Double Reinforcement Learning

A. Notation

We first summarize the notation we use in Table 4. Notice in particular that, following empirical process theory literature, in
the proofs we also use P to denote expectations (interchangeably with E).

In addition, We let Mnypp denote the nonparametric model where each distribution is unknown and free. We let Mxypp—b
denote the submodel of Myypp where 7 is known and fixed. We let Mupp, Mupp—p denote the corresponding models
where both the decision process and the behavior policy are restricted to be Markovian.

Table 4. Notation

Vs Differentiation with respect to

Tty St, G, Reward, state, action at ¢

Tres Tsps Tay History up to time r¢, ¢, a¢, including reward variables
Hs,, Ha, History up to time s, a;, excluding reward variables
e (a|Hs, ), me(ae]se) Policy in NMDP and MDP case, respectively

¢, m Target and behavior policies at ¢, respectively

pT Policy value, E [ZtT:o 74

ve = vt (Hs,), ve(st) Value function at ¢, in NMDP, MDP respectively
gt = qt(Ha,)> g+ (st,at) | g-function at ¢, in NMDP, MDP respectively

v Cumulative density ratio HZ:O ¢ /m?

[ht Marginal density ratio E[v; | s, a¢]

Nt Instantaneous density ratio ¢ /7%

A Tangent space

M A model for the data generating distribution

MuxwMpP; MNMDP—b NMDP model with unknown behavior policy,
known behavior policy, and parametric g-function, respectively

Muyipp, MMDP—b, MDP model with unknown behavior policy,
known behavior policy, and parametric g-function, respectively
C, Rmax Upper bound of density ratio and reward, respectively
[1(A|B) Projection of A onto B
Ly, Direct sum
11 LP-norm E[f7]1/7
é Inequality up to constant
E:[],Px Expectation with respect to a sample from a policy m
E[],P Same as above for ™ = 7°
E.[],Pn Empirical expectation (based on sample from a behavior policy)
n; The size of D;
En,;,Pn; Empirical expectation on D;
Gn Empirical process /n(P,, — P)
Asmsel[-], var[] Asymptotic variance, variance
N(a,b) Normal distribution with mean a and variance b
Unila, b] Uniform distribution on [a, b]
A, = oplan) The term A,,/a,, converges to zero in probability
A, = Opay) The term A,, /a,, is bounded in probability
AG Holder space with smoothness v with a dimension d

NMDP po(s0) TT1_o me(ar | Hs,)pe(re | Hay)pe(ses1 | Hay)
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B. Semiparametric Theory

We denote the all of the history {H()}7_, as H", the estimand as R(F) : M — R and the estimator as R : H" — R. First,
we introduce some definitions.

Definition 1 (One-dimensional submodel and its score function). A one-dimensional submodel of M that passes through
F at 0 is a subset of M of the form {F, : € € [—a, a]} for some small a > 0 s.t. F.—o = F. The score of the submodel F
at @ = 0 is defined as

_ log(dFe/dp)(H)

S(H) de |6:0 .

Definition 2 (Tangent space). The tangent space of a model M at F' denoted by T'r¢(F') is the linear closure of the set of
score functions of the all one-dimensional submodels regarding M that pass through F'.

Definition 3 (Influence function of estimators). An estimator R(?—L”) is asymptotically linear with influence function (IF)

W(H) if

VA(R(H™) = R(F)) =

Bl

n -

1 & ;
Y U(HD) +o,(1/Vn).
=1
Definition 4 (Pathwise differentiability). A functional R(F’) is pathwise differentiable at F' w.r.t the model M (or w.r.t the

tangent space T (F)) if there exists a function D (#) such that for all submodels { F : €} in M satisfying F._o = F and

dR(F.)
de

le=0=E[Dr(H)s(H)],

where () is a corresponding score function for . The function D () is called a gradient of R(F’) at I w.r.t the model
M. The efficient IF (EIF) of R(F') w.r.t the model M is called a canonical gradient D (#), which is the unique gradient
of R(F) at F' w.r.t the model M that belongs to the tangent space Taq(F').

Next, we define regular estimators. Regular estimators means estimators whose limiting distribution is insensitive to local
changes to the data generating process. It excludes a well-known Hodge estimator. Here, we denote a submodel with some
score function g in a given tangent space Th((F) as {F} 4;t € [—a, a]}.

Definition 5 (Regular estimators). An estimator sequence 7T}, is called regular at F' for R(F') w.r.t the model M (or w.r.t
the tangent space T (F)), if there exists a probability measure L such that

A(Fy ) e
ATy — R(Fyy )} 7 L forevery g € Toa(F).

The following three theorems imply that influence functions of the estimators R(F') for R(F') and gradients of R(F")
correspond to each other, and how to construct an efficient estimator. These theorems are based on Theorem 3.1 (van der
Vaart, 1991).

Theorem 13 (Influence functions are gradients). Under certain regularity conditions, for P € M, suppose R(’H”) isa
regular estimator of R(F') w.r.t the model M, and that it is asymptotically linear with influence function Dp(H). Then,
R(F) is pathwise differentiable at F w.r.t M and Dp(H) is a gradient of R(F) at F w.r.t M.

