first term (24) is 0, (1/+/n) following the proof of Theorem 5 (Kallus & Uehara, 2019b). The second term (25) is 0
following Lemma 14.

Finally,

0.5E, [évpp (T3¢, a0, d2M) | d*W)] 4+ 0.5, [evpp (T3¢, 52, d13® | g+?))
= 0.5y, [&upp (T q', uf, d*T, d1)] + 0.5E, [Eupp (T ¢F, 1t d*T, d1)] + 0,(1)
- ]En[EMDP(T7 qT7 .u“Ta duT? qu)] + OP(l)'

Finally, the law of large number concludes the proof since the mean is Z(#) under the condition in the theorem. We use
E[&MDP (Ta qu :U/Jrv dHJF’ qu)} = Z(Q)

Lemma 15. E[&vpp(T;¢f, pf, d4T, d7)] = Z(0).
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Proof.

E[gMDP(T; qT» /J'Ta dMT7 dML) | qTa /J'Tv dMT’ d’”] - E[&MDP(T§ q, i, d?, d”)}
H
= B[ (uf — ) + df) + (T — di)(—af + qn)]

x>
(=)

+ED (uh_y — pren) () —dp) + (dt — i) (o) — )]

+ED di(gy — qf) + p(dl — di)]

FE dt (o] = on) + o1 (Bro[(af — a1)gn | 58]) + i1 (o [d2T | 55] — Epo[d2 | s¢])]

FED (1) — ) (—dl +df) + (T — d) (e — i + vrgr)]

[[M= M= 1= I[I=

(uf, — ) (= + ) + (diT — dt) (af — ar)]

I
M=

~
Il
=

(b1 — pn—) (=) + dfpy) + (@ — dtt_ ) (o] — o).

M=

+E[

=
Il
o

Here, we use the relations for Vf (s, a):

0 = Eluwf(sk, ar) — p—1Ero[f(sk, ar) | sk]],

0 =E[d f(sr,ar) — df _ Ero[f(sk,ar) | sx] — 1" " Ea [f (s, ar)gr | skll,
0 =E[f(sk,ar)(rr — @ + vit1)],

0 =E[f(sk, ar)(—dj + diy1)]-

Then, when p = pt,d* = d*t or ¢ = ¢f, d9 = d®" or u = put, ¢ = ¢F, we have
H H
E[D (il — ) (df, — di) + (@ — di)(ar — g)] + B[ (kg — ) (& — dp) + (@1 — i) (v] —vp)]
k=0 k=0
—0+0+0+0=0,

This concludes the proof.

Remark 7. The above is not equal to 0 when d* = d"T, d? = d?t. The reason is in that case:

E[S o (uh = ) (@it — )] # 0.

since d1 # dy.

Proof of Theorem 9. First, we have

H
(85, 85) = B[ 2 revjene | a5, 55
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By differentiating w.r.t 6, we have

H t H t
di(sjoa;) =B | Y reviena § Y gilaalsi) p lagisi| =E | Y revspre D gilailss) o | ag,s5]
t=j

i=j+1 t=j+1 i=j+1

notin,
& t
Vi1 = Viy14Viogrjrg = Vj+1:t{zi:j+1 gi(ai|5i)}~

Second, we have
1 (s, aj) = Evo, | aj, ;]

By differentiating w.r.t 6, we have

d5(aj,s5) =E [1/0:]- {ZLQ gi(ai|si)} | aj,sj] ,

noting ‘
Vg, = v,V logvo.j = vo {1 gi(as|si)}
O
Proof of Theorem 10. The following recursive equations (Bellman equations) hold:
gj(s5,a5) = Elr + ¢j11(sj11,7°) | 85, 4],
1 (sj,a5) = Blpj—1(sj—1, a;-1);]s;, a5].
Then, by differentiating w.r.t 6, we have
di(sj,a;) = E[Exe[d] (8541, a41) + gj1(8j415 4j41)q+1 (85415 a41) | sj41]l85, a4,
d (sj,a5) = E[d_;(sj—1,a5-1)[s;, a;]0; + Eluj—1(s5-1,a;-1)|s5, a;]g;(a;, ;)7
= E[d}_(sj-1,aj-1)|s5, a;10; + p;(s5, a;)9;(a;, s5)-
L]

