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Abstract
Off-policy evaluation (OPE) in reinforcement
learning allows one to evaluate novel decision
policies without needing to conduct exploration,
which is often costly or otherwise infeasible. We
consider for the first time the semiparametric ef-
ficiency limits of OPE in Markov decision pro-
cesses (MDPs), where actions, rewards, and states
are memoryless. We show existing OPE estima-
tors may fail to be efficient in this setting. We
develop a new estimator based on cross-fold es-
timation of q-functions and marginalized density
ratios, which we term double reinforcement learn-
ing (DRL). We show that DRL is efficient when
both components are estimated at fourth-root rates
and is also doubly robust when only one compo-
nent is consistent. We investigate these properties
empirically and demonstrate the performance ben-
efits due to harnessing memorylessness.

1. Introduction
Off-policy evaluation (OPE) is the problem of estimating
mean rewards of a given policy (target policy) for a sequen-
tial decision-making problem using data generated by the
log of another policy (behavior policy). OPE is a key prob-
lem in reinforcement learning (RL) (Precup et al., 2000;
Mahmood et al., 2014; Li et al., 2015; Thomas & Brunskill,
2016; Jiang & Li, 2016; Munos et al., 2016; Liu et al., 2018;
Bibaut et al., 2019) and it finds applications as varied as
healthcare (Murphy, 2003) and education (Mandel et al.,
2014). Because data can be scarce, it is crucial to use all
available data efficiently, while at the same time using flex-
ible, nonparametric estimators that avoid misspecification
error.

In this paper, our goal is to obtain an estimator for policy
value with minimal asymptotic mean squared error under
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Figure 1. Non-Markov decision process (NMDP)
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Figure 2. Markov decision process (MDP)

Table 1. Comparison of estimators under MDP. DR (doubly robust)
means only one nuisance is needed for consistency. Efficient refers
to whether the estimator achieves the efficiency bound under MDP.

Estimator DR Efficient Nuisances

IS ν
DM q
DR (Jiang & Li, 2016) ν, q
MIS (Xie et al., 2019) µ
DRL (Proposed) µ, q

nonparametric models for the sequential decision process
and behavior policy, that is, achieving the semiparametric
efficiency bound (Bickel et al., 1998). Toward that end, we
explore the efficiency bound and efficient influence function
of the target policy value under two models: non-Markov
decision processes (NMDP) and Markov decision processes
(MDP). The two models are illustrated in Figs. 1 and 2
and defined precisely in Section 1.1. While much work
has studied efficient estimation under NMDP (Jiang & Li,
2016; Thomas & Brunskill, 2016; Dudik et al., 2014; Kallus
& Uehara, 2019a), work on MDP has been restricted to the
parametric, finite-state-finite-action case (Jiang & Li, 2016)
and no globally efficient estimators have been proposed.
The two models are clearly nested and indeed we obtain that
the efficiency bounds are generally strictly ordered. In other
words, if we correctly leverage the Markov property, we can
obtain OPE estimators that are more efficient than existing
ones. This is quite important, given the practical difficulty
of evaluation in long horizons (see, e.g., Gottesman et al.,
2019) and given that many RL problems are Markovian.

We propose the Double Reinforcement Learning (DRL) es-
timator, which is given by cross-fold estimation and plug-in
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of the q- and density ratio functions into the efficient influ-
ence function for each model, which we derive for the first
time here. We show that DRL achieves the semiparametric
efficiency bound globally even when these nuisances are
estimated at slow fourth-root rates and without restricting
to Donsker or bounded entropy classes, enabling the use
of machine learning method for the nuisance estimation in
the spirit of Chernozhukov et al. (2018). Especially, the
asymptotic MSE of DRL is polynomial in horizon T , i.e,
O(T 2/n) under mild condition though the one of existing
estimators is exponential in T . Further, we show that DRL
is consistent even if only some of the nuisances are consis-
tently estimated, known as double robustness. To the best
of our knowledge, this is the first proposed estimator shown
to be globally efficient for OPE in MDPs. Properties of
DRL are summarized in Table 1 in comparison with other
estimators.

1.1. Problem Setup

A (potentially) non-Markov decision process (NMDP) is
given by a sequence of state and action spaces St,At for t =
0, 1, . . . , T , an initial state distribution Ps0(s0), transition
probabilitiesPst(st | Hat−1

) for t = 1, . . . , T+1, and emis-
sion probabilities Prt(rt | Hat) for t = 0, . . . , T , where
Hat = (s0, a0, . . . , st, at) is the state-action history up to
at. A (non-anticipatory) policy is a sequence of action prob-
abilities πt(at | Hst), where Hst = (s0, a0, . . . , at−1, st)
is the state-action history up to st. Together, an NMDP and
a policy define a joint distribution over trajectories H =
(s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT , sT+1), given by the
product Ps0(s0)π0(a0 | Hs0)Pr0(r0 | Ha0) · · ·PrT (rT |
HaT )PsT+1

(sT+1 | HaT ). The dependence structure of
such a distribution is illustrated in Fig. 1. We denote this
distribution by Pπ and expectations in this distribution by
Eπ to highlight the dependence on π.