Theorem 14 (Gradients are influence functions). Under certain regularity conditions, if a D (H) is a gradient of R(F)
at F w.r.t the model M, there exists an asymptotically linear estimator of R(F') with influence function D (H), which is
regular w.r.t the model M.

Corollary 15 (Characterization of efficient influence functions). The efficient influence function is the projection of any
gradient onto the tangent space Ty (F).

Note that gradients w.r.t the model M are not unique if the model M is not a fully nonparametric model. If the underlying
model is fully nonparametric model, the gradient is unique.
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Strategy to calculate the EIF With the abovementioned definitions and theorems in mind, our general strategy to compute
efficient influence functions is as follows.

1. Calculate some gradient D () (a candidate of EIF) of the target functional R(F’) w.r.t M
2. Calculate the the tangent space T (F') at F’

3. Show that some candidate of EIF is orthogonal to the orthogonal tangent space, i.e., the candidate of EIF lies in the
tangent space. Then, this implies that a candidate of EIF is actually the EIF.

The other common strategy is calculating some gradient and projection it onto T (F).

Optimalites The efficiency bound has the following interpretations. First, the efficiency bound is the lower bound in a
local asymptotic minimax sense (van der Vaart, 1998, Thm. 25.20).

Theorem 16 (Local Asymptotic Minimax theorem). Let R(F) be pathwise diffentiable at F' w.r.t the model M with EIF
Dp(H). If Tm(F) is a convex cone, for any estimator sequence R(H™), and subconvex loss function ] : R — [0, 00),

sup lim supEr,  [[Va{R(H") = R(Fy)m Y]] > / () AN (0, varg [Dp (H)]) (1),

J N0 g€l

where the first supremum is taken over all finite subsets I of the tangent set.

Corollary 17. Under the same assumptions of Theorem 16,

inf liminf  sup  Eoll[vn{R(H") — R(Q)}] > / 1(w)AN (0, var p[D e (H)]) (u),

020 = IQ-Fllr <6
where || - |1 is a total variation distance.

Other different type of optimality is seen in the following theorem. The following theorem state that an asymptotic variance
of every regular estimator sequence (H™) with limiting distribution L is bounded below E[D%(#)] (van der Vaart, 1998,
Thm. 25.21).

Theorem 18 (Convolution theorem). Let R(F) be pathwise differentiable at F' w.r.t the model M with EIF Dp(H). Let
R(H™) be a regular estimator sequence at F w.r.t the tangent space Ty (F') with limiting distribution L. Then, if the
tangent space Ta(F) is a cone, then, the term

/ uw?dL(u) — E[D%(H)]

is non-negative.

C. Additional Details from Section 5

Cliff Walking. This RL task is detailed in Example 6.6 in (Sutton, 2018). We consider a board of size 4 x 12. The horizon
was set to 7' = 400. Each time step incurs —1 reward until the goal is reached, at which point it is 0, and stepping off the
cliff incurs —100 reward and a reset to the start.

Mountain Car. The RL task is as follows: a car is between two hills in the interval [—0.7,0.5] and the agent must move
back and forth to gain enough power to reach the top of the right hill. The state space comprises position and velocity. There
are three discrete actions: (1) forward, (2) backward, and (3) stay-still. The horizon was set to 7' = 200. The reward for
each step is —1 until the position 0.5 is reached, at which point it is 0. The state space was continuous; thus, we obtained a
400-dimensional feature expansion using a radial basis function kernel as mentioned.

The Policy 74. We construct the policy 74 using standard g-learning (Sutton, 2018). For Cliff Walking, we use a g-learning
in a tabular manner. Regarding a Mountain Car, we use g-learning based on the same feature expansion as above. We use
4000 sample to learn an optimal policy.
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D. Proofs
Proof of Theorem 2.

Efficient influence function under Myypp. The entire regular (regular model as defined in Chapter 7 van der Vaart,
1998) parametric submodel under NMDP is

{pa(s0)palao|so)pe(rolHay)pe(s1|Hr)Po(a1|Hs, )po(r1[Ha, ) - - po(rr|Har )},

where it matches with a true pdf at = 0.

The score function of the model Mxypp is decomposed as

T T T
g(jST) = Zk:o gSk|'Hak_1 + Zk:o gak\Hsk + Ek:o gT}c|7‘lak .

