
Supplementary Material: Strategyproof Mean Estimation from
Multiple-Choice Questions

1. Proof of Theorem 3
To prove the theorem, we reduce from the following problem. Given a rational x ∈ [0, 1] and nonnegative integer weights
α1, . . . , αn, WEIGHTED-BINOMIAL-MEDIAN (WBM) asks for a median of the random variable

Z :=

n∑
i=1

αi Bernoulli(x),

where the Bernoulli(x) are independent (and identically distributed).

This weighted binomial distribution (WBD) is comparable to the Poisson binomial distribution (PBD) in that both generalize
the binomial distribution. However the PBD is an unweighted sum of Bernoulli random variables with distinct probabilities
xi, while the WBD is a sum of Bernoulli random variables with a common x but distinct integer weights.

Lemma 1. WBM is #P-Hard.

Proof. In order to show to show that WBM is #P-complete, we will reduce from the counting version of the knapsack
problem, which is known to be #P-complete (?): Given a list of nonnegative integer weights w1, . . . , wn and an integer
capacity W , #Knapsack asks how many sets S ⊆ [n] exist such that

∑
i∈S wi ≤ W . And we will make use of a slight

variant of counting knapsack: Given an integer k, a list of nonnegative integer weights w1, . . . , wn an integer capacity W ,
and an integer threshold N , k#Knapsack finds |S|, where

S := {S ⊆ [n] :
∑
i∈S

wi ≤W and |S| = k}.

It can be seen that k#Knapsack is #P-complete via an easy reduction from #Knapsack: given an instance of #Knapsack,
simply query k#Knapsack for all values of k and return the sum of the answers.

Turning to the hardness of WBM, we begin by arguing that WBM may be assumed to return the largest possible median.
This is because, for an instance of WBM given by (x, α1, . . . , αn), we may instead take a perturbed probability x̄ = x+ γ.
By choosing γ small enough, we can ensure that the median m̄ of Z̄ :=

∑
i αiBernoulli(x̄) is a median of Z, but that it is

the largest possible such median. Informally, we may tweak x gently enough that we preserve the median but break any
median ties.

Formally, let FZ be the cumulative density function (CDF) of Z. Since Z is a distribution comprised solely of atoms of
weight xk(1− x)n−k for k ∈ [n], it suffices to find some perturbation γ for which

FZ(m)− FZ̄(m) < a,

where m is a median of Z and a is a lower bound on the size of an atom in both Z and Z̄. To show that we may choose
such an a, note we may assume that (1 − x)n ≤ 1/2, since otherwise the largest possible m is 0, and similarly that
x̄n ≤ 1/2, since otherwise we may easily check if the largest possible m is

∑
i∈[n] αi. Among all Z for which xn ≤ 1/2

and (1− x)n ≤ 1/2, the smallest possible atom is of size 1
2 (21/n − 1)n, and so a := 1/nn is a lower bound on the atom

size in Z for any value of x that concerns us.

Since Z is atomic, we then have that

FZ(y) =
∑
z≤y

Pr[Z = z] (1)

=
∑
S⊆[n]

x|S|(1− x)n−|S| 1{
∑

i∈S wi ≤ y} (2)



and so

∂FZ(y)

∂x
≤
∑
S⊆[n]

∂

∂x
x|S|(1− x)n−|S| ≤ n2n. (3)

Therefore taking γ = a
n2n will suffice, and x̄ = x+ γ will have a binary representation which is polynomial in the number

of input bits.

We now reduce from k#Knapsack. Given an instance of k#Knapsack described by (k,w1, . . . wn,W ), let Γ := 〈k〉 +∑
i〈wi〉+ 〈W 〉 be the length of the binary representation of these integers. For each i, let

αi := G+ wi,

where G := (n + 1)
∑
i wi. If Z =

∑
i αiBernoulli(x) for some rational x ∈ [0, 1], then since the wi are positive, the

support of Z is clustered to the left of the integers 0, G, . . . , nG. Specifically, we have by Equation (2) that

FZ(Gk) =
∑
S⊆[n]

x|S|(1− x)n−|S| 1{
∑

i∈S wi ≤Gk}

=

k−1∑
j=0

(
n

j

)
xj(1− x)n−j ,

and so FZ(Gk) can be computed in time polynomial in Γ + 〈x〉.

Next, with k given, consider a binary search over (rational) xwhich searches for the largest possible x for whichm ≤ Gk+W .
Once the binary search is far enough along and the change in x is sufficiently small, FZ(m) approaches 1/2 and the remaining
change possible in FZ(m) will be small with respect to the atomic lower bound a. We may terminate our search, say, when
FZ(m) ∈ [1/2, 1/2 + a/10]. At this point m is the largest value of size at most Gk+W in the support of Z, and so by this
maximality of m ≤ Gk +W ,

FZ(m) =
∑
S⊆[n]

x|S|(1− x)n−|S| 1{
∑

i∈S wi ≤m}

=

k−1∑
j=0

(
n

j

)
xj(1− x)n−j + |Sk|xk(1− x)n−k.