A Markov decision process (MDP) is an NMDP where
transitions and emissions only depend only on the recent
state and action, Pst(st | Hat−1

) = Pst(st | st−1, at−1)
and Prt(rt | Hat) = Prt(rt | st, at), and where we restrict
to policies that depend only on the recent state, πt(at |
Hst) = πt(at | st). MDPs have the important property
that they are memoryless: given st, the trajectory starting
at st is independent of the past trajectory, so that st fully
captures the current state of the system. This imposes a
stricter dependence structure, which is illustrated in Fig. 2.
To sum up, a model for the data generating process Pπ of D
in NMDP is given by the set of products

Ps0(s0)
∏T
t=0 πt(at | Hst)Prt(rt | Hat)Pst+1

(st+1 | Hat),
(1)

over some possible values for each probability distribution

in the product. In MDP, it becomes

Ps0(s0)
∏T
t=0 πt(at | st)Prt(rt | st, at)Pst+1(st+1 | st, at).

(2)

Our ultimate goal is to estimate the average cumulative re-
ward of a policy, ρπ = Eπ

[∑T
t=0 rt

]
. The quality and

value functions (q- and v-functions) are defined as the fol-
lowing conditional averages of the cumulative reward to go,
respectively:

qt(Hat) = Eπ[

T∑
k=t

rk | Hat ], vt(Hst) = Eπ[qt | Hst ].

Note that the very last expectation is taken only over at ∼
πt(at | Hst). For MDPs, we have qt(Hat) = qt(st, at)
and vt(Hst) = vt(st) = Eπ [qt(st, at) | st], where again
the last expectation is taken only over at ∼ πt(at | st).
For brevity, we define the random variables qt = qt(Hat),
vt = vt(Hst).

The off-policy evaluation (OPE) problem is to estimate
the average cumulative reward of a given (known) target
evaluation policy, πe, using n observations of trajectories
D = {H(1), . . . ,H(n)} independently generated by the dis-
tribution Pπb induced by using another policy, πb, in the
same decision process. This latter policy, πb, is called the
behavior policy and it may be known or unknown. The
parameter of interest, ρπ

e

, is a function of just the part that
specifies the decision process (initial state, transition, and
emission probabilities).

To streamline notation, when no subscript is denoted, all
expectations E[·] and variances var[·] are taken with respect
to the behavior policy, πb. At the same time, all v- and
q-functions are for the target policy, πe. The Lp-norm is de-
fined as ‖g‖p = E[|g|p]1/p. For any function of trajectories,
we define its empirical average as

En[f(H)] = n−1
∑n
i=1 f(H(i)).

We denote the density ratio at time t between the target and
behavior policy by

ηt(Hat) =
πet (at|Hst )
πbt (at|Hst )

.

We denote the cumulative density ratio up to time t and the
marginal density ratio at time t by, respectively,

νt(Hat) =

t∏
k=0

ηt(Hak), µt(st, at) =
pπet (st, at)

pπbt (st, at)
,

where pπt(st, at) denotes the marginal distribution of st, at
under Pπ. Note that under MDP, ηt(Hat) = ηt(at, st).
Again, for brevity we define the variables ηt = ηt(Hat),
νt = νt(Hat), µt = µt(st, at).

We assume the following throughout this paper.
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Assumption 1 (Sequential overlap). The density ratio ηt
satisfies 0 ≤ ηt ≤ C for all t = 0, . . . , T . The marginal
density ratio µt satisfies 0 ≤ µt ≤ C ′ for all t = 0, . . . , T

Assumption 2 (Bounded rewards). The reward rt satisfies
0 ≤ rt ≤ Rmax for all t = 0, . . . , T .

1.2. Summary of Semiparametric Inference

We give a concise summary of semiparametric theory as
it applies to our problem. Additional detail is given in
Appendix B. For a complete treatment of semiparametric
theory, refer to van der Vaart (1998); Tsiatis (2006).

Our target estimand is ρπ
e

so a natural question is what is
the least-possible error we can achieve in estimating it. In
parametric models, the Cramér-Rao bound lower bounds
the variance of all unbiased estimators and, due to Hájek
(1970), also the asymptotic MSE of all regular estimators
(or, all estimators at all almost everywhere). Our model,
however, is nonparametric as it consists of all MDP distri-
butions, i.e., any choice for Ps0(s0), Pst(st | st−1, at−1),
Prt(rt | st, at), and πt(at | st) in Eq. (2), or of all NMDP
distributions, i.e., any choice for Ps0(s0), Pst(st | Hat),
Prt(rt | Hat), and πt(at | Hst) in Eq. (1).

Semiparametric theory gives an answer to this question.
Given an estimand and a model, it defines a function called
the efficient influence functions (EIF) as a particular path
derivative of the estimand for paths in the model, and this
function produces a lower bound of the asymptotic mean
squared error of most estimators. This lower bound is some-
times achievable by an estimator, in which case the estimator
is known as efficient. We informally state this key property
of the EIF below in terms of our own model, which is all
MDP distributions, and our estimand, which is ρπ

e

.

Theorem 1 (Informal description of van der Vaart
(1998), Theorem 25.20). The EIF φMDP

eff (H) satisfies
E[φMDP

eff (H)] = 0 and that for any regular estimator ρ̂π
e

var[φMDP
eff (H)] ≤ AMSE[ρ̂π

e

],

where AMSE[ρ̂π
e

] =
∫
zzT dF (z) is the second moment of

F the limiting distribution of
√
n(ρ̂π

e − ρπe).

The same theorem holds for the EIF φNMDP
eff (H) in NMDP.