We first calculate an influence function for the target functional. Note that this influence function is not unique. We have

T
VQEWC [Z ’I",;|
t=0

=V /Z T {H Ppo(sk[Hry_, )Pre (ak|7'lsk)pe(7“k|7'iak)} du(jsT)]
t=0 k=0
T
= Z{Eﬁe [{Exre (re|so) — Exe(re)}gso] — Exe[{re — Ere(re[Ha.) }gr a1, ]
- T T
£ ] [ ] )
t=c+1 t=c+1
T
= Z{Eﬂe[{Ewﬂ (relso) = Ene(re) }g(Hsryy )] — Ene[{re — Exe (re|Ha, ) }9(Ts7)]
= T T
B, KE S s | — B [ 3 mD g(an] )
t=c+1 t=c+1

=E (l—p”e + ZVJC — {VC X:EWe (re|Ha,) — Ve—1 ZEwe (rt|7{sc)}] g(jsT)> )
c=0

t=c t=c

This concludes that the following function is an influence function:

t=c

T T T
ple\lf%v[DP = _pﬂ-e + ZVCTC - {VCZEWe(TtHac) — Ve—1 ZEﬂ'e(rt,HsC)} : (11)
c=0 t=c

Next, we show that this influence function is the efficient influence function. In order to show this, we calculate the tangent
space of model Mynpp. The (nuisance) tangent space of the model Myypp is the product space:

D “ADBDHo,
0<t<T
Ay = {q(st, Ha,_,); Elq(st, Ha, )| Ha, ] =0, g € L},
By = {q(at, Hs,); Elq(ar, Hs, )|Hs,] = 0, q € L2}7
Ci = {q(re, Ha,); Ela(rs, Ha,)[Ha,] = 0, g € L*}.
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The orthogonal space of the tangent space is the product of

P A (12)

0<t<T
such that
A;S @At = Ag? AQ/ = {q(jst);E[q(jSt”jT‘t—l] = 07 q S L2}7
B B: = B, B = {4(Ja,): Bla(Tu,)| T, ] = 0, g € L},
ci@ i =cy, ¢ ={a(7,);Ela(Fr,)|Ta,] =0, g € L?}.

More specifically, we have the following lemma.

Lemma 19. The orthogonal tangent space is represented as

Ay = {4(Js,) — Bla(T,) Hs, [ Ela(Te )| Tr -] = 0, g € L2}
B; = {q(jat) - E[q(jat)“-[at};E[Q(jat)‘jst] = 07 q € L2} 9
Ci = {a(F.) — Ela(T)[Ha, i Ela(F:)|Ta) = 0, q € L}

Proof. We give a proof for A}. Regarding the other cases, it is proved similarly. First, from the definition of the conditional
expectation, A} and A; are orthogonal. Thus, what we have to prove is E[q(7s, )|Hs,] is included in A;. This is proved as
follows:

E[E[q(th)|HSt]|Hat—l] = E[q(‘jst)|Hat—l] = E[E[q(‘jst)|‘7rt—l]|7-[at—l] = 0. O

If we can prove that the influence function Eq. (11) is orthogonal to the orthogonal tangent space Eq. (12), we can see that
the above influence function is actually the efficient influence function. This fact is shown as follows.

Lemma 20. The derivative Eq. (11) is orthogonal to { A, } 14!, { By}, {CIHE,

Proof. The influence function is orthogonal to Aj: for ¢(J;, ) € A},

E [{_pﬂe + Z VC(,H%)TC - {Vc(Hau) ZETF"‘ [rtIHac] - Vc—l(/Hac71) Z Eﬂ'“[rtrHsc] } } t(jSk )]

t=c t=c

T T
{Z Vc(Hac)rc — V-1 Z ETFe [Tt%sk]} t(jsk)]

c=k t=k

=E

=0.

The influence function is orthogonal to By/: for ¢(7,,) € B};
T T T
—PT + Z Vele — {Vc Z Ere [rt|lHac} — Ve—1 Z Ere [Tt|Hsc] } } t(jak)]
c=0 t=c t=c
(T T T
Z VeTe — {Vc Z ETr‘3 [Tt‘Hac] — Ve—1 Z ETr‘3 [Tt‘HsC] } } t(jak)‘|

c=k t=c t=c

T T
{Z I/CT’C} - {l/k ZE"S [Tt|Hak]}} t(jak)l
c=k t=k

E

=E

Vg Ere [TtrHak]} - {VkZETrQ [rtlHGk]}}t(jak)] =0.
k

t= t=k
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The influence function is orthogonal to C}: for t(7;,,) € C};

T

., T

. H_pﬂe + 3 ve(Ha,)re {uc(’Hac) > ErelrdHa,] = vee1(Hao_,) Y BrereHs,] } } t(jrk)l
o —0 t=c =

= {Z Vc(Hac)rc} t(Jm)‘|

c=k

=E {{Vk_1 ZE”F’ [Tt|jrk]}} t(Tr)

t=k

[ T
=K {{Vkl ZEﬂ-e ['H'Hakvrk]}} E[t(jrk)|Hak,rk]] =0. _

t=k

=E [{Vk—l Z Ere [TtrHakvrk]} t(jrk )]

t=k

This concludes the proof for NMDP.

Efficient influence function under Myypp_p. Next, we show that the efficiency bound is still the same even if we
know the target policy. To show that, we derive an orthogonal space of the tangent space of the regular parametric submodel:

{po(s0)p(aolso)pe(rolHaq)po(siHr)p(ar|Hs, )po(r1|Ha,) - - po(rr[Har )},
where p(a¢|Hs, ) is fixed at w2. This is equal to

Do<i<r(A1 D B D CY) (13)

This space Eq. (13) is orthogonal to the obtained efficient influence function under NMDP. Therefore, the efficient influence
function under MywmpP—p is the same as the one under MyypP.