At this point a is much smaller than the other terms, and we may solve for |Sk|, round, and solve k#Knapsack:

|Sk| ∈
1/2± a/10−

∑k−1
j=0

(
n
j

)
xj(1− x)n−j

xk(1− x)n−k

It remains only to justify that this binary search for x terminates sufficiently quickly. By Equation (3) in order to guarantee
that FZ(m) is within a/10 of 1/2 it suffices to guarantee that the binary search step for x has size at most a

10n2n . This
requires log

(
10nn+12n

)
steps, which is polynomial in n.

Proof of Theorem 3. We reduce from WBM. If k = 1 then the reduction is immediate: if each of the Pi is a scaled down
copy of αiBernoulli(x), then finding the optimal report for the random variable

∑
i Pi amounts to finding the (scaled down)

median of
∑
i αiBernoulli(x).

More generally, given an instance of WBM described by (x, α1, . . . , αn), we will construct an instance of our problem,
MAE-ESTIMATOR, for any k ≥ 2 for which determining optimal partitions and reporting scheme will solve our instance of
WBM.



Our Pi will be discrete distributions given by

Pr

[
pi =

1

2k

]
=

1− x
k

(4)

Pr

[
pi =

1 + δ αi∑
t αt

2k

]
=
x

k
(5)

Pr

[
pi =

2j − 1

2k

]
=

1

k
for j = 2, . . . , k . (6)

We will choose δ small enough such that the optimal partition of each of the Pi necessarily groups the atoms described in
Equation (4) and Equation (5) together, and gives each of the atoms of Equation (6) its own interval in the partition. To
find such a δ, first consider the “good” case when the partitions are of this form. In this case, there are kn total boxes, each
with weight 1/kn. Within each box C, the distribution of `1 norms has range upper bounded by δ/(2k). Within each C,
the range of this distribution is an upper bound on the `1 distance between any atom in C and the optimal report for C.
Therefore, a loose upper bound on total MAE is ∑

c∈[k]n

P (Cc)
δ

2k
=

δ

2k
. (7)

On the other hand, consider the “bad” case when at least one of the partitions groups either two of the Equation (6) atoms
together or the Equation (5) atom together with at least one of the Equation (6) atoms. Assume without loss of generality
that the i = 1 partitioning is “bad”. We will focus on the case when an Equation (5) and at least one Equation (6) atom are
grouped together (because it is an interval, necessarily j = 2 is included), since in the best case it is the least costly scenario.
Because of the product structure of the boxes induced by the partitions, for every pair of vectors u and u′ in the support of P
of the form

u =

(
1 + δ αi∑

j αj

2k
, u−

)
u′ =

(
3

2k
, u−

)
,

where u− ∼
∏n
j=2 Pj , necessarily u and u′ are contained in the same box. Therefore among each pair of u and u′, at least

Mu− = min{x,1−x}
k

∏n
j=2 Pj(u

−
j ) mass must travel ‖u′‖1 − ‖u‖1 to the estimate for their shared box, which yields a lower

bound on the error of ∑
u−

(
1− δ
k

Mu−

)
=

(1− δ) min{x, 1− x}
k2

. (8)

By Equations (7) and (8), choosing a δ < min{x,1−x}
k guarantees that the optimal partitioning for our instance is the “good”

partitioning, and so all of the Equation (4) and Equation (5) atoms appear in the same box C? :=
∏
iBi,1.

Recall that by ??, the MAE-minimizing estimate for a fixed box C is a median of the distribution of `1 norms of the
vectors u ∈ C according to P . Therefore MAE-ESTIMATOR finds some MAE-optimal report r? for the box C?, which
by Equation (4) and Equation (5) implies that r

?−n/2k
δ is a median of

∑
i αiBernoulli(x), solving the given instance of

WBM.

2. Additional Experiments
Here we give a more thorough account of the experimental performance of the MSE-optimal estimation scheme as compared
to the uniform estimation scheme, benchmarked against the families of distributions described in ??.

Figure 1 shows their relative performance for a fixed value of n = 50 and a range of possible k, with constant sample
distribution support of size 100. On the other hand, Figure 2 shows their relative performance for a fixed value of k = 3 and
a range of possible n, again with constant sample distribution support of size 100.
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Figure 1: MSE of the uniform and optimal algorithms for fixed n = 50 and a range of k, averaged over 100 distributions
sampled from the various families. Bars are standard error of the mean.
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Figure 2: MSE of the uniform and optimal algorithms for fixed k = 3 and a range of n, averaged over 100 distributions
sampled from various families. Bars are standard error of the mean.