Here, var[φMDP
eff ] and var[φNMDP

eff ] are the efficiency bounds
under NMDP and MDP, respectively. A regular estimator
is any whose limiting distribution is insensitive to small
changes of order O(1/

√
n) to Pπb that keep it an MDP

(respectively, NMDP) distribution (see van der Vaart, 1998,
Chapter 25). So the above provides a lower bound on the
variance of all regular estimators, which is a very general
class. It is in fact so general that the bound also applies to
all estimators at all in a local asymptotic minimax sense
(see van der Vaart, 1998, Theorem 25.21).

A remaining question is do there exist efficient estimators
achieving these bounds and how to find them. Theoreti-
cally, we could use the estimator En[ρπ

e

+ φMDP
eff (H)] –

that would be unbiased for ρπ
e

and have exactly the right
variance. But, of course, the function ρπ

e

+φMDP
eff (H) is not

generally known. Even if we know its theoretical form, as
we will derive it in Section 3, it will involve many unknown
quantities such as, for example, the q-function. An approach
we will take is to carefully approximate this function, take
its sample average, and show that this approximation be-
haves almost the same as this theoretical ideal estimator up
to tiny errors that do not appear in the

√
n scale. Therefore,

we will have constructed an efficient estimator.

2. Summary of Literature on OPE
Methods for OPE can be roughly categorized into three
types. The first approach is the direct method (DM), wherein
we directly estimate the q-function and use it to directly es-
timate the value of the target evaluation policy. More specif-
ically, once we have an estimate q̂0 of the first q-function,
the DM estimate is simply

ρ̂π
e

DM = En [Eπe [q̂0(s0, a0)|s0]] ,

where the inner expectation is simply over a0 ∼ πe(· | s0)
(Ernst et al., 2005; Le et al., 2019). However, DM is weak
against model–misspecification of q–functions.

The second approach is importance sampling (IS), which
averages the data weighted by the density ratio of the eval-
uation and behavior policies (Precup et al., 2000). Given
estimates ν̂t of the cumulative density ratios (or, letting
ν̂t = νt if the behavior policy is known), the IS estimate is
simply

ρ̂π
e

IS = En

[∑T
t=0 ν̂trt

]
.

When behavior policy is known, IS is unbiased, but its
variance tends to be large due to extreme weights.

The third approach is the doubly robust (DR) method, which
combines DM and IS and is given by adding the estimated q-
function as a control variate (Scharfstein et al., 1999; Dudik
et al., 2014; Jiang & Li, 2016). The DR estimate has the
form

ρ̂π
e

DR = En

[∑T
t=0 (ν̂t(rt − q̂t) + ν̂t−1Eπe [q̂t|st])

]
.

Many variations of DR have been proposed (Thomas &
Brunskill, 2016; Farajtabar et al., 2018; Kallus & Uehara,
2019a). However, all of the aforementioned IS and DR
estimators do not exploit MDP structure and, in particular,
will fail to be efficient under MDP. Recently, in the same
finite-state-and-action-space setting studied by Jiang & Li
(2016), Xie et al. (2019) studied an IS-type estimator that
exploits MDP structure by replacing density ratios with
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marginalized density ratios, estimated by within-state-action
averages since state and action spaces are assumed finite.
More spefically, the estimator has the form

ρ̂π
e

MIS = En

[∑T
t=0 µ̂trt

]
,

given estimates µ̂t. However, this estimator is also not
efficient, even in the finite setting though near optimal. In
fact, the asymptotic MSE is O(T 3/n), not O(T 2/n).

Finally, note that our focus is a finite horizon problem. This
setting is different from the recent work of infinite horizon
OPE utilizing the existence of stationary distributions (Liu
et al., 2018; Nachum et al., 2019; Kallus & Uehara, 2019b).
Their methods cannot be directly applied to a finite horizon
problem since the stationary distribution does not exist.

3. Semiparametric Inference for Off-Policy
Evaluation

In this section, we derive the efficiency bounds and efficient
influence functions for ρπ

e

under MDP and NMDP.

3.1. Semiparametric Efficiency in Non-Markov
Decision Processes

First, we consider the efficiency bound under NMDP. We
do this mostly for the sake of completeness since, while the
influence function we derive below for the NMDP model ap-
pears as a central object in the structure of various previously
proposed doubly-robust OPE estimators for RL (e.g., among
others, Jiang & Li, 2016; Farajtabar et al., 2018; Kallus &
Uehara, 2019a; Thomas & Brunskill, 2016), we are aware
of no result showing rigorously that it in fact corresponds
to the efficient influence function in the NMDP model or
deriving the semiparametric efficiency bound. (Note that,
in contrast, the influence function we derive for the MDP
model in the next section appears to be novel.)

Theorem 2 (Efficiency bound under NMDP). The efficient
influence function of ρπ

e

under NMDP is

φNMDP
eff (H) = −ρπe +

∑T
t=0 (νt (rt − qt) + νt−1vt) ,

(3)

where vT+1 = 0, ν−1 = 0. The semiparametric efficiency
bound under NMDP is

EffBd(NMDP) =
∑T
t=−1 E

[
ν2
t var (rt + vt+1 | Hat)

]
,

(4)

Remark 1. When the action and state spaces are discrete,
NMDP is necessarily a parametric model. In this discrete-
space parametric model and with rt = 0 for t ≤ T − 1,
Theorem 2 of Jiang & Li (2016) derives the Cramér-Rao
lower bound for estimating ρπ

e

. Because the semiparamet-
ric efficiency bound is the same as the Cramér-Rao lower

bound for parametric models, the bound coincides with ours
in this special discrete setting. There is a significant gap to
deriving the semiparametric bound, which generalizes these
results to more general action and state spaces and non-
parametric models. Our result is more general, establishing
the limit on estimation in non-discrete, nonparametric set-
tings and, moreover, establishes that the efficient influence
function coincides with the structure of many doubly-robust
OPE estimators used in RL (see references above).