Proof of Theorem 11 . We modify the proof of Theorem 1 (Khamaru & Wainwright, 2018) so that we can deal with the
noise gradient. In this proof, define f(6) = —J(6). Then, by M-smoothness,

FO) < f(Ok) + (Vf(0r), & — 6k) + ALl — Ok 2.
Then, by replacing 6 with 6,1 = 0 — «xV f(0k) — i By,
F(Org1) < f(Ok) + (VF(Ok), Ousr — Ok) + E[|Ors1 — Okll2-

Thus,

JFOk) = f(Okt1) = —(Vf(Ok), Ok 1 — Ok) — %||9k+1 B

2
= ok (VF(O), VF(00) + Bi) — “E |V 1(60,) + By
2
= gV FOR) I+ n(T(60), Be) — o B[V (0) + By
2
= gV FOR)IB ~ w00, Bl — o K[V (0) + By

> ai [V (O3 — 0-5a5(IVF @)1 + [ Bll2) — Mag(V£(0r)l3 + 11Bxl3)
> 0.250[|V f(8x)[|3 — 0.5k || Bi[|3 — 025 || By l3-
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Here, from the fourth line to the fifth line, we use inequalities parallelogram law:
2/(a,b)| < llall3 + [Ibl3, lla + blI3 < 2[lal[3 + 2[|bl|3.
From the fifth line to the sixth line, we use a condition regarding M. This yields,
F(Or) = f(Ok41) + 0.750[| Bi|[5 = 0.2504 [V £ (0413

Then, by telescoping sum,

{00 = [} + 7 32, 0.750u | Billf = 7 2, 02504V f (1) .
Noting f(0) = —J(0),

T = J(00)}+ 73, 0.7504 || B3 > % 2, 0.250 | VI () 13-
Expanding by 4 yields the result. O

Proof of Theorem 12. Here,
By = E,[évpp (0:) — Z(0;)] 4 0p(n=1/2).
from the proof of Theorem 7. Then, the j® component of B is
B ; = (Enl&nmp,;(01) — Zj(00)] + 0p(n~1/2))? = Eu[énmp,; () — Z;(00)] + 0p(n 1), (26)

where {vpp ;IS a 4™ component of IF and Z; is a j-th term of Z(6), &upr(F) is émpp at 6. Here, we use
O,(n"Y?)o,(n"1/2) = o,(n™1), 0,(n"/?)o,(n"1/2) = o,(n~'). Here, noting 6, is a random variable, we have
to bound the main term uniformly as

En[émpp,j(0:) — Z;(0)]* < (supgee Enlénpp,;(0) — Z;(0)])2.

By following Theorem 8.5 (Sen, 2018) based on a standard empirical process theory combining Rademacher complexity
and Talagland inequality, with probability 1 — 9,

sup En, [§mpp,;(6) — Z;(0)]
)

J Supgeo var[éupp,;] log(1/6)  log(1/9)
<E 72: (1)) \/ Poeco o
* [Slelg |n P S IDP’](Q)H n n

CQGmangnax(H + 1)2(H + 2)2 log(l/é) + log(]‘/é)
n n

< LV/D/n+ \/
Then, with probability 1 — 4,
{sup E, [énmpr,;(0) — Z;(0)]}
0cO

n n

= {L D+ | e s (L DU 2 27101/, L1/ }

Here, we also use the Rademacher complexity of the Lipschitz class on Euclidean ball is bounded by L+/D/n based on the
assumption O is a compact space (Example 4.6 (Sen, 2018)).