Efficiency bound. We use a law of total variance (Bowsher & Swain, 2012) to compute the variance of the efficient
influence function.

var lz (e — (eqe — vi—1vy))

0

| S

}ﬂ
)

_ _ - B}
= Z E |var <E Vp_1T¢—1 + Z (Vkrk - {Vka - Vk—lvk}) ‘jat |jat1>]
t=0 L L k=0 i
T41 T r T i
= Z E |var <E Ve 1Ty—1 + Z (verk — {veqe — V—10k}) | Ta, |jat_1>]
t=0 L L k=t i
T+1 T r T i
= Z E |var (E Vio1re-1 + (Z Vk?”k) —{vqe — Vi1 }|Ta, |jat1]>
t=0 L L k=t i
T41
= E [Vf_lvar (T't—l + Ut(Hsf,)‘Hat—l)] :
t=0
Here, we used E[E{:t UkTk| Tar] = ViQr- H

Proof of Theorem 3.
Efficient influence function under Mypp. The entire regular parametric submodel is

{po(s0)pa(aolso)pa(rolso, ao)pe(si|so, ao)pe(ar|si)pe(rilsi,ar) - - po(rrlsr,ar)}.
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The score function of the parametric submodel is
T T T
g(jST) = Zk:o gsk \sk,l,ak,1 + Zk:o gak;+1 \sk + Zk::o grk Isk,ak .

We first calculate the influence function of the target function. Note that this influence function is not only influence function.
We have

T
VoEnre[> 7]
t=0
T T
= Ve/zrt {Hpe(Skakl, Sk—1)Prg (ak|sk)po(rk|ak, Sk)} dp(Tsr)
t=0 t=0
T
= Z{Eﬂ“ [(Eﬂe [TC|SO] — Ege [TC])QSO] — Ege [(rc — Ege [TC|SC» ac])grc\sc,ac]
c=0
T T
- Eﬂ'e <E7T€[ Z Tt|sc+1] - Ewe[ Z rtlscv ac]) gsC+1|sc,aC‘| }
c=t+1 c=t+1

= S EI(Brels] ~ Bl ~ B | 2020 s o)

. (
- E lpﬂ(sc’ac)(E[ Z relsc1] — E[ Z Ttsc’ac])gl}

Drb (SC’ ac) t=c+1 t=c+1
||y telietd, et s s g telbented sl
= — —Te—{ ————~ 7o |Tt|Scs Q) — ——F———= 7o Tt|Se q(J.
p —0 pﬂ‘b(sc7a’0) ¢ pﬂb(scaac) —c Hoe e pﬂ-b<SC,1,CLC,1) —c Hoe -

Therefore, the following function is an influence function;

T T

T
€ pﬂ'f Sc,y Qc pﬂf Sc, Q¢ ng Sc—15Qc—
—pc + Z ¥re - {() ZETFE [Tt|sc>ac] - M ZEWe [Ttsc]} . (14)

—0 Pre (5(:7 ac) DPre (S(Ja ac) —e Pre (Sc—la ac—l) t—c
‘We will show this influence function is the efficient influence function.

In order to show this, we calculate the tangent space of model Mypp. The tangent space of the model Myipp is the
product space;

P “PBPHCy,
0<t<T
Ay = {q(s¢,81-1,a0-1); Ela(se, se—1, a—1)[s1—1,ai-1) = 0, ¢ € L},
Bi = {q(at, s1); Elq(az, s¢)[s:) = 0, ¢ € L?},
Cy = {q(re, s, a0); Blq(re, 50, a0)|s¢,a:] = 0, ¢ € L*}.

The orthogonal space of the tangent space is the product of
P “wPpBPpc) (15)
0<t<T
such that
A D A =AY, AY = {q(J.,): Ela(Te)| T, ] = 0, g € L7},
B B, = B}, B! = {4(Ja,): Ela(Ja, )| T, ] = 0, g € L%},
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Ct/ @ Ot = Céla Org/ = {q(Jr,), E[q(jh”j(lt] = 07 q € LQ}
More specifically, the orthogonal tangent space is represented as

A:& = {q(jst) - E[Q(jst”stvatflastfl];E[Q(jSt)LZ”t—l] =0,q¢€ L2} ,
Bi = {q(Ja,) — Ela(Tr)Ist, ar); Elq(Ta, )| Ts,] = 0, g € L7},
Cé = {q(jTt) - E[q(jrt)"rhStvat];E[q(jTt”jat] =0,q€ L2} .

If we can prove that the influence function Eq. (14) is orthogonal to the orthogonal tangent space Eq. (15), we can see that
the above influence function is actually the efficient influence function. This fact is shown as follows.

Lemma 21. The derivative Eq. (14) is orthogonal to { A} }[ 2 ABIE o, {CIHE,.