Remark 2. The efficient influence function φNMDP
eff has

the oft-noted doubly robust structure. Specifically, ρπ
e

+
E
[
φNMDP

eff (H)
]

is equal to

= E

[
T∑
t=0

νtrt

]
︸ ︷︷ ︸

=ρπe

+ E

[
T∑
t=0

(−νtqt + νt−1vt)

]
︸ ︷︷ ︸

=0

= E [v0]︸ ︷︷ ︸
=ρπe

+ E

[
T∑
t=0

νt(rt − qt + vt+1)

]
︸ ︷︷ ︸

=0

.

The first term in each line corresponds to IPW and direct
method (DM) estimators, respectively. The second term in
each line is a control variate, which remain mean zero even
if we plug in different (i.e., wrong) q- and v-functions or
density ratios, respectively. In this sense, it is sufficient to
estimate only one part of these for consistent OPE. We will
leverage this in Theorem 9 to achieve double robustness for
DRL.

3.2. Semiparametric Efficiency in Markov Decision
Processes

Next, we derive the efficiency bound and efficient influ-
ence function for ρπ

e

under MDP. To our knowledge, not
only have these never before been derived, the influence
function we derive has also not appeared in any existing
OPE estimators in RL. We recall that under MDP, we have
qt = qt(st, at) and vt = vt(st).

Theorem 3 (Efficiency bound under MDP). The efficient
influence function of ρπ

e

under MDP is

φMDP
eff (H) = −ρπe +

∑T
t=0 (µt (rt − qt) + µt−1vt) ,

(5)

where vT+1 = 0, µ−1 = 0. The semiparametric efficiency
bound under MDP is

EffBd(MDP) =
∑T
t=−1 E

[
µ2
tvar (rt + vt+1 | st, at)

]
,

(6)

Remark 3. Again, when the action and state spaces are
discrete, MDP is necessarily a parametric model. In this
discrete-space parametric model and with rt = 0 for
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t ≤ T − 1, Theorem 3 of Jiang & Li (2016) derives the
Cramér-Rao lower bound, which must (and does) coincide
with ours in this setting. Again, our result is more general,
covering nonparametric models and estimators, and, impor-
tantly, derives the efficient influence function, which we will
use to construct the first globally efficient estimator for ρπ

e

under MDP.

Remark 4. The difference between the efficient influence
functions in the NMDP and MDP models, φNMDP

eff and
φMDP

eff , is that (a) the cumulative density ratio νt is replaced
with the marginalized density ratio µt and (b) that q- and v-
functions only depend on recent state and action rather than
full past trajectory. Note that the latter difference is slightly
hidden in our notation: in φNMDP

eff , qt refers to qt(Hat),
while in φMDP

eff , qt refers to the much simpler qt(st, at).

Although the efficient influence function in Theorem 3 is de-
rived de-novo in the proof, which is the most direct route to
a rigorous derivation, we can also use the geometry of influ-
ence functions to understand the result relative to Theorem 2.
The efficient influence function is always given by project-
ing the influence function of any regular asymptotic linear
estimator onto the tangent space (Tsiatis, 2006, Thm. 4.3).
Under MDP, the function φNMDP

eff (H) from Theorem 2 can
be shown to still be an influence function of some regular
asymptotic linear estimator in MDP. Projecting it onto the
tangent space in MDP, where we have imposed the indepen-
dence of past and future trajectories given intermediate state,
can be seen to exactly correspond to the above marginal-
ization over the past trajectory, explaining this structure of
φMDP

eff (H).

Remark 5. The efficient influence function φMDP
eff (H)

also has a doubly robust structure. Specifically, ρπ
e

+
E
[
φMDP

eff (H)
]

is equal to

E

[
T∑
t=0

µtrt

]
︸ ︷︷ ︸

=ρπe

+ E

[
T∑
t=0

(−µtqt + µt−1vt)

]
︸ ︷︷ ︸

=0

= E [v0]︸ ︷︷ ︸
=ρπe

+ E

[
T∑
t=0

µt(rt − qt + vt+1)

]
︸ ︷︷ ︸

=0

.

The first term on the first line corresponds to the marginal-
ized IPW estimator of Xie et al. (2019). The first term on the
second line corresponds to the DM estimator. The second
term on each line corresponds to control variate terms. We
will leverage this in Theorem 12 to achieve double robust-
ness for DRL.

By comparing the efficiency bounds of Theorem 2 and The-
orem 3 and using Jensen’s inequality, we can see that the
Markov assumption reduces the efficiency bound, usually
strictly so.

Theorem 4. If Pπb ∈ MDP (i.e., the underlying distribu-
tion is an MDP), then

EffBd(MDP) ≤ EffBd(NMDP).

Moreover, the inequality is strict if there exists t ≤ T
such that both νt−1 and rt−1 + vt are not constant given
st−1, at−1.

We can in fact show that the two efficiency bounds are on
different scales: one polynomial and the other exponential.

Theorem 5.

EffBd(MDP) ≤ C ′R2
max(T + 1)2,

EffBd(NMDP) ≤ CT+1R2
max(T + 1)2.