Considering an error term o,(1/n) in (26) and taking an union bound over ¢t € [1,--- ,T],j € [1,--- , D], we conclude
that there exists Vs such that with probability at least 1 — J, Vn > N;

L I.D
7 2 1Bell3 = TZZB?,J'

t=1 j=1
2
2 2 2
<D { . \/5 .\ \/czcmameax(H+ DP(H +2)71og(TD/6) , log(TD /5)}
n n n
= p LD+ CoGmax Ria (H + 1)*(H + 2)*log(TD/3)

n
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O

Proof of Theorem 13. We modify the proof of Theorem 3.1 (Hazan, 2015) so that we can deal with a noise gradient. Define
—J(0) as f(0) and redefine Z(0), Z(6) as —Z(0), —ZF¥OFPPG (). Then, the algorithm is redefined as

e 0, =0, — atZ(Ht)
e 0, = Projg 9~t
Then, from convexity assumption for —.J(6),
F(0) = f(07) < Z(0:)(6: — 67).
In addition, from Theorem 2.1 (Hazan, 2015),
10441 — 0%[|2 = || Projg (6: — t Z(0:)) — 0% (|2 < [|0: — . Z(8:) — 6% |-

Hence,

2(2(0,), (0, — 07)) < W=z 0ea =0Tl 1)1 Z(9,)|3. @7
Noting
1Z(6,)13 = |1 B. + 2(0.)[3 < 2| Bil13 + 2/ Z(6,)]12,

as in the proof of Theorem 12, there exists N5 such that n > N with probability at least 1 — 4,

2Z(0,), (0, — 0%)) 5 W= Lm0 =01 4 (qupy o (| Z(0)]|2 + U)as,

Qg

where U7 = DZ2D+02Cmax "‘ax(HH) (H+2)* log(D/9) . Then, based on

M=

ST 0 — £(67) <Y (2(0), (6, - 67))

t=1
T T

< ST(ZEOPRS(g) (9, — %)) + 3 (2(68) — ZFOTFC(9), (6, — 6°)), (28)
t=1 t=1

we analyze the first term and second term of (28).
First term of (28)

From (27), there exists Ny such that n > Ns with at least 1 — J,

ST (ZEOPRG () (9, — 6%)) 5 St MmOz 0a =072 | (1) 4 supyeq [1Z(6)]2)

Qg

2 2 2
where U = D L2D+C2Gmax Ry o (H :Lrl) (H+2)"108(T'D/3) ' (\e also take an union bound over ). Then, under this event,

0, — 0" 0 o
Z 116 13— [10i+1 — 6|3 +Z{Sup“Z( )||2+U}at

Qi
< Z 16 — 67 ]15( )+ Z{Sup 1Z(0)|3 + U}en
L1
< ZTQ(OZ “om )+ Z{H sup Z(0)||2 + Uy

-
Il

1

IN

1
“1'2a + {sup Z(0)* + U} ;at 3 T\/{SUP 1Z©)I3+U}T,
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Here, we take a; = T /\/t{supyce | Z(0)]% + U}. The last inequality follows since 3 1/v/# < VT.
Second term of (28)
We have

i 2(0) = ZEOTPEO)}T (0 — 0%) < Tysi{Z(0) = ZFOTPIO)}T (0 = %) < Ty | Bello x T
Then, as in the proof of Theorem 12, with probability 1 — 4, this is bounded by

S Bl x T £ T x VU x T.

Combining the first term and second term of (28)

‘We combine the first term and second term of (28). Then, we have
1 & 1 (<&
f (T Z@) —f0") <% <Z £(6:) = f(9*)>
t=1 t=1

Z(0)]|2
é\/ﬁT—i—T\/snpl (T)H2+U

sup||Z(9)]3 1
9<ST{ - +\/ﬁ(1+ﬁ>}.

Here, we use an inequality /= +y < /7 + Vyforz >0,y > 0.