Proof. First, the influence function Eq. (14) is orthogonal to Aj; for t(J;, ) € Aj,

E {vo + Zut(St,at)(rt + Vi1 — Qt)} t(Jsk)]
t=0
=E l{ Z pe(Se, ae)(re + vppr — Qt)} t(js;c)l
t=k—1
=E [uk71(3k717 akfl)(rkfl + v — qk*l)t(jsk)]
= E [pr—1(sk—1, ar—1)vrt(Ts, )]
=E [up—1(8k-1, ar—1)vxE[t(Ts, ) |8k, k-1, Sk—-1]] = 0

Second, the influence function Eq. (14) is orthogonal to B}/; for t(7,,) € By,

T
E {vo + Zut(st;at)(rt + U1 — Qt)} t(jak)]
=0
=E {Z,ut(st, ap)(re + vegpr — Qt)} t(jak)] =0.
i—k

Third, the influence function Eq. (14) is orthogonal to C; for t(7,,) € C},

E

T
{vo + Z pe (8¢, ae)(re + vegr — Qt)} t(jm)]

t=0

{Z (8¢, ae)(re + vegr — Qt)} t(jrk)]

t=k

E [{px(
B [{(
B [{(

=E

Sky k) (T + Vi1 — Qi) } (Tr,)]
sk, ag)(E[re + Elvgs1|Trk] — ar) } t(Tr )]
Sk ar) (i + Elvkta|se] — qu) } E[E(Tr,) |8k, a, 7)) = 0. O

Efficient influence function under Mypp_;. In Lemma 21, we check that the MPF is orthogonal to B”;. This
concludes the proof noting that the orthogonal tangent space of Myipp—y is

Do<i<r(4: B B": B CY).
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Efficiency bound. To show an efficiency bound, we use a law of total variance (Bowsher & Swain, 2012). Recall that We
can also easily derive this variance form using another equivalent form of efficient influence function.

T
var |vo + Y (e, ar)(re + vigr — Qt)]

t=0

T+1
=) E
=0
T+1

= ZE
t=0

T+1
=Y E[var [E [m—1(si—1,0-1) (re—1 + v — ¢1—1)|Ta,] | T, ]|
t=0

T
vo + Z/’[/k(sk7 ak)(rk + Vk+1 — qk)ljat‘| |‘7at1‘|‘|

t=0

T
Z ok (Sky ag) (T + Vg1 — Qk)|«7at1 |L7at1H

k=t—1

var lE

var lE

T+1

=Y B [var (g1 (si-1, a-1)(re—1 + v¢ — q—1)|Ja,_, ]
t=0
T+1
=Y B[ (siv,ai1)var [(re-1 +v0)|Ja,_, ] -
t=0
L]
Proof of Theorem 4. From Jensen’s inequality,
T+1 T+1
Z E [Vtz_lvar {re + ve(se)|se-1, at_l}] = Z E [E(Vf_ﬂst_l, ar—1)var {ry + vi(s¢)|s¢—1, at_l}]
t=0 t=0
T+1 T+1
> Z E [E(Vt—1|3t—1; ai—1)*var {re +ve(se)|se-1, at—l}] = Z E [M?_ﬂ’ar {re +ve(se)|se-1, at—l}] .
t=0 t=0
O]

When /2, is not constant given s;_1,a;_1 and var {ry + v¢(s;)|s;—1,a;—1} # 0, the inequality is strict.

Proof of Theorem 5. By changing the limits of summation and letting r_; = 0, Ay = 1, we can write the efficiency bound

under NMDP as
T+1 T+1
Z E P\fflvar {ric1 +vi(Hs,) | Haoy }] < cr+t Z E [M—1var {ri—1 + vi(Hs,) [ Ha,_, }]
t=0
T+1
= T+! Z Ere [Varﬂe {Tt,l + vt(Hst”Hat,l}]
t=0
T+1
= CT+! Z Ere [Var {rt,l + Ut(Hst)\'Hat,l}]

t=0

t=0

T+1

= C’T+lvar[z T—1)

t=0
< CTHNT 4 1P2RY,,.

The last equality follows by the law of total variance.

Similarly, the efficiency bound under MDP is

T+1 T+1

> B [pf var {ri_y +voi(s) | si-1aim1}] < CY B [meoyvar {rey 4+ vi(se) | si—1,a-1}]
t=0 t=0
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T+1

=C"  Ege [var {re_1 +vs(se) | -1, a1-1}]
t=0
T+1
=’ Z Ere [varge {ri—1 +ve(se) | s1—1,a1-1}]
t=0
T+1
= Clvar[z Ti1]
t=0
< C(T + 1)* R} e
The last equality again follows by the law of total variance.
Finally, for the NMDP lower bound we have by Jensen’s inequality
T+1 T+1
Z E [A7_yvar {ri_1 + v (Hs,) | Hary }] = Z Ere [Ae—1var {ri—1 + ve(Hs,) | Ha,_, }]
t=0 t=0
T+1
> Z exp Ere [log()\t,lvar {rt,1 + v (Hs,) | 'Hat,l})]
t=0
T+1