Moreover, if Eπe [log(ηt)] ≥ Cmin and
Eπe [log(var(rt + vt+1 | Hat))] ≥ log(V 2

min) then

EffBd(NMDP) ≥ CT+1
min V

2
min.

This shows that EffBd(MDP) is at most polynomial in T ,
more specifically O(T 2/n), if C ′ is bounded in T . We ex-
pect this to happen unless the MDP is highly degenerate.
For example, this occurs whenever πbT (sT ) converges in
distribution as T →∞, which for example happens if MDP
transition distributions are time-invariant and the chain in-
duced by πb is ergodic. On the other hand, EffBd(NMDP)
is always exponential in T , more specifically Θ(CTT 2), as
long as the evaluation and behavior policies do not become
arbitrarily similar as T grows and the MDP is not degenerate
enough so that variances vanish. Together, this implies that
the curse of horizon is inevitable in NMDPs, while it can
potentially be avoidable in MDPs.

4. Efficient Estimation
In this section, we construct the DRL estimator and then
study its properties in the various models. In particular, we
show that DRL is globally efficient under very mild assump-
tions. In the NMDP model, these assumptions are generally
weaker than needed for efficiency of previous estimators. In
the MDP model, this provides the first globally efficiency
estimator for OPE. We further show that DRL enjoys cer-
tain double robustness properties when some nuisances are
inconsistently estimated.

DRL is a meta-estimator; it takes in as input estimators for
q-functions and density ratios and combines them in a par-
ticular manner that ensures efficiency even when the input
estimators may not be well behaved. This is achieved by
following the cross-fold sample-splitting strategy developed
by Chernozhukov et al. (2018). We proceed by presenting
DRL and its properties. Especially,in the MDP setting, DRL
is the first semiparametrically efficient and doubly robust
estimator.
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4.1. Double Reinforcement Learning for NMDPs

Given a learning algorithm to estimate the q-function q(Hat)
and cumulative density ratio function νt(Hat), DRL for
NMDPs proceeds as follows:

1. Split the data randomly into two halves, D0 and D1.
Let J (i) ∈ {0, 1} be i’s half so that i ∈ DJ(i) .

2. For j = 0, 1, construct estimators ν̂(j)
t (Hat) and

q̂
(j)
t (Hat) based on the training data Dj alone.

3. Let ρ̂π
e

DRL(NMDP) be

En[
∑T
t=0

(
ν̂

(1−J)
t (rt − q̂(1−J)

t ) + ν̂
(1−J)
t−1 v̂

(1−J)
t

)
],

where v̂(1−J)
t = Eπe [q̂

(1−J)
t | Hst ], which is com-

putable as a sum or integral over the known Eπe . Here,
in ith term of the empirical expectation, J refers to the
data J (i).

In other words, we approximate the efficient influence func-
tion φNMDP

eff (H) +ρπ
e

from Theorem 2 by replacing the un-
known q- and density ratio functions with estimates thereof
and we take empirical averages of this approximation, where
for each data point we use q- and density ratio function esti-
mates based only on the half-sample that does not contain
the data point.

This estimator has several desirable properties. To state
them, we assume the following conditions for the estimators,
reflecting Assumptions 1 and 2:

Assumption 3. 0 ≤ ν̂t ≤ Ct, 0 ≤ q̂t ≤ (T + 1− t)Rmax

for 0 ≤ t ≤ T .

We first prove that DRL achieves the semiparametric effi-
ciency bound, even if each nuisance estimator has a slow,
nonparametric convergence rate (sub-

√
n).

Theorem 6 (Efficiency of ρ̂DRL(NMDP) under NMDP).
Suppose ‖ν̂(j)

t − νt‖2‖q̂(j)
t − qt‖2 = Op(n

−1/2), ‖ν̂(j)
t −

νt‖2 = Op(1), ‖q̂(j)
t − qt‖2 = Op(1) for 0 ≤ t ≤ T, j =

0, 1. Then, the estimator ρ̂π
e

DRL(NMDP) achieves the semi-
parametric efficiency bound under NMDP.

Remark 6. There are two important points to make about
this result. First, we have not assumed a Donsker condition
(van der Vaart, 1998) on the class of estimators ν̂t and q̂t.
This is why this type of sample splitting estimator is called
a double machine learning: the only required condition is a
convergence rate condition at a nonparametric rate, allowing
the use of complex machine learning estimators, for which
one cannot verify the Donsker condition (Chernozhukov
et al., 2018). Second, relative to the efficient influence
function, which is defined in terms of the true q-function
and cumulative density ratio, there is no inflation in DRL’s

asymptotic variance due to plugging in estimated nuisance
functions. This is due to the doubly robust structure of
efficient influence function so that the estimation errors
multiply and drop out of the first-order variance terms. This
is in contrast to inefficient MIS estimator.

Often in RL, the behavior policy is known and need not be
estimated. That is, we can let ν̂(j)

t = ν. In this case, as
an immediate corollary, we have a much weaker condition
for semiparametric efficiency: just that we estimate the
q-function consistently, without a rate.

Corollary 7 (Efficiency of ρ̂DRL(NMDP) when the behavior
policy is known ). Suppose ν̂t = νt and ‖q̂(j)

t − qt‖2 =
Op(1) for 0 ≤ t ≤ T, j = 0, 1. Then, the estimator
ρ̂π

e

DRL(NMDP) achieves the semiparametric efficiency bound
under NMDP.

Without sample splitting, we have to assume a Donsker
condition for the class of estimators in order to control
a stochastic equicontinutiy term (see, e.g., van der Vaart,
1998, Lemma 19.24). Although this is more restrictive, for
completeness, we also include a theorem establishing the
semiparametric efficiency of the standard plug-in doubly
robust estimator for NMDPs (Jiang & Li, 2016) when assum-
ing the Donsker condition for in-sample-estimated nuisance
functions, since this result was never precisely established
before.

Theorem 8 (Efficiency without sample splitting). Let ν̂t, q̂t
be estimators based on D and let

ρ̂π
e

DR = En

[∑T
t=0 (ν̂t (rt − q̂t) + ν̂t−1Eπe [q̂t | Hst ])

]
.

Suppose ‖ν̂t−νt‖2 = Op(n
−α1,t), ‖q̂t−qt‖2 = Op(n

−α2,t),
α1,t + α2,t ≥ 1/2, α1,t, α2,t > 0 for 0 ≤ t ≤ T and
that q̂t, ν̂t belong to a Donsker class. Then, the estimator
ρ̂π

e

DR achieves the semiparametric efficiency bound under
NMDP.

Thus, in NMDP, in comparison to the standard doubly
robust estimator, DRL enjoys efficiency under milder con-
ditions. To our knowledge, Theorems 6 and 8 are the first
results precisely showing semiparametric efficiency for any
OPE estimator.

In addition to efficiency, DRL enjoys a double robustness
guarantee (as defined in Rotnitzky & Vansteelandt, 2014).
Specifically, if at least just one model is correctly specified,
then the DRL is estimator is still

√
n-consistent.

Theorem 9 (Double robustness). Suppose ‖ν̂(j)
t − ν

†
t ‖2 =

Op(n−αt,1) and ‖q̂(j)
t − q

†
t ‖2 = Op(n−αt,2) for 0 ≤ t ≤

T, j = 0, 1. If, for each 0 ≤ t ≤ T , either ν†t = νt and
αt,1 ≥ 1/2, αt,2 > 0 or q†t = qt and αt,1 > 0, αt,2 ≥ 1/2,
then the estimator ρ̂π

e

DRL(NMDP) is
√
n-consistent.
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In particular, if the behavior policy is known so that ν̂(j)
t =

νt, we can always ensure the estimator is
√
n-consistent (an

example is the IS estimator, which has q̂(j)
t = q†t = 0).

4.2. Estimation of Nuisance Functions for ρ̂π
e

DRL(NMDP)

A remaining question is when can we get nonparametric
estimators achieving the necessary rates for the density ratio
and q- functions.

Cumulative density ratio: When the behavior policy is
unknown, νk can be estimated by estimating and plugging in
πb, which can in turn be estimated by nonparametric regres-
sion. Specifically, we let ν̂(j)

k =
∏k

0=t π
e
t /π̂

b,j
t , where π̂b,jt

is a standard kernel regression estimator or sieve regression
estimator (Newey & Mcfadden, 1994; Stone, 1994). When
πbt (at | Hst) belongs to the Hölder class with smoothness
parameter α and the dimension of the space Hst is dHst
and the dimension of the action space is 1, it can be shown
(ibid.) that ‖π̂b,jt − πbt‖2 = Op(n−α/(2α+dHst )). We there-
fore have the following result.

Lemma 10. Assume π̂b,jt and πbt are uniformly bounded by
some constant below and that πbt (at | Hst) is Hölder with
parameter α. Then, ‖ν̂(j)

t − νt‖2 = Op(n−α/(2α+dHst )).

Q-function: The q-function estimation is discussed in
many literature. For example, recursive type fitted Q–
iteration based on Bellman–equation is one of the common
estimators (Le et al., 2019). The rate is obtained in some
literature (Antos et al., 2008). The other possible estimator
is a nonparametric regression estimator based on the rela-
tion: E[qt(Hat)] = Eπ[

∑T
k=t rk | Hat ]. In this case, the

standard nonparametric regression results can be applied
(Chen, 2007).

Remark 7. Alternatively, parametric models can be used
for qt and (if behavior policy is unknown) νt. Then, un-
der standard regularity conditions, using MLE and other
parametric regression estimators for behavior policy would
yield ‖ν̂(j)

t − ν†t ‖2 = Op(n−1/2), where ν†t = νt if the
model is well-specified. Similarly, we have ‖q̂(j)

t − q
†
t ‖2 =

Op(n−1/2), where q†t = qt if the model of Q-function is
well-specified. If both models are correctly specified then
Theorem 6 immediately implies DRL achieves the efficiency
bound. When using parametric models, this is sometimes
termed local efficiency (i.e., local to the specific paramet-
ric model). If only one model is correctly specified then
Theorem 9 ensures the estimator is still

√
n-consistent.

4.3. Double Reinforcement Learning for MDPs

Given a learning algorithm to estimate the q-function
qt(st, at) and marginal density ratio function µt(st, at),
DRL for MDPs proceeds as follows:

1. Split the data randomly into two halves, D0 and D1.
Let J (i) ∈ {0, 1} be i’s half so that i ∈ DJ(i) .

2. For j = 0, 1, construct estimators µ̂(j)
t (st, at) and

q̂
(j)
t (st, at) based on the training data Dj .