> > exp(Eqe [log(Ai—1)] + Exe [var {ri_1 + ve(Hs,) | Ha,_, })])
t=0

T+1

> Z exp(t log Cmin + log V11211n)
t=0

> ViainCoin'
Proof of Theorem 6. Define ¢({Dr},{qr}) as
Zfzo Uk — {14k — DkEre [Gr(Ha, )| Hs, ]}

The estimator [)g/lRlL (NMDP) is given by

mp, ({0}, (a0 )) + BB s ({50}, {3},

where P,,, is an empirical approximation based on a set of samples such that J = 0, P,,, is an empirical approximation
based on a set of samples such that J = 1. Then, we have

V(P ({160 1) — 07°) = /110G [ {u,:)} (@) — o} {an))] (16)
+ /110G [o({r M} {al 1) (17)
+ Va(Ele({p! }{qi”}n{u;)}{“ Y- pm). (18)

We analyze each term. To do that, we use the following relation:
oD} {dn}) — 6({wr} {ax}) = D1+ D2 + D3,  where
T

Dy ZZ(ﬁk—Vk)( Qi+ qr) + (k-1 — vi—1) (= 0k + vk),
k=0
T
Dy = il — q) + ve—1 (B — vr),
k=0
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T

Dy = (0% — vi)(rk — Gk + vk41).
k=0

First, we show the term Eq. (16) is o, (1).
Lemma 22. The term Eq. (16) is o,(1).

Proof. If we can show that for any ¢ > 0,

Tim /noP oy [6({2 ), {4} = o}, {ax}) (19)
—Elp({0"), (")) — vy {a DD Y, (@MY > €D = 0

Then, by bounded convergence theorem, we would have

limn o0 /0 PP [0({51}, {357 — o({vi}, {ax})]
—E{o"}. ")) - o({m Ao D1 (@) > d = o,
yielding the statement.

To show Eq. (19), we show that the conditional mean is 0 and conditional variance is o,,(1). The conditional mean is

E[P,,, [o({2"}, {qk”}) S({n}, {qk}>|{u,i”} (@
Plo({oy"}, (@ }) — o({v}, {a ]ID1] = 0

and q,(C ) only depend on D;. The conditional variance is

var[y/oPn, [6({0173, (a0 }) — o({v}, {ax ]I D1]
— B[B[D? + D} + D} +2D1 Dy + 2D5 D3 + 2D, D5 [{d\V}, {v{V )|y
= 0,(1).

Here, we leveraged the sample splitting construction, that is, A(l)

Here, we used the convergence rate assumption and the relation ||17,(Cl) —vgll2 < ||(j,(€1) — qi||2 arising from the fact that the
former is the marginalization of the latter over 7j. Then, from Chebyshev’s inequality:

Vo PPy [0({2V}, {0V 1) — o{wh {an})] — Blo({7V ), {a )
— o({w} {a DI Aa N > el D]
< varlyoPr, ("), 00)) — o (@ DIIPa] = op(1). 0
Lemma 23. The term Eq. (18) is o,(1).
Proof.

VnE[¢ ({u,:)} (@MY - Els(m} Lo DM Y {a )
— VRE(Y — ) + ) + O )+ o), G

k=0

T
+ \/ﬁE[Z Vk((j,(cl) = qr) + ve—1(0x — Uk)Hﬁ;(cl)}, {le(cl)}}
k=0

+ VB (0 — ) (re — g+ )Y (6]

k=0
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T

VRE[Y (9 (=" + an) + O, — von) (— o + o) {2 (@)
=0

T

T
- nZOHV — vell2lldt — gill2) =V op(n™ " )op(n™2) = op(1).
k=0

k=0

Finally, we get

V(B d ({00} G ) — 07°) = VoG [o({v} {ar})] + 0p(1).

Therefore,

e

Vi (Phrempp) — £ )
= no/nv/ne({oV} ") — ™) + ny nv/n(®a, 6 ({031, @ )) — o)

= \/no/nGno {wad {ar Dl + Va /nGo, [0({vi}, {ar})] + 0p(1)
Gnlo({va} {ar})] + op(1),

concluding the proof by showing the influence function of ﬁgeRL (NMDP) is the efficient one.
Proof of Theorem 8. We define ¢({Dy}, {Gr}) as
T . IR .
Y ko Pk — V=1 {kdx — Exe [k (Hay )| Hs, ]}
The estimator pJy is given by P, ({2}, {gx}). Then, we have

Vi(Prd({Dr}, {ar}) — 0™ ) = Gulo({on}, {an}) — o({vi}, {an})]
Gulo({vrts {ax})]
+V(Elp{oe} {a D)o} {an}] — o™ ).

(20)
1)
(22)

If we can prove that the term Eq. (20) is o,(1), the statement is concluded as in the proof of Theorem 6. We proceed to

prove this.

First, we show ¢({7 }, {G:}) — #({v+}, {¢:}) belongs to a Donsker class. The transformation

{id dae}) = Sp_o vt — {vkak — Vk—1Ere [gn (Mo, )| Hs, ]}

is a Lipschitz function. Therefore, by Example 19.20 in van der Vaart (1998), ¢({#x }, {dx}) — ¢({vr}, {gr}) is an also

Donsker class. In addition, we can also show that

lo({on}:{an}) — d({vat {ar})ll2 = 0p(1),

as in Lemma 22. Therefore, from Lemma 19.24 in (van der Vaart, 1998), the term Eq. (20) is 0,(1), concluding the

proof.