3. Let ρ̂π
e

DRL(MDP) be

En

[
T∑
t=0

(
µ̂

(1−J)
t

(
rt − q̂(1−J)

t

)
+ µ̂

(1−J)
t−1 v̂

(1−J)
t

)]
,

where v̂
(1−J)
t = Eπe [q̂

(1−J)
t | st], which is com-

putable as a sum or integral over the known Eπe .

Again, what we have done is approximating the efficient
influence function φMDP

eff (H) + ρπ
e

from Theorem 3 and
taken its empirical average, where for each data point we
use q- and marginal density ratio function estimates based
only on the half-sample that does not contain the data point.

Again, to establish the properties of DRL for MDPs, we as-
sume the following conditions for the estimators, reflecting
Assumptions 1 and 2:

Assumption 4. 0 ≤ µ̂t ≤ Ct, 0 ≤ q̂t ≤ (T + 1− t)Rmax

for 0 ≤ t ≤ T .

The following result establishes that DRL is the first efficient
OPE estimator for MDPs. In addition, from Theorem 5, this
implies that the asymptotic MSE is O(C ′T 2/n). In fact,
it is efficient even if each nuisance estimator has a slow,
nonparametric convergence rate (sub-

√
n). Moreover, as

before, we make no restrictive Donsker assumption; the
only required condition is the convergence rate condition..
This result leverages our novel derivation of the efficient
influence function in Theorem 11 and the structure of the
influence function, which ensures no variance inflation due
to estimating the nuisance functions.

Theorem 11 (Efficiency of ρ̂π
e

DRL(MDP) under MDP). Sup-

pose ‖µ̂(j)
t −µt‖2‖q̂

(j)
t −qt‖2 = Op(n

−1/2), ‖µ̂(j)
t −µt‖2 =

Op(1), ‖q̂(j)
t − qt‖2 = Op(1) for 0 ≤ t ≤ T, j = 0, 1. Then,

the estimator ρ̂π
e

DRL(MDP) achieves the semiparametric effi-
ciency bound under MDP.

In addition to efficiency, DRL again enjoys a double robust-
ness guarantee in MDP, as in NMDP.

Theorem 12 (Double robustness). Suppose ‖µ̂(j)
t −µ

†
t‖2 =

Op(n−αt,1) and ‖q̂(j)
t − q

†
t ‖2 = Op(n−αt,2) for 0 ≤ t ≤

T, j = 0, 1. If, for each 0 ≤ t ≤ T , either µ†t = µt and
αt,1 ≥ 1/2, αt,2 > 0 or q†t = qt and αt,2 ≥ 1/2, αt,1 > 0,
then the estimator ρ̂π

e

DRL(MDP) is
√
n-consistent.
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4.4. Estimation of Nuisance Functions for ρ̂π
e

DRL(MDP)

A remaining question is how to estimate the nuisances at
the necessary rates. Regarding q-functions, see Section 4.2.
Here, we discuss how to estimate the marginal ratio µk.

For estimating µk, one can leverage the following relation-
ship to reduce it to a regression problem:

µt(st, at) = ηt(st, at)wt(st), (7)
where wt(st) = E[νt−1 | st].

Thus, when the behavior policy is known, we need only es-
timate wt, which amounts to regressing νt−1 on st. So, for
example, if wt(st) belongs to Hölder class with smooth-
ness α and st has dimension ds, we can estimate wt
with a sieve-type estimator ŵt based on the loss function
(νt−1 − wt(st))2:

ŵt(st) = arg minwt(st)∈Λαdst
En[(wt(st)− νt−1)

2
], (8)

where Λαdst
is the space of Hölder functions with smooth-

ness α and the dimension dst . By letting µ̂(j)
t (st, at) =

ηt(st, at)ŵ
(j)
t (st) , the convergence rate is ‖µ̂(j)

t (st, at)−
µt(st, at)‖2 = Op(n−α/(α+dst )) (Chen, 2007). If the be-
havior policy is unknown, we can first estimate ηt as πet /π̂

b
t ,

and then plug it into the regression:

ŵt(st) = arg minwt(st)∈Λαdst
En[(wt(st)− ν̂t−1)

2
].

As long as the convergence rate for η is the same as the rate
of the second-stage regression, we will obtain the same final
rate for ŵ.

In the finite-state-and-action-space setting in (Xie et al.,
2019), the other example is a histogram estimator:

ŵt(st) =
∑n
i=1 I[s(i)t =st]νt−1∑n
i=1 I[s(i)t =st]

. (9)

In continuous space cases, the histogram estimator in Eq. (9)
can also easily be extended to a kernel estimator:

ŵt(st) =
∑n
i=1 Kh(s

(i)
t −st)νt−1∑n

i=1 Kh(s
(i)
t −st)

, (10)

where Kh is a kernel with a bandwidth h.

Remark 8 (Parametric model case). In the special case
where we use parametric models for µt and qt, under
some regularity conditions, parametric estimators will gen-
erally satisfy ‖µ̂t − µ†t‖2 = Op(n−1/2) and ‖q̂t − q†t ‖2 =

Op(n−1/2), where q†t = qt and µ†t = µt if the models are
well-specified. Thus, if both models are correctly specified,
then Theorem 11 yields local efficiency. If only one model
is correctly specified, Theorem 12 yields double robustness.

5. Experiments
We now turn to an empirical study of OPE and DRL. We
study comparative performance of different OPE estima-
tors ρ̂π

e

IS , ρ̂
πe

DRL(NMDP), ρ̂
πe

DM, ρ̂
πe

MIS and ρ̂π
e

DRL(MDP) in two
standard OpenAI Gym tasks: (Brockman et al., 2016):
Cliff Walking and Mountain Car. Here, the IS estimate
and DM estimate are simply ρ̂π

e

IS = En

[∑T
t=0 ν̂trt

]
and

ρ̂π
e

DM = En [Eπe [q̂0(s0, a0)|s0]]. We do not compare re-
cent infinite horizon OPE estimators assuming the existence
of stationary distributions (Liu et al., 2018; Nachum et al.,
2019; Kallus & Uehara, 2019b) since it cannot be directly
applied to these environments.

First, we used q-learning to learn an optimal policy for the
MDP and define it as πd. Then we generate the dataset from
the behavior policy πb = (1− α)πd + απu where πu is a
uniform random policy and α = 0.8. We define the target
policy similarly but with α = 0.9. Again, we assume the
behavior policy is known. Note that this πd is fixed in each
setting.

We estimate all µ-functions by first estimating w-functions
and using Eq. (7). For Cliff Walking, we use a histogram
estimator for w as in Eq. (9). For Mountain Car, we use a
kernel estimator for w as in Eq. (10). We use the Epanech-
nikov kernel and choose an optimal bandwidth based on
an L2-risk criterion for t = 1; we then use this band-
width for all other t values as well for simplicity. For
q-functions, we use backward-recursive regression. For
Cliff-Walking, we use a histogram model, q(s, a;β) =∑
sj ,ak∈S,A βjkI[sj = s, ak = a]. For Mountain-Car,

we use the mode q(s, a;β) = β>φ(s, a) where φ(s, a)
is a 400-dimensional feature vector based on a radial ba-
sis function, generated using the RBFSampler method of
scikit-learn based on Rahimi & Recht (2008).

We compare ρ̂IS, ρ̂DRL(NMDP), ρ̂DM, ρ̂MIS, ρ̂DRL(MDP).
In each setting we consider varying evaluation dataset sizes
and for each consider 1000 replications. We report the
RMSE of each estimator in each setting (and the standard
error) in Tables 2 and 3.

We find that the performance of ρ̂DRL(MDP) is superior to
all other estimators in either setting. This is especially true
in Cliff Walking. The estimator ρ̂DRL(MDP) also improves
upon ρ̂IS and ρ̂DM but not as much as ρ̂DRL(MDP). The
estimator ρ̂MIS offers a slight improvement over ρ̂IS, but is
still outperformed by ρ̂DRL(MDP), ρ̂DRL(NMDP), and ρ̂DM.
That the improvement of ρ̂MIS over ρ̂IS and the overall
improvements of ρ̂DRL(MDP) is starker in Cliff Walking
than in Mountain Car may be attributable to the difficulty of
learning wt nonparametrically in a continuous state space.
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Table 2. Cliff Walking: RMSE (and standard errors)

Size ρ̂IS ρ̂DRL(NMDP) ρ̂DM ρ̂MIS ρ̂DRL(MDP)

500 18.8 (7.67) 3.78(1.14) 2.63 (0.01) 12.8 (4.96) 1.44 (0.29)
1000 7.99 (0.89) 0.28 (0.026) 1.27 (0.002) 5.92 (0.78) 0.22 (0.34)
1500 7.64 (1.63) 0.098 (0.013) 1.01 (0.001) 5.55 (1.10) 0.075 (0.008)

Table 3. Mountain Car: RMSE (and standard errors)

n ρ̂IS ρ̂DRL(NMDP) ρ̂DM ρ̂MIS ρ̂DRL(MDP)

500 6.85 (0.13) 3.72 (0.08) 4.30 (0.05) 6.82 (0.12) 3.53 (0.12)
1000 4.73 (0.07) 2.12 (0.04) 3.40 (0.008) 4.83 (0.06) 2.07 (0.04)
1500 3.41 (0.04) 1.82 (0.02) 3.30 (0.008) 3.40 (0.05) 1.69 (0.03)

6. Conclusions
We established the semiparametric efficiency bounds and
efficient influence functions for OPE under either NMDP
or MDP model, which quantify how fast one could hope
to estimate policy value. In the MDP case, the influence
function is novel and has not appeared in existing estimators.
Our results also suggested how one could construct efficient
estimators. We used this to develop DRL, which used our
newly derived efficient influence function, with nuisances
estimated in a cross-fold manner. This ensured efficiency
under very weak and mostly agnostic conditions on the
nuisance estimation method used. Notably, DRL is the
first efficient OPE estimator for MDPs. In addition, DRL
enjoyed double robustness properties. This efficiency and
robustness translated to better performance in experiments.

DRL opens the door to many avenues of further research.
For one, our results suggest a new form for effective esti-
mators for policy value in MDPs involving the combination
of marginalized importance sampling with a control variate.
It may be fruitful to combine this new estimator form with
methods built for NMDPs that optimize the control variate
(Kallus & Uehara, 2019a; Farajtabar et al., 2018), blend or
switch to DM when importance weights are large (Thomas
& Brunskill, 2016; Wang et al., 2017), or select weights to
directly optimize balance (Kallus, 2018; 2020). Another im-
portant direction is to apply DRL to to policy optimization
from off-policy data. One possible way is to use DRL to
efficiently estimate policy gradients, as done by Kallus &
Uehara (2020), while other possibilities may include policy
search, backward induction, or policy improvement.
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