Proof of Theorem 9. We use the following doubly robust structure

T
E lz Vit — Vi — Vi—1Ere (qr[Hs, )}

k=0

= E{Erc(qo|s0)} + E

T
> vi{re = an + Ere <qk|Hsk+l>}] =
k=0

Then, as in the proof of Theorem 6,

e

V(Pay ({171, {60 )) — 0™)

O
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= V110G, [6({0V 1@ Y) — (i} Adb 1] + VoG [0({vf ), {af D]
+v/n/no(Ele({oy” } Aa DA Y A — Elo({v) ) Aab D)D) + Va(Elb({v]}, g })]
= V1 /10Gny [$({vf}, (gl D] + Ve } Al )] = ™) + op(1).

Here, we used
VG [0({2 V1, Aa) ) — o} i D)) = 0p(1)
from Lemma 22 and
/o ES{o Y Ad DD Y AGDY — Ele(vf ) gl D) = 0,(1),

which we prove below as in Lemma 23.

Lemma 24.

Vo Els(oY, NI Y a8 - Els (i}, Ll 1)) = 0,(1).

Proof. First, consider the case where v, = 1/};.

VREB{2 Y, {aMY) - Ele({w {af DI, (@)
T
= VB[ (0" — (= + )+ (0F) — v (=oe + oD (a0

k=0

+ V| zuk — ) + v (@ — DIV} aN

k=0

+ VB[S 0 = vk — g + ol IO, (0]

D
k=0
T
= VREY (01" — ) (=a) +al) + 0, — veon) (—on + oDV (AN

k=0

T
+VRED (0 — v — af + ol DY {60 )]
k=0
T
= v Y Ol = vilalldy” = afll2 + 195" = vi?)
k=0
T
=V Y {0, (7)o, (n702) + Op(n 1)} = O,(1).
k=0

Next, consider the case where g, = q,‘;:

VREB{2V Y A" Y) — Ele({vfy {an DI T (0 )]
T
= VB> (oY = D) (=a" + a) + @) — vl ) (o + v {ogV ) (a0 )

k=0
T
+ VB[S i@ = q) + vfy (0 — o) {23, (60 Y]

[
k=0
T

~(1 ~(1 (1
=vn > 0o = vil2llds — arll2 + 165" — all2)
k=0

—p™)
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= VY {0, (1 oy (n72) + Oy (n42) } = O, (1),

Using the above result, we prove the statement for each case below.

v-model is well-specified. First, consider the case when V}; =

Elp({vi}, {af D] = B var — {veal(Hay) = vi-1 B [af (Hay ) ls4]

€

= -

= E[ l/krk] =p

=
Il

0

Then,

Vi(Pay ({71 {60 1) — 07°) = V110G [0({ve ), {af D] + Op(1)

Therefore,

V(D rL ey — A7) = V10/mGuo [({vi} A D] + V1 /nGo, [6({r}, {af 1] + Op(1)
= VnGn[p({vi}, {af )] + Op(1) = Op(1).

which shows ﬁgeRL (NMDP) is y/n-consistent when the model for the behavior policy is well-specified.

g-model is well-specified. Next, consider the case where q}; = qp.

T
E[(ZS({V]];L {Qk})] =E |Ere [CIO( ao) |30 Z Vk{rk — qx(Hay) + Exe [qk( ag )|Sk+1]}

k=0

e

= E[Exe[qo(Hao)|s0]] = p" .
Then,

VP ({1 G0 1) — 07°) = /110G [0({V] ), {ar})] + Op(L).

Therefore,

VilpBRLcovpp) — P ) = V10 /1Gng [6({rf}, {ar 1] + Va /nGo, [$({1L} {ae})] + O, (1)
= VG [o({ri} {a})] + Op(1) = O, (1).

which shows ﬁg}L(NMDP) is \/n-consistent when the model for the g-function is well-specified.

Proof of Lemma 10. We have

T 7 k k
s T ¢ T ¢
RN B ERIENE
7b - 7b b 7b b
o=t "'t 2 i=0 \t=0 "t t=i "t t=0"1 t=; "'t 2
k
e /~b
<Y O(|ls /7 = mell2)
t=0

— Op(n—(a)/(a-‘rdﬂsk ))_
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Proof of Theorem 11. Define ¢({fix}, {qx}) as
o irk = D1 (ks — B G (Hay ) Moy ])-
The estimator ppryvpp) is given by

USRS AT R

Then, we have

VAP oL} G — p™) = V/noG (o 1, 4@ ) — o}, {a))] (23)
+ /1 /noGr, (¢ {Mk} {ar})] (24)
+VED{ AN Y Aa DALY (G - ™). (25)

We analyze each term. To do that, we use the following relation;
<{u;>} {67)) = @} {as}) = Dy + Do+ Ds. - where

D, = Z(Mé P ) (=0 + )+ (2 — ) (— 0k + k),

k=0
Zuk " — ) + e (0 — o),
T

D3 = Z( iy — pk) (T — qr + Vkg1)-
k=0

First, we show the term Eq. (23) is o, (1).
Lemma 25. The term Eq. (23) is o,(1).

Proof. If we can show that for any € > 0,

Tim Ao PPay[o({i Y Ad D) — o} {ay )] (26)
Elo({ay"}, {67 — o} Lo DA Y AV > e Di) =

Then, by bounded convergence theorem, we have

Lm0 /A0 P[P [6({4 1, {00 1) — 6w}, {an )]
~Elo({a" ) (") — oy Ao ) Y (g > =0,

yielding the statement.

To show Eq. (26), we show that the conditional mean is 0 and conditional variance is o,,(1). The conditional mean is

EP,, [o({al"}, (@) — o} {an A0}, (a1 -
Plo({a)}, (@ )) — oL}, {ax DID1) = 0

Here, we used a sample splitting construction, that is, /l,(cl) and cj,(cl) only depend on D;. The conditional variance is

var[y/noPu, [o({i"}, {67 }) — ¢({ux}, {a })]ID1)
_ E[E[D? + D3 + D} + 2Dy D + 2D, D3 + 2D, D5 [{g{"}, {n{" }]|D1]
= op(1).
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Here, we used the convergence rate assumption and the relation Hﬁ,g —vkll2 < |14 T ||2- Then, from Chebyshev’s
inequality;

Vo PP ({1}, a0 ) — oL, {an})] — Ele({ad"3, {67 ) —
<{uk} {a DAY (6] > €Dy

< ;zvar[mm o({i} 4aD) — o({um} {aeD]ID1] = 0p(1). O
Lemma 26. The term Eq. (25) is o,(1).
Proof.
ViE[p <{ﬂ§£>} (@) = Blo(me} oDl i} {0}
= fE[Z( P ) (a8 + ) + () — ) (=0 + o) {1 {600

k=0
T
+ VIR (@ = ar) + o (i — o) {4}, {0
k=0
+VRELY (i = ) (= i+ o) {3, (0]
k=0
T
= VRE[Y (i — i) (=4 + ai) + () = me-1) (=0 + o) {3 {0
kao T
= VIS O = il = ) = VS o™ oy (n72) = oy (1) =
t=0
Finally, we get
VAo {0} = V/n/10Go [6({1i}, {ax D] + op(1).
Therefore,
\f(ﬁgcRL(MDP) - PWC)
= no/mv/ng({i Y Ady 1) = o)+ ma /nv/n(®o, 0 (i 1 0D = 07
= vno/n no [k} L@k D] + /1 /nGr, [0({pn}, {ar})] + o0p(1)
Gnlo({pu}, {a})] + op(1),
concluding the proof by showing the influence function of ﬁgERL (MDP) is the efficient one. O

Proof of Theorem 12. We use the following doubly robust structure

T

E Zum — {1 @i — pr—1Ere (qr|sk)}
k=0

= E[Ere(qols0)]] + E

T
Zﬂk{rk —qr + Ere (Qk|5k+1)}1 = PﬂE~
k=0

Then, as in the proof of Theorem 6,

e

VP, o({a Y g — ™)
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= /1 /n0Gny [6({A A0 ) — ol {af 1] + Vi /oG [o({ul ) {a} D]
+v/n/noEBlo({a} {a s (e} {a )
Elo({ul} Aab ) + VaElb({ul b g )] - o)
—mano o({ul} Aaf D] + vaElo({ul} {af D] - »™) + 0p(1).

We proceed by considering each case.

p-model is well-specified. First, consider the case when ,uL = pg:

T
Elo({u}, {af D] = B0 _luere — {pnal (sks ar) — pe—1Ere[q] (sk, ar)|si]]
k=0

T
=E_ mr] = p"
k=0
Then,

VAP oL} Y — p7°) = VoG, [6({ ) b 1] + Op(1).

Therefore,

V(2 — ™) = \/no /G [0({p}, {af D] + V1 /nGoy [0({ ), {ah 1] + 0p(1)
= VnGnlo({p} {af D] + Op(1) = Oy (1),

which shows pAgeRL(MDP) is y/n-consistent when the model for the u-function is well-specified.

g-model is well-specified. Next, consider the case where q,Tc = qi:
T
Elo({ul}, {ax})] = B |Exelq(sr, ar)lso] + D ubdre — ar(sk, ar) + Exegr (s, ar)|sii1]}
k=0

= E[Ere[g0(s0, @0)|s0]] = p™ .

We have
ViR d({ )40 )) = ) = /oG [6({uf ), {ah)] + O, (D).

Therefore,

V(52 = ™) = V/n/noGg [0k b Aae D] + Vi /m G, [6({1}, {ax})] + Op(1)
= VnGnlg({pf} {ar})] + Op(1) = O, (1),

which shows p7 is i/n-consistent when the model for the g-function is well-specified.
PDRL(MDP) P